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Abstract

Many works and articles about probabilistic strategies for the prisoner’s dilemma

have already been realised. Notably Press & Dyson 2012 article has lead to

renewed interest in the subject. In this article, with the help of a systematic

study of probabilistic memory-one strategies, we show that there is a basic

criterion to configure and anticipate their success. This criterion, identified

through the study of large homogeneous sets of strategies, is then compared

to other similar criteria. Our experimental method has allowed us to discover

new strategies that are efficient not only in probabilistic environments, but also

in more general, probabilistic or non-probabilistic environments. We test the

robustness of our results by various methods and compare the new strategies

obtained with the best strategies currently known.
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1. Introduction

Following the publication of Press and Dyson’s article [1] on what they called

ZD strategies and the extortion principle, and following the reactions sometimes

critical [2, 3, 4, 5, 6, 7, 8, 9, 10] to their conclusions, a great deal of interest has

been focused on probabilistic strategies playing the iterated prisoner’s dilemma

[6, 11, 12]. Yet, no systematic and exhaustive sorting methodology was used to

determine whether basic strategies could match or outperform the best known

strategies for this problem [13, 14, 15]. We are conducting here this study by

combining two of the methods that we consider most likely to produce robust

and non-subjective results: the evolutionary (ecological) competition method

[16, 17, 13, 18], and the complete classes method [19, 20]. It should be noted

that the competitions carried out in this article are synchronous like most of

the work in the field and the seminal work of [16] and unlike other recent works

such as [21]. We use complete classes built with probabilistic strategies selected

with the most comprehensive homogeneous possible mechanism in the infinite

set of probabilistic strategies. Our experiments involve up to 5,000 strategies

simultaneously, which is currently a record.

The results we obtain are unexpected: some basic strategies yet unknown

emerge among the thousands of strategies put in competition. A fairly large

category of strategies is identified as robust and efficient for evolutionary com-

petitions. A parameter denoted p’ is identified and interpreted; It is correlated

with the success of the strategies and seems therefore to provide an efficient cri-

terion for predicting the behaviour of a probabilistic strategy in an evolutionary

competition. More complex, but precise variants of this parameter, are sought

by a comprehensive statistical exploration method.

Systematic series of tests are carried out to ensure robustness of the ob-

tained results. In particular, we confront new probabilistic strategies identified

in some deterministic strategies environments to ensure that they remain effi-

cient outside the context that allowed them to be discovered. Newcomers are

also confronted with the strategies identified by Press and Dyson and also with
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the best known strategies in the iterated prisoner’s dilemma. This leads us

to a new formulation of general experimental conclusions about the optimal

strategies known in the prisoner’s dilemma.

Material considerations regarding our calculations. At the moment we are

able to take into account a maximum of 5,000 families (which implies matrices of

5,000*5,000). The number of individuals in each family does not matter since it

results from the calculation formulas. Beyond this size, computing and memory

capacities become too large for a standard desktop computer (Macbook Pro ,

Intel Core i9, 2,9Ghz, 16Go Ram. Programming language Java). 5,000 families

takes us several hours of computation, which is the limit of what we have set

for our experiments.

2. Definitions, rules

The prisoner’s dilemma [16, 22, 18, 23] is when two entities have the choice

between cooperating (c) or defecting (d) and which are remunerated by R points

if they both play c, by P points if they both play d, and receive respectively T

and S points if one plays d and its opponent plays c. We usually describe the

rules using the following notations: [c c]→R+R, [d d]→P+P, [d c]→T+S.

For the situation to be that of a dilemma, we impose that [16]: T>R>P>S

and T+S<2R. Usually, the following values are used in simulation or experimental

works T=5, R=3, P=1, S=0.

In such a situation, defect is a logical behaviour. It always leads to a better

result than cooperate. Indeed: (a) if the other entity cooperates, I get 5 points

by playing d but only 3 points by playing c; (b) if the opponent defects, I get

1 point by playing d, but 0 by playing c. It is a situation of dilemma because

collectively the two entities win 6 points by playing [c c] while they win less

by playing [c d] and even less by playing [d d]. The collective interest is that

everyone plays c, but an individual logical analysis inevitably leads to [d d]

which is collectively the worst case.

The dilemma is iterated when one imagines that the same two entities reg-
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ularly have to choose between c and d. Indeed, to play consists in choosing a

strategy that, informed of the previous behaviour of its opponent and of its own

behaviour, indicates how to play the next round.

Several studies [19, 13, 23, 24, 25, 26], lead to the following conclusions on

which a general agreement seems established.

• (a) There is no one strategy better than all the others. Some are bad

in nearly all possible environments, while others are efficient and have

success (winning many points) in various competitions.

• (b) Efficient strategies are reactive (they react when they are betrayed),

take the risk of cooperating (they begin by cooperating and facing an

adversary who cooperates, they do not attempt to defect), and they know

how to be indulgent (after a defection of the opponent they forgive in

order to renew a cooperation phase. This is for example the case of the

gradual strategy (see its definition in Appendix).

2.1. Simulation of evolution

In addition to the evaluation of the strategies obtained by organizing various

competitions (for example round-robin competitions), test methods exist which

simulate an evolutionary process for which only robust strategies succeed [16].

The evolutionary competition method we use, commonly used in literature

of the field [16, 23, 27], sometimes called ecological competition, is as follows.

Several copies of each strategy (e.g. 100) are put into a virtual arena. A

round-robin tournament (each strategy meets all strategies) is then organised.

Depending on the number of points won during this tournament, the size of

each strategy family is adjusted proportionally to the total number of points,

which defines a second generation. This second generation produces another

generation using the same method, etc. The winning strategies are those with

the highest family size. They are usually efficient in various arenas, so their

good rankings have a deeper meaning than that given by a simple round-robin

tournament. This process is fundamentally different from a genetic algorithm. A
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genetic algorithm aims to create new individuals, while a ecological competition

only changes the size of populations to identify the most robust.

Here is a formal description of the involved process. Let S = {s1, s2, . . . , sn}

a set of n strategies.

Definition 2.1. Meeting between two strategies. We note scoret(si, sj) the

points won by si when it meets sj during a meeting of t rounds.

Definition 2.2. Round-Robin of a set S of n strategies. The score of a strategy

si ∈ S in the round-robin is

gt,S(si) = Σn
k=1scoret(si, sk)

Note that each strategy meets itself. The winner si0 is such that gt,S(si0) =

maxj=1,...,n(gt,S(sj))

For the sake of simplicity we omit for now indices t and S.

Definition 2.3. Evolutionary process for a set S of n strategies. For each

i = 1, . . . , n , we consider popi(0) individuals of the strategy si. It constitutes the

generation 0. In our experiments we consider that the total number of strategies

E = Σi=1,...,npopi(0) is constant.

We note popi(g) the number of individuals of the strategy si at generation g.

The points won by one individual of the i family is then

fi(g) = (popi(g)− 1) ∗ score(si, si) + Σk=1,...,n,k 6=ipopk(g) ∗ score(si, sk)

Each individual meets then each other individual including those of its own

family (but not itself). The total number of points distributed at the g generation

is

total(g) = Σi=1,...,npopi(g) ∗ fi(g)

We can now compute the generation g + 1 :

popi(g + 1) = E ∗ popi(g) ∗ fi(g)/total(g)
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In our experiments we consider t = 1, 000 and for each i ∈ {1, . . . , n} :

popi(0) = 100. The choice to have a stable total number of individuals has

no influence on the rankings. It is just a sake of normalization. From the

formulas, it can be seen that the bottleneck for conducting such experiments

is the computation time of the scoret(si, sk) matrix. Indeed, the evolution of

populations no longer requires recalculating this matrix but simply reusing its

content with multiplicative factors.

This computation models a natural selection process. The results obtained

often confirm (but not always, as we will see) those of round-robin tournaments

and increase their contrasts. They lead to a surprising conclusion: except in

exceptional cases, the arena ends up being occupied only by strategies that

never take the initiative to defect (this is the case of tit for tat of gradual

or pavlov). After a few generations, the arena is occupied by strategies that

only play between themselves [c c]. The arena is thus in a state of widespread

cooperation.

2.2. Complete classes

To conduct objective and unbiased tests that do not depend on strategies

identified as efficient or robust, and to give ourselves chances to discover new and

efficient strategies, we use the complete classes method [17, 14] which consists

in systematically include all strategies with equivalent capacities or functioning

on a common abstract principle. We consider in particular the Mem(X,Y) classes

which group all strategies whose round n depends deterministically on the X

previous moves that the strategy has played and on the Y previous moves the

opponent has played. In this way, the list of created strategies is unbiased in

the sense that none of them has been chosen or eliminated by the experimenter.

A Mem(1,2) strategy is therefore defined by the first two moves it plays, then by

what it does when the past is for example [d dc] (it played d on the round n−1,

and the opponent played d on the n−2 round, and c on the n−1 round; in this

case there are exactly 8 possible pasts). We denote such a strategy by a name

like mem12 ccCDCDDCDD with the convention that the sequence designates the first
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2 moves (in lowercase) and then the answer for the 8 possible pasts taken in the

lexicographic order [c cc] [c cd] [c dc] [c dd] [d cc] [d cd] [d dc] [d dd]

(see Fig 1). The number of possible Mem(1,2) strategies is 1024 = 210. More

generally the size of a Mem(X,Y) set is 2max(X,Y ).22
(X+Y )

.

I Play First
c

c

Me-1 She-2 She-1

C C C C

C C D D

C D C C

C D D D

D C C D

D C D C

D D C D

D D D D

Figure 1: Genotype of a Memory(1,2) strategy. Here the mem12 ccCDCDDCDD

2.3. A selection of 21 strategies

In the rest of this paper we will use among others the set Select of 21

strategies derived from [14] which can be considered as containing the simplest

strategies mixed with the best strategies identified today (see Appendix and

Fig.2).

Finding strategies that outperform or just rank well when added to Select

is a difficult challenge.

3. Press and Dyson results

3.1. A theoretical breakthrough

The well-known paper of William Press and Freeman Dyson [1] has a provoca-

tive title: “Iterated Prisoner’s Dilemma contains strategies that dominate any
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Figure 2: Evolutionary competition of the Select set of 21 strategies

evolutionary opponent”. It surprised the experts who thought that the agree-

ment on the idea of a convergence towards widespread cooperation prohibited

by strategies exploiting the others. Press and Dyson’s results thus appeared as

a breakthrough in the field. Press and Dyson have discovered that within the 4-

dimensional space of memory-1 strategies, there is an interesting 3-dimensional

subspace of so-called zero-determinant (ZD) strategies. A player with such a

ZD strategy guarantees that his own payoff and the co-player’s payoff will sat-

isfy a linear relationship, no matter which strategy the co-player chooses. The

space of ZD strategies itself consists of several interesting subclasses of strategies

subsequently presented.

8



Unfortunately, the Press and Dyson reasoning discusses only the average

gains of probabilistic strategies when meeting one against one. A simple question

always arises and the mathematical arguments do not answer it: among a set

as unbiased as possible of probabilistic strategies subjected to an evolutionary

process by selection, which probabilistic strategies emerge and win ? That is

the issue we deal with in this paper.

Our conclusions reinforce other previous conclusions since the Press and

Dyson’s paper [2, 3, 4, 5, 6, 7, 8, 9, 10] but, thanks to our systematic method,

we succeed here in putting forward a series of robust and efficient strategies that

had not been extracted from previous experimental results and, furthermore, we

show that a basic criterion exists to identify them quickly.

3.2. Probabilistic memory-one strategies

Press and Dyson’s paper proposes two theorems. The first theorem concerns

the iterated dilemma in a version limited to probabilistic strategies using a

memory-one strategy: the random, tit for tat and pavlov strategies belong to

this category, but not the gradual strategy which, to take its decision, looks at

all the rounds already played (full past).

A memory-one strategy is defined by 4 parameters p1, p2, p3, p4 which

indicate the probability of playing c when the last round was [c c], [c d],

[d c] or [d d]. Let us note by proba(p1,p2,p3,p4) this general strategy. It

does not specify how the first round is played, but it does not matter for the

mathematical result that does not depend on it. In practice for simulations, we

will consider all the strategies whose first play is c and all whose first play is d.

For example the tit for tat strategy is coded by proba(1,0,1,0): it coop-

erates with a 100% probability if the last round was [c c] or [d c] and coop-

erates with a 0% probability if not. Similarly, the random strategy is coded by

proba( 1
2
, 1
2
, 1
2
, 1
2
) and the pavlov strategy is coded by proba(1,0,0,1).

Press and Dyson consider a particular class of proba(p1,p2,p3,p4) strate-

gies depending on three parameters a, b and c denote ZD. We will note them

ZD(a,b,c).
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3.3. The ZD strategies.

The general equations linking the parameters p1, p2, p3, p4 for the ZD strate-

gies with R=3, S=0, T=5, P=1 are:

p1 = 1+3a+3b+c

p2 = 1+5b+c

p3 = 5a+c

p4 = a+b+c

Press and Dyson show that when a strategy ZD(a,b,c) is compared to a

probabilistic strategy with a memory-one strategy proba(p1,p2,p3,p4), and if

we denote G1 the average gain per round of the first and G2 the average gain

per round of the second, then these average gains satisfy aG1+bG2+c = 0. Gains

are linearly related. When they meet together, proba(p1,p2,p3,p4) is somehow

controlled by ZD(a,b,c) which means that the ZD will impose the other’s gain.

3.4. The equalizer strategies

When a=0 and b6=0 then G2=-c/b. In other words, any memory-one proba-

bilistic strategy has an average gain independent of the probabilities that define

it, which depends only on the strategy ZD(a,b,c) that faces it. Such a ZD

strategy is called an equalizer. Relationships become:

p1 = 3b+c+1

p2 = 5b+c+1

p3 = c

p4 = b+c

and then G2=-c/b.

Against such a strategy, all memory-one probabilistic strategies get the same

average gain that is known in advance: -c/b. There is no need to struggle with

an equalizer strategy you will win -c/b and no more. The possible values for

-c/b are all the values between P and R. Here are the results of the meetings

between some known strategies and an equa equalizer which is ZD(0,-1/3,2/3)

which is equivalent to a proba(2/3,0,2/3,1/3), so G2 = -c/b = 2. It forces its

opponent to obtain and average gain of 2.
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equa = 2 vs tit_for_tat = 2

equa = 1 vs gradual = 2

equa = 11/3 vs all_c = 2

equa = 3/4 vs all_d = 2

equa = 2.925 vs per_ccd = 2

equa = 3/4 vs spiteful = 2

equa = 2 vs equa = 2

See Annexe 6 for the definition of these strategies. As can be seen, equa

forces the average gain of the opponent, but this is sometimes done at its own

expense, and for example, against spiteful, equa gets only one point on average

per round. Note also that if an equalizer forces the strategies encountered to

have a low score it will be its own victim when it plays against itself.

The notion equalizer strategies notion had already been presented in [28]

but did not attract attention and moreover are not cited by Press and Dyson.

3.5. The extortioner strategies

Among the ZD strategies discovered by Press and Dyson, some of them

operate a kind of extortion. Indeed, if c=-(a+b)P (so a+b+c=0 with P=1) one

proves that the mean gain G1 of the ZD strategy against another one (obtaining

an average gain of G2) satisfies G1-P=X(G2-P) with X=-b/a.

In short, if the second wants to earn more, and then increase (G2-P), this

mechanically implies that the ZD strategy increases its average gain, whose

deviation from P is always X times the deviation to P from the average gain of

the second one.

The four parameters defining what we will call extortioner strategies are

given by the equations:

p1 = 2a+2b+1

p2 = 4b-a+1

p3 = 4a-b

p4 = 0

One of the big flaws of the extortioner strategies is that if X>1 then they

play badly against themselves. If, for example, they want to win twice as much
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against their opponent (compared to P) it implies that against themselves they

will gain only P, which is worse than R.

If X>1, the extortioners will allow you to have a good result only if you give

them a proportionally better result. In this case, the extortioners becomes a

variant of the all d strategy: no one can beat them, but this means that they

also take the risk of a little gain.

3.6. How to recognize ZD, extortioner and egalizer strategies

Practically, if one knows p1, p2 , p3 , p4, in order to know if proba(p1,p2,p3,p4)

is a ZD strategy, it is necessary to proceed as follows: from p2 p3 p4 calculate:

a = p2/15 + 4p3/15 - p4/3 - 1/15

b = 4p2/15 + p3/15 - p4/3 - 4/15

c = -p2/3 - p3/3 + 5p4/3 + 1/3

and verify that: p1=1+3a+3b+c.

If a=0 and b6=0 then this ZD strategy is also an equalizer. If a+b+c=0 then

this ZD strategy is an extortioner strategy.

3.7. Utility of a long memory

The second important theorem of Press and Dyson’s paper indicates that in

a supposedly infinite game, if a strategy A plays against a strategy B having

a memory of k rounds, a strategy A’ with a memory of k rounds or less exists

which obtains the same average score against B. The combination of these two

mathematical results of Press and Dyson leads to the assertion that confronted

to an equalizer or an extortioner strategy, not only all the strategies with a

memory-one strategy are constrained, but all the strategies with finite mem-

ory. From this one we are tempted to conclude that: “(a) Strategies storing

more than the last shot are unnecessary. (b) We have, with the ZD strategies,

strategies that are dominant for the iterated prisoners’ dilemma”.

Some have surely interpreted the theorems demonstrated in this way, and

the title chosen for their paper suggests that this is also the case for Press and

Dyson.
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Yet the double assertion about the uselessness of extended memory strate-

gies and the superiority of ZD strategies is false. About the usefulness of a long

memory see also [29]. Consider first the affirmation of the ZD strategies superi-

ority. It has long been known that in the iterated prisoners’ dilemma beating its

opponent (getting more points than it) can be done at the expense of the winner

and that the latter could have obtained more points on average by agreeing to

be beaten.

The all d strategy wins against any other strategy (it is obvious) and for

example, in a game of 100 rounds against tit for tat, all d gets 104 points while

tit for tat wins only 99. The all c strategy does not win against tit for tat

but gets 300 points during the 100 rounds againts tit for tat who gets also 300

points. When confronted to tit for tat, all d will win maybe, but it is wrong

to win because by doing the same thing as all c, it would have a much better

score.

Most of the Extortioners strategies are in the same situation: they force

their opponent by renouncing themselves to have good scores. Extortioners

win against the strategies they are opposed to, but this is at the cost of the

total points earned. Moreover, an extortioner strategy of parameter X with

X > 1 that plays against itself gets (according to the theory that we verify

by simulation) only one point on average per round, which is very weak. It is

not true that being a good strategy means beating always your opponent. It is

better not to always beat it, get along well with it and get a lot of points.

The case of tit for tat, which is an extortioner with X = 1, is remarkable.

We get the impression of a paradox when we state its properties: tit for tat

never beats any strategy individually and is beaten by many strategies, yet it

is a good strategy that wins many competitions. It wins not because it forces

others to earn less than it does (because X = 1), as a real Extortioner strategy

(with X > 1) does, but because it punishes strategies that do not want to

cooperate. It forces cooperation.against it, either you will win few points, or

you will cooperate, which will be good for it and for you.

It is therefore a misconception to believe that extortioner strategies are effi-
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cient in terms of the number of points earned. In one-to-one meetings, they win

against their opponent (like all d), but for that, they hurt themselves, and over-

all they play rather miserably which is confirmed by [11]. Note that [30] have

shown with human volunteers that an additional monetary incentive (bonus)

paid to the finally competitively superior player maintains extortion but this is

not the case without any bonus.

Besides the error of believing that beating its opponent is gaining points,

another oversight leads to the belief that extortioner strategies were superior:

to impose oneself one must play correctly against oneself. This is important in

round-robin tournaments, but even more in evolutionary competitions. Indeed,

if you are the leader during the first generation, the arena will be populated

with many strategies identical to you, and you will therefore meet them very

frequently. If you play poorly against yourself, it will eventually turn against

you. Nothing is false in the mathematical results of Press and Dyson, but by

addressing only the problem “who wins in a one-to-one fight ?” and forgetting

the problem “how many points are won ?” and the problem “Do you play well

facing to yourself ?” the theorems demonstrated do not allow us to conclude

that the ZD strategies are efficient strategies. The simulations show without

any doubt that ZD strategies are inefficient.

The result of Press and Dyson on the lack of need for a strategy to have

long memory is correct : if a strategy A plays against a strategy B which uses

a k rounds memory, a strategy A’ exists which obtains the same average score

against B but which uses only a memory of k rounds. However this does not

mean that against two different strategies B and C having a k rounds memory,

a strategy A’ exists with a k round memory that obtains the same score against

B and against C. Indeed, the one A’ which can replace A against B, is not

necessarily the same as A”, which can replace A against C.

To face several opponents, having long memory is useful simply because it

makes it possible to distinguish them from others. The result of Press and

Dyson on the lack of need of memory is valid only in one-on-one meetings, but

is not true as soon as one considers round-robin tournaments or evolutionary
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competitions.

Classical simulations confirm that efficient strategies for environments with

multiple strategies take advantage of the use of a large memory of the past. On

the issues of useful memory or not one can consult [27, 25].

4. Competition among probabilistic memory-one strategies

In a first series of experiments we consider sets as large as possible and homo-

geneously distributed of probabilistic memory-one strategies, and we confront

them using an evolutionary process.

4.1. Massive evolutionary experiments

To obtain sets of probabilistic strategies of the form proba(p1,p2,p3,p4), we

set a step of variation of the probabilistic parameters. For K=5 for example, we

make the pi coefficients vary in the finite set of values 0, 1
5 ,

2
5 ,

3
5 ,

4
5 , 1 which leads

to 2 ∗ 64 = 2592 strategies (the 2 comes from the two possible choices for the

initial play). We denote this complete class ProbaCD K=5.

The results for the round-robin tournament are shown below. We used parts

of 1,000 rounds and the usual parameters. We calculated the results of each

game one by one by making it play 5 times, so as to limit the effects of the

probabilistic variations.

rank strategy identification cumulated score

1 probaD 0.0 0.0 0.0 0.2 39345809

2 probaC 0.0 0.0 0.0 0.2 39264669

3 probaD 0.2 0.0 0.0 0.2 39244163

4 probaD 0.0 0.2 0.0 0.2 39193409

5 probaC 0.2 0.0 0.0 0.2 39145486

6 probaD 0.4 0.0 0.0 0.2 39136783

7 probaC 0.0 0.2 0.0 0.2 39104825

8 probaD 0.2 0.2 0.0 0.2 39069164

9 probaC 0.4 0.0 0.0 0.2 39043576

10 probaD 0.6 0.0 0.0 0.2 38995942
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The first ranked strategy is also denoted probaD(0,0,0,1/5) ; The D indicates

that its first move is D (defect); The integer at the end of the line indicates the

gain in points in a round-robin tournament repeated 5 times.

In this experiment, the first ZD strategy appears in the 34th rank. This strat-

egy is equivalent to spiteful. In the first 100, there are only six ZD strategies.

Unsurprisingly, ZDs, extortioners and equalizers are not particularly successful

in competitions.

This is not surprising since the criterion that made it possible to identify

them only took into account the ability to do better than the opponent in one-

on-one meetings, which we know is in no way a guarantee of success in round-

robin tournaments (you must win many points) or in evolutionary competitions

(you must continue to win many points even when ineffective strategies have

disappeared).

For the evolutionary competition, the first ten strategies with their final

populations (when stabilisation) are given here:

rank strategy identification population

1 probaC 1.0 0.8 0.0 0.0 34262

2 probaC 1.0 0.6 0.0 0.0 31579

3 probaC 1.0 0.4 0.0 0.0 30550

4 probaC 1.0 0.2 0.0 0.0 28640

5 probaC 1.0 0.0 0.0 0.0 27746

6 probaC 1.0 0.0 0.0 0.2 9540

7 probaC 1.0 0.2 0.0 0.2 8893

8 probaC 1.0 0.0 0.2 0.0 8451

9 probaC 1.0 0.2 0.2 0.0 7701

10 probaC 1.0 0.4 0.2 0.0 5984

Note once again that the strategy ranked fifth corresponds to spiteful

The evolutionary mechanism used here (Definition 2.3, Fig.3) consists in

replacing each generation by a new generation whose populations for a given

type of strategy are proportional to the number of points won by those strate-

gies during a general round-robin tournament involving strategies present in
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Figure 3: Evolutionary competition of the 2,592 strategies of the ProbaCD K=5 family. Strate-

gies that have only 0 and 1 as probabilities are strategies belonging also to mem(1,1). For

example here, this is the case of the fifth strategy which is precisely spiteful.

the previous generation: the progeny of a type of strategies at generation n

is proportional to the number of points won by the strategies of this type in

the round-robin tournament between strategies at the n− 1 generation. In the

beginning, it is assumed that each type has 100 strategies and the total from

one generation to the next remains the same (close to rounding problems)

We have also conducted tests when the number of instances of a strategy at

the nth generation is obtained by taking a times the number of instances of the

strategy at the n−1 generation, and (1−a) times the number of instances given
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by the previous calculation, with the parameter a between 0 and 1. This models

a partial replacement of a generation by the following: the parents do not die

right away. The results (ranking and finals) obtained are always very close (if

a < 1) to those obtained when the replacement of one generation by another

is complete. Only the duration of convergence towards the state of widespread

cooperation is changed.

As is often the case with this game, the results of a round-robin tournament

in a full class that includes many mediocre or bad strategies do not reflect

precisely what is found as a result of evolutionary competitions. The reason is

simple: strategies that take advantage of the presence of bad strategies in the

initial set are quickly downgraded or even eliminated when the bad disappear.

To succeed in an evolutionary process, good results must be achieved with those

who achieve good results and who are the only ones in the long term to survive.

The result of a round-robin tournament in a set with many mediocre strategies

has dubious meaning. Only that of evolutionary competitions is relevant.

The winner of the round-robin tournament, with the exception of its last

parameter, is the strategy all d ranked 42nd. To be well ranked in the round-

robin tournament of the complete class probaCD K=5, it is enough to exploit the

mediocre strategies which are very numerous; It is very easy: it is enough to

almost never cooperate. That does not teach us anything. Only the result of an

evolutionary process that begins with the disappearance of mediocre strategies

is of interest.

In the case of evolutionary competition, what is observed seems never to have

been noted. The best strategy for this set of more than two thousand strategies

is: probaC 1.0 0.8 0.0 0.0. The initial size of 100 grew to 34,262 when the state

of widespread cooperation was established.

Its behaviour is surprisingly simple: it is a spiteful (since p3 and p4 are 0,

once it begins to defect, it always defects), but it is a spiteful which reacts

without rushing when it is defected: in case of a round [c d], it starts defecting

only with a probability of 20%.

In other words, in the initial phase of the game, it cooperates and continues
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to do so as long as the other cooperates, and when it is defected in this initial

phase, it forgives in 80% of cases. On the other hand, when it decides to defect,

there is no longer a possible return to cooperation. We will call these kind of

strategies gentle spiteful.

The following four strategies are also gentle, but their reactivity in case of

defection increases: 40% for the second, then 60% for the third, then 80% for

the fourth, then 100% for the fifth, which leads to the usual (spiteful).

probaC 1.0 0.6 0.0 0.0

probaC 1.0 0.4 0.0 0.0

probaC 1.0 0.2 0.0 0.0

probaC 1.0 0.0 0.0 0.0 mem(1,1)

We note on the plots that these 5 strategies are largely ahead of all the

others. The sixth strategy is: probaC 1.0 0.0 0.0 0.2. This strategy still has

a behaviour that can be interpreted quite easily. It is a spiteful (without any

patience since p2=0), but, once in its punishment phase, conducts reconciliation

efforts: when the round that has just been played is [d, d], it cooperates in

20% of cases, as if it were telling its opponent: “we have a bad start, I try a

first step towards you (in 20 % of cases) to renew a better deal”.

The following are still susceptible of interpretations to the same type, al-

though more and more complicated. Formally, to be more precise and carry

out counts we will call gentle spiteful all the probaC(p1,p2,p3,p4) strategies

with p1=1 and p2+p3+p4 ≤ 1. One notes that tit-for-tat and Pavlov are such

strategies. The first 37 strategies in the final composition of the set after stabi-

lization of evolutionary competition belong to this category.

Another remark is that, in evolutionary competition, only 133 strategies keep

a non-zero population, and these are all strategies which start by cooperating

and which verify p1=1. The set has therefore unquestionably converged towards

a famous state of widespread cooperation.
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4.2. Study of surviving ZDs

The only ZDs that survive are as follows. They are indicated with their

rank, their category and their final population (which is never very good):

rank strategy identification population

29 probaC 1.0 0.0 1.0 0.0 ZD Extort 1040

34 probaC 1.0 0.6 0.4 0.0 ZD Extort 927

35 probaC 1.0 0.4 0.6 0.0 ZD Extort 910

72 probaC 1.0 0.2 1.0 0.4 ZD 134

125 probaC 1.0 0.6 0.6 0.4 ZD Equal 5

The first ZD strategy, therefore 29th, is actually tit for tat which is actu-

ally a ZD of coefficient X=1. This X=1 means that in reality it does not extort

anything, but forces its opponents to win as much as it does, neither more nor

less. This kind of strategy has sometimes been called generous ZD strategy [11]

and their ability to survive in an evolutionary competition has been identified

as much better than those with X>1. What we find here confirms that this type

of extortioner has some ability to survive, but what we observe also is that they

are not the only ones, nor the best.

The second ZD strategy which is 34th, is a ZD with a=2/25, b=-2/25, c=0,

X=1. It is a ZD of coefficient X=1 (which like tit for tat does not extort anyone).

The third ZD strategy which is 35th, is a ZD with a=3/25, b=-3/25, c=0, X=1.

It is once again a ZD of coefficient X=1.

The fourth ZD strategy, 72th of this ranking, is neither an extortioner, nor

an equalizer. It is a ZD strategy with a=2/25, b=-7/25, c=3/5. The relationship

between the average gain it obtains G1 and the average gain of its opponent G2

is aG1+bG2+c=0. This leads to : 2G1+15=7G2. This strategy in the situation of

widespread cooperation gets 3 points on average per round, as its opponent.

The fifth ZD strategy, 125rd of this ranking, is a member of the equalizer

family with a=0, b=-1/5, c=3/5, -c/b=3. This is an equalizer strategy forcing its

opponent to win 3 points in average per round, which is also its gain during a

widespread cooperation.
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One notes that the Pavlov strategy (which is not a ZD) survives in position

80 with 113 of population

80 probaC 1.0 0.0 0.0 1.0 mem11 113

4.3. How to recognize efficient probabilistic strategies ?

We can see that the only extortioners or equalizers that survive are actually

strategies that do not extort anything in the strict sense. It is remarkable that

they are largely beaten by gentle spiteful strategies which are therefore in this

evolutionary context better than the large majority of the strategies proposed

by Press and Dyson.

As shown in figure 5, the ranking of the 133 strategies whose final populations

do not vanish is directly correlated with the parameter p’=p2+p3+p4.

In order to anticipate the success of a probabilistic strategy with a memory-

one strategy, the double criterion p1=1 and p’=p2+p3+p4 as small as possible is

very efficient.

This confirms the remarks made on the mathematical arguments of Press &

Dyson. The analysis conducted in [1] by studying the average results of proba-

bilistic memory-one strategies, and by focusing only on forcing and controlling

the opponent without worrying about the number of points it costs, does not

lead to any criteria for identifying strategies that are truly effective as soon as

they are placed in an evolutionary context (or even in the context of classical

round-robin tournaments).

4.3.1. Understanding the double criterion

We now propose an interpretation and an explanation of this double cri-

terion. To win an evolutionary competition or only to succeed properly, it is

necessary to survive when the widespread cooperation is established, It is then

necessary to cooperate with the cooperating strategies, hence the p1=1. It is

also necessary to be reactive, that is to say not to let oneself be carried out and

to adopt behaviour sufficiently severe to encourage the other to cooperate. The
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hardest form of reactivity is that of spiteful p2 = p3 = p4 = 0. Tempering this

hardness is acceptable, if moderate, and can be interpreted as follows:

• (a) Choosing a non-zero value not too large for p2 means that you do not

systematically go into the retaliatory state after a round [c d], but only

pass it with a certain probability;

• (b) Choosing a non-zero value not too large for p3 is to accept with a

certain probability after a round [d c] to try again to cooperate with an

opponent who seems to desire it;

• (c) Choosing a non-zero value not too large for p4 is to accept with a

certain probability after a round [d d] to take the first step in order to

revive a state of mutual cooperation.

Combining these three forms of temperance in a strategy by adopting small

non-zero values of p2, p3 and p4 is not absurd, provided that the total temper-

ance introduced in its behaviour is not too large, hence the criterion on p’= p2

+ p3 + p4.

In figure 4 the ProbaCD K=5 strategies have been grouped into 7 subsets for

which we have computed the average ranking generation by generation. There

are the strategies for which p1 6=1, then for those with p1=1, those with p’ in the

[0;1/2] interval, then [1/2;1], [1;3/2], [3/2;2], [2;5/2], [5/2;3].

We can see that when p16=1, beyond the generation 30, the rankings becomes

mediocre, then bad. For strategies with p1=1, the best values for p’ are between

1/2 and 1 (slightly better than for p’ between 0 and 1/2). As soon as p’>1, the

rankings are much worse than for p’≤1.

4.3.2. Improvement and variant of p’

If we compute the Spearman correlation coefficient between the rank of

strategies that end with non-zero populations in the evolutionary competition

ProbaCD K=5 (there are 133) and the parameter p’, we find that:

Cor(rank,p’)=0.8805
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Figure 4: The 2592 ProbaCD K=5 strategies have been separated into 7 different sets for

which we calculated the average ranking generation by generation. It is clear that it is the

category corresponding to the interval [0.5 , 1] which is the best. We see again the correlation

between p’ and the success of a strategy.

23



which is a very good correlation. We have systematically tried to improve this

parameter. The next parameter, which is still very simple, gives a remarkable

result.

p’’ = p2 + 0.5 p3 + p4

Cor(rank,p’’)=0.9411231.

The optimal still allows a slight improvement:

p* = 0.266 p2 + 0.138 p3 + 0.277 p4

Cor(rank,p*)= 0.9413768

It should be noted that strategies with p’ value close to each other, while

conceptually very different, succeed in a comparable way. p’ is therefore a

reliable means of anticipating the success of a strategy. The figures 5 and 4

illustrate this correlation.

This result is not unrelated to some theoretical results [31]. This latter

proposes as criteria p1 = 1 and (T −R)p3 < (R− S)(1− p2) and (T −R)p4 <

(R − P )(1 − p2) but does not correspond precisely to our. Nevertheless, all of

the top 10 strategies of 3 satisfy these three conditions.

4.4. Robustness of these experiments

Do the results we have just commented and analysed are robust ? Do they

persist when we change the precise parameters of our experience with 2,592

strategies ? That is what we will study now.

In another experiment, we only started with strategies that start with c

(so there are half exactly), which corresponds to the complete class we call

ProbaC K=5) the result is very close: the same 5 first ones are already found with

just some permutations of the final ranking.

With ProbaCD K=4 we obtain equivalent results: At the beginning of the

ranking, the gentle spiteful are in decreasing order of patience (p2=75%, p2=50%,

p2=25%, p2=0). With ProbaCD K=3 it is still the same thing.
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Figure 5: Plot with in x-axis the ranking of the 133 first random strategies and in ordinate

the value of p’=p2+p3+p4. There is an obvious correlation between p’ and the rank of a

strategy.

4.4.1. Objection 1

An objection could be made to our method: the probabilistic strategies

composing the initial set are uniformly distributed (making varying the pi co-

efficients in constant steps): this regularity could lead to specific results which

would therefore have no general value.

We have then conducted experiments where we chose 2,000 (then 4,000)

strategies randomly in the ProbaCD K=10 family (which includes 2 ∗ 114 = 29.282

strategies).
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The results obtained confirm those of the main experiment with ProbaCD K=5:

the winners are in each case strategies of the gentle spiteful family. This is a

confirmation of the double criterion.
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Figure 6: Evolutionary competition of 4000 randomly chosen strategies in ProbaCD K=10.

One can note that only subsist strategies beginning with C and with p1=1 and that the best

ones are all gentle spiteful strategies.

Here are some examples. In an experiment with 2,000 strategies we find that

only survive 5 strategies:
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rank strategy identification population

1 probaC 1.0 0.1 0.3 0.0 112317

2 probaC 1.0 0.3 0.4 0.0 42330

3 probaC 1.0 0.3 0.4 0.0 39921

4 probaC 1.0 0.0 0.3 0.1 5077

5 probaC 1.0 0.3 0.3 0.1 354

In another experiment, there are 22 survivors. Here are the first 9:

rank strategy identification population

1 ProbaC 1.0 0.0 0.0 0.1 120968

2 ProbaC 1.0 0.1 0.4 0.1 17777

3 ProbaC 1.0 0.5 0.3 0.0 14011

4 ProbaC 1.0 0.1 0.3 0.2 7355

5 ProbaC 1.0 0.2 0.6 0.0 6842

6 ProbaC 1.0 0.4 0.1 0.2 5007

7 ProbaC 1.0 0.1 0.8 0.0 3982

8 ProbaC 1.0 0.2 0.1 0.3 3854

9 ProbaC 1.0 0.3 0.7 0.0 ZD Extorq 3444

... ... ...

An extortioner appears in position 9 and have a coefficient X which is equal

to 1 (it is not, therefore, in the strict sense an extortioner). Note that all the

strategies mentioned here are in the gentle spiteful family. The 5 of the first

computation, and the 9 of the second computation all have a p’≤ 1. It shows

once again that to succeed in this kind of set, what is important above all is not

to be ZD, extortioner or equalizer, but to best satisfy the double criterion (or

one of its variants with p’’ ou p*)

4.4.2. Objection 2

Another objection could be made to our method: we do not consider a

sufficient number of ZDs in our initial set. We have taken ProbaCD K=5 and

added a family of 880 ZD (all those whose pi are multiples of 1
32 ).

Nothing changes essentially: the first 5 are exactly the same in the same

order as for the set ProbaCD K=5; The first ZD is 25th (with the exception of

27



spiteful which is 5th) and it is tit for tat: probaC 1.0 0.0 1.0 0.0 ZD Extort.

The next ZD in the ranking is ZD a=0.03125 b=-0.03125 c=0.0 ZD Extort

whose X is 1.

4.4.3. Robustness of new strategies

We wanted to know if the best deterministic strategies identified by [14]

obtain also good results in these probabilistic complete classes.

We therefore carried out the computation for ProbaCD K=5 + Select .

Few things change regarding the relative positions of the probabilistic memory-

one strategies but the best of Select are intercalated and take very good ranks.

rank strategy identification population

1 spiteful cc 19286

2 tft spiteful 19078

3 gradual 18235

4 probaC 1.0 0.8 0.0 0.0 17944

5 probaC 1.0 0.6 0.0 0.0 16922

6 probaC 1.0 0.4 0.0 0.0 15759

7 probaC 1.0 0.2 0.0 0.0 14921

8 probaC 1.0 0.0 0.0 0.0 14147

9 mem2 14109

10 spiteful 14073

11 probaC 1.0 0.0 0.0 0.2 6497

12 probaC 1.0 0.2 0.0 0.2 6080

13 probaC 1.0 0.0 0.2 0.0 4476

14 probaC 1.0 0.4 0.0 0.2 4410

15 winner12 4343

16 probaC 1.0 0.2 0.2 0.0 4254

17 probaC 1.0 0.4 0.2 0.0 3545

18 hard tft 3366

19 soft majo 2603

20 probaC 1.0 0.0 0.0 0.4 2544

Note that the eighth corresponds to the spiteful probabilistic version. Both

spiteful are not side by side because of statistical fluctuations.
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In order to test the robustness of the strategies identified, and in particular

to see what they give when they are among a few probabilistic strategies, we

have composed a set with the first 20 of ProbaCD K=5, the 1,024 of the Mem(1,2)

and those of Select. We obtain:

rank strategy identification population

1 probaC 1.0 0.2 0.0 0.2 5255

2 tft spiteful 4945

3 probaC 1.0 0.4 0.0 0.2 4877

4 probaC 1.0 0.2 0.0 0.4 4415

5 winner12 4331

6 mem12 ccCDCDDCDD 4331

7 probaC 1.0 0.6 0.0 0.2 4081

8 mem12 ccCDCDDDDD 3557

9 spiteful cc 3557

10 probaC 1.0 0.8 0.0 0.0 3551

11 mem12 ccCCCDDDDD 2766

12 probaC 1.0 0.0 0.0 0.2 2614

13 probaC 1.0 0.6 0.0 0.0 2497

14 gradual 2469

15 mem12 ccCDDDDCDD 2368

16 probaC 1.0 0.0 0.0 0.4 2313

17 mem12 ccCCCDDCDD 2275

18 mem12 ccCCDDDCDD 2233

19 probaC 1.0 0.4 0.0 0.0 2059

20 mem2 1864

The sixth in the ranking is winner12, the eighth in the ranking is spiteful CC.

The eleventh begins with cc and becomes angry when the other defects twice

in succession.

The results (and many others that confirm them) are very clear: the best

known strategies are always well ranked (although they come from experiments

and selection processes where only deterministic strategies are involved). Re-

ciprocally, the new probabilistic strategies identified succeed very well in envi-
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ronments almost exclusively composed with deterministic strategies (as in the

last experiment).

5. Conclusion

In-depth and systematic experimentation in a general evolutionary model,

parametrised with probabilistic strategies using a one-round memory, leads to

stable results. An additional analysis allows us to identify a parameter able

to anticipate the efficiency of a strategy. The double condition that we have

extracted and which seems to have never been noticed leads us to define a new

class of strategies (gentle spiteful).

In order to anticipate the success of a probabilistic strategy with a memory-

one strategy, we have experimentally see that the double criterion p1=1 and

p’=p2+p3+p4 as small as possible is very efficient. An interpretation is that to

win an evolutionary competition or only to succeed properly, it is necessary to

survive when the widespread cooperation is established. It is then necessary to

cooperate with the cooperating strategies, hence the p1=1. The non null choice

for each parameter p2 p3 p4 is also meaningful. We show here that the best

results are obtained considering p* = 0.266 p2 + 0.138 p3 + 0.277 p4

The members of this family are systematically at the top of all the rankings

of evolutionary competitions that one can imagine. This is also true when one

changes the initial set of strategies to introduce many extortioner strategies,

equalizer strategies or ZD strategies. Moreover, the strategies identified in ac-

cordance with p’ are robust and efficient in sets composed in a variety of ways,

for example containing only deterministic strategies. As a result, they join the

family of the best-known strategies listed in [14].

6. Appendix

List of the 21 strategies constituting Select.

1. all c: I always cooperate.
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2. all d: I always defect.

3. tit for tat: I cooperate at first, then at the nth round I play what my

opponent played at round n− 1.

4. spiteful: I cooperate at first and as long as my opponent cooperates, but

as soon as it defects I defect indefinitely.

5. soft majo: I cooperate at first and as long as my opponent has cooperated

more or as much as it defected in the past; otherwise I defect.

6. hard majo: I defect at first and as long as my opponent has defected more

or as much as it cooperated in the past; Otherwise I cooperate.

7. per ddc: I play periodically d, d, c, d, d, c, ...

8. per ccd: I play periodically c, c, d, c, c, d, ...

9. mistrust: I defect at first, then I play at the nth round what my opponent

played at round n− 1.

10. per cd: I play periodically c, d, c, d, c, d, ...

11. pavlov: I cooperate at first, then I always cooperate, except when it and

I did not play the same thing in the previous round.

12. tf2t: I cooperate in the two first rounds, then I always cooperate at the

nth round, unless my opponent has defected during the rounds n− 1 and

n− 2.

13. hard tft: I cooperate in the two first rounds, then I always cooperate in

the nth round, unless my opponent has defected in round n−1 or in round

n− 2.

14. slow tft: I cooperate in the first two rounds, then I would defect when

my opponent defects twice in succession, and I will not cooperate once my

opponent has cooperated twice in succession.

15. gradual: I cooperate in the first round and when the following rule is

not applied: every time my opponent betrays me, I count the number n

of its past defections and I defect n times consecutively followed by two

cooperations.

16. prober: I play defect-cooperate-cooperate (d c d) for the first three rounds;
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Then,if my opponent has not defected in rounds 2 and 3, I always defect;

Otherwise I play tit for tat.

17. mem2: I start by playing two rounds like tit for tat; Then I change my

behavior for two rounds depending on the results of the last two rounds,

using the following rules: (A) If the last two rounds were [c c] [c c], I

play tit for tat ; (B) If the last round was [c d] or [d c] I play hard tft;

(C) In all the other cases I play all d. Moreover if, at any moment, my

opponent defects twice in succession, I play definitively all d [27].

18. winner12 (the winner of the Mem(1,2) set); I cooperate for the first two

rounds and then I play using the table: [c cc]->c [c cd]->d [c dc]->c

[c dd]->d [d cc]->d [d cd]->c [d dc]->d [d dd]->d

19. winner21 (the winner of the Mem(2,1) set); For the first two rounds I play

d c then I play using the table: [cc c]-> c [cc d]->d [cd c]->c [cd d]->d

[dc c]->c [dc d]->d [dd c]->d [dd d]->d

20. tft spiteful: I play tit for tat, except if my opponent defects twice in

succession, then I begin to defect indefinitely.

21. spiteful cc: I cooperate for the first two rounds then I play spiteful.
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