
HAL Id: hal-02174744
https://hal.science/hal-02174744

Submitted on 5 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resilience of randomized RNS arithmetic with respect
to side-channel leaks of cryptographic computation

Jérôme Courtois, Lokman A. Abbas-Turki, Jean-Claude Bajard

To cite this version:
Jérôme Courtois, Lokman A. Abbas-Turki, Jean-Claude Bajard. Resilience of randomized RNS arith-
metic with respect to side-channel leaks of cryptographic computation. IEEE Transactions on Com-
puters, 2019, 68 (12), pp.1720-1730. �10.1109/TC.2019.2924630�. �hal-02174744�

https://hal.science/hal-02174744
https://hal.archives-ouvertes.fr


1

Resilience of randomized RNS arithmetic with
respect to side-channel leaks of cryptographic

computation
Jérôme Courtois1, Lokman Abbas-Turki2, Jean-Claude Bajard1

Abstract—In this paper, we want to promote the influence of randomized arithmetic on the leaks during a code execution. When
somebody wants to extract some specific information from these leaks, one can observe different emanations of the device like power
consumption. These leaks mostly come from the variations of the Hamming distances of the successive states of the system. This
phenomenon is particularly critical for cryptographic devices.
Our work evaluates the resilience of randomized moduli in Residue Number System (RNS) against Correlation Power Analysis (CPA),
Differential Power Analysis (DPA). Our analysis is illustrated through the evaluation of scalar multiplication on an elliptic curve using the
Montgomery Powering Ladder (MPL) algorithm which protects from Simple Power Analysis (SPA).
We also propose an evaluation based on the Maximum Likelihood Estimator (MLE), which crosses the information of the whole state
vector, instead of analysing only the current state like with CPA or DPA. Furthermore, MLE gives better performance and smooths the
results allowing a better evaluation of the behaviour of the leakage. Our experimental evaluation suggests that the number of
observations, needed to perform exploitable information leakage, is proportional to the number of possible RNS bases.

Index Terms—RNS, moduli randomization, Monte Carlo, ECC, side channel, DPA, CPA, information leakage, Hamming weight,
Hamming distance, Maximum Likelihood Estimator
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1 INTRODUCTION

In asymmetric cryptography, whatever the level of sophis-
tication of the mathematics validating the robustness of
the model, the transfer to implementation remains a very
delicate point. A naive implementation can seriously com-
promise the security of a system.

Randomized arithmetic is a possible solution to amelio-
rate the security. But until now, we had no precise studies
on the quality of the randomness generated by randomized
arithmetic. We therefore want to fill this lack through this
study, by giving elements to measure this quality.

Leaks are mainly due to the variations of the Hamming
weights of successive execution states [1], in other words,
to the Hamming distance of successive states. We assume
the worst case scenario: a malicious person would have
access to Hamming distances measurements without any
added material noise. We place ourselves clearly on the
side of protection by creating this noise intrinsically linked
to arithmetic, independently of the specifications of the
support hosting the implementation.

The only weakness of this approach is the random draw
of the base which, if it is corrupted, makes randomization
obsolete. For example, if there is a seed with an entropy
defect for a supposedly good quality generator [2], or vice
versa a weak generator with a good quality seed [3]. In
our study, we consider only attacks by observation, thus
physical attacks on the random generator are not tackled.

1 J. Courtois and J.C. Bajard are with LIP6, Sorbonne Université, Paris.
E-mail: jerome.courtois@lip6.fr

2 L. Abbas-Turki is with LPSM, Sorbonne Université, Paris.

We find in literature different ways of using the observed
leakages: usually DPA or CPA [4], [5] or other more recent
methods like second-order DPA [6], template attacks [7] and
Mutual Information Analysis (MIA) [8]. For a survey on
different attacks and countermeasures, we refer the reader
to [9].

The state transitions depend clearly on the data represen-
tation which can be an assumption made by a malicious per-
son. The randomization with respect to an arithmetic system
ensures that the computations use different representations
from one execution to another. This reduces significantly
predictions on the state transitions. We focus in this paper
on RNS representation based on the Chinese Remainder
Theorem. Each value is known by its residues over a set
of co-prime numbers which represents the RNS base. The
authors of [10], [11] suggested randomization using curve
isomorphisms as counter measure against template attacks
on ECDSA. This work was extended in 2016 [12] on attacks
on doubling point operation on elliptic curves in “mbed
TLS”. Therefore, a randomized RNS arithmetic offers a
good opportunity to randomize independently from the
cryptographic algorithm used. Thus, the methods presented
in the paper are suitable for any cryptosystem such as RSA,
ECC, Euclidean Lattice or others. RNS is scalable, and can
be adapted to key sizes which could increase in function of
the cryptanalysis progress. Furthermore, RNS computations
can be efficiently parallelized [13]. For further benefits of
RNS, we refer to [14].

In [15], the authors showed that we can draw randomly
a RNS base from a set of moduli, to randomize an execution
with a small cost. Since their publication, this work was used
and cited in different papers [14], [16], [17], [18], [19]. To



2

our knowledge, no one established a complete study of the
randomness behavior of such approach, and what kind of
protection it can get.

We wish to fill this gap. We present here a study estab-
lishing the link between the number of elements n of the
base participating in the draw and the size S of the sample
necessary for exploitable information. We use 112 bits ECC
curve essentially to illustrate the results and conjecture that
S = O((2n)!/(n!)2). The results are quite similar when deal-
ing with Edwards curves of 255 bits [20] or ECCsecp256r1
[21].

The layout of this paper is as follows: in Section 2, we
briefly introduce the moduli randomization of the RNS
representation in the Montgomery algorithm applied for
ECC and the goal of randomization. Section 3 explains the
main reasons why the resilience of a system should rather
focus on about 10 successive Hamming distances. Section
4 recalls the Maximum Likelihood Estimator (MLE) and
studies the size S of observations needed to achieve the
analysis.

2 KEY ELEMENTS OF THE STUDY: MONTGOMERY
POWER LADDER (MPL) USING RNS REPRESENTA-
TION APPLIED TO ECC AND RANDOMIZATION.
In Section 2.1, we explain briefly the randomization tech-
nique based on RNS representation for Montgomery mul-
tiplication. Section 2.2 clarifies the way the Hamming dis-
tances are computed through the successive steps of MPL.
Because ECC uses the main arithmetic operations as ad-
ditions and multiplications, this makes the randomization
efficient. We give in Section 2.3 some elements about our
evaluation of the randomness.

2.1 Montgomery for RNS modular multiplication
In [22], P. Montgomery introduced an algorithm of modular
multiplication to avoid trial division by large numbers. The
RNS version of this algorithm is the starting point of the
randomization used in [23]. We summarize this method
with a presentation that is quite similar to the one in [24].

We denote |a|m = a mod m and J1, nK = {1, ...n}.
When a and m are coprime, we set |a|−1

m = a−1 mod m
to be the inverse of a modulo m. Introducing the RNS base
Bn = {m1, ...,mn} of pairwise coprime moduli, the Chinese
Remainder Theorem ensures the existence of a ring isomor-

phism between ZM and Zm1
× · · · ×Zmn

with M =
n∏
i=1

mi.

Thus, for any positive integer X strictly smaller than M

X =

(
n∑
i=1

xi |Mi|−1
mi
Mi

)
mod M (1)

with xi = |X|mi = X mod mi and Mi = M/mi.
Let B̃n = {m̃1, ..., m̃n} be another RNS base of pairwise

coprime moduli that are also coprime with Bn, i.e. mi and
m̃j are coprime for each i ∈ J1, nK and j ∈ J1, nK. For a

number X that is strictly smaller than M̃ =
n∏
i=1

m̃i, we use

the notation {x̃1, ..., x̃n} for the decomposition of X on B̃n.
Using these notations as well as the standard definition of
the usual RNS operations, Algorithm 1 presents the modular

multiplication. Addition +RNS , multiplication ×RNS and
opposite (−X)RNS are explained in [24].

Algorithm 1 RNSn modular multiplication
Require:

A residue base Bn = {m1, ...,mn} where M =
n∏
i=1

mi

A residue base B̃n = {m̃1, ..., m̃n} where M̃ =
n∏
i=1

m̃i

with gcd(M, M̃) = 1
A modulus N expressed in Bn and B̃n with gcd(N,M) =

1 and gcd(N, M̃) = 1,
0 < (n+ 2)2N < M and 0 < (n+ 2)2N < M̃
An Integer A expressed in Bn and B̃n
An Integer B expressed in Bn and B̃n with AB < NM

Ensure: An integer R expressed in Bn and B̃n such that
R mod N = ABM−1 mod N

function
Q← ((−(A×RNS B))RNS)×RNS N−1 in base Bn
Extension of Q from Bn to B̃n
R ← (A ×RNS B +RNS Q ×RNS N) ×RNS M−1 in

base B̃n
Extension of R from B̃n to Bn

end function

Before each modular exponentiation, we perform a ran-
dom selection of n moduli {m1, ...,mn} among {µ1, .., µ2n}
for base Bn. The remaining moduli form the base B̃n. This
random choice is based on a standard drawing without
replacement.

Since many modular multiplications are needed in ECC
or RSA, one should consider the Montgomery form ofA and
B as inputs to Algorithm 1. This trick allows to circumvent
dealing with ABM−1 mod N as an output. We recall that
the Montgomery form of A is given by AM mod N . As pro-

posed in [15], once MM̃ mod N =
2n∏
i=1

µi mod N is known,

the Montgomery form can be obtained with Algorithm 1. It
is applied toA andMM̃ mod N provided that we exchange
Bn and B̃n, since

A× |MM̃ |N × M̃−1 = AM mod N.

To recover the appropriate expression, we need to per-
form a final pass in Algorithm 1 to multiplicate 1 and
(AM)(BM)M−1 mod N that yields

|(AM)(BM)M−1|N × |1|N ×M−1 = AB mod N.

We point out that pre-computing |MM̃ |N , proposed in
[15] instead of |M2|N , is justified by the randomization
procedure.

We refer to Appendix A for extensions used in the RNS
modular multiplication.

Remark: RNS has become a standard for randomization,
especially since there is a great diversity of moduli. More-
over, with Montgomery multiplication algorithm [22], the
Montgomery factor strengthens the random behaviour of
Hamming distances.
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2.2 Example on scalar multiplication on elliptic curve
We target the scalar product of a point of an elliptic curve.
This operation is found in several Elliptic Curves Crypto-
graphic protocols: encryption, signature, etc... [25], [26]. It
offers the benefit of being quite complete in terms of arith-
metic operations. Several scenarii are possible: the secret key
is used several times as for decryption in PSEC-KEM [21],
or only once as the random secret in ECDSA [26]. Different
attacks are then available in the first case via CPA or DPA,
in the second case via learning.

Anyway, the secret is in the form of a scalar K applied
to a point G of an elliptic curve E. Thus the computation of
[K]G must remain secret by being leak resistant.

To compute [K]G on an elliptic curve and protect against
Simple Power Analysis (SPA) [27], we use the binary version
of MPL detailed in Algorithm 2. First, we compute both the
Montgomery Form A0 of G and A1 the double of A0. Then,
if the bit value bi of K is one, A0 is added to A1 memorized
in A0 and A1 is doubled. Otherwise, A1 is added to A0

memorized in A1 and A0 is doubled.

Algorithm 2 Montgomery Powering Ladder for ECC in
RNSn
Require:

A point G = (X;Y ; 1) in RNS representation
A key K = 2d−1b0 + 2d−2b1 + ...+ 2bd−2 + bd−1

Ensure:
A0 = [K]G
(Hi)i∈{0,..,d−1}, the Hamming distances

function
Choose a random base permutation
A0 = (|XM |N , |YM |N , |M |N ), Montgomery form of G
A1 = [2]A0

H0=Hamming weight of (A0, A1)
for i=1 to d-1 do

A′0 = A0 and A′1 = A1

Abi = Abi +Abi
Abi = [2]Abi
Hi = Hamming distance between (A0, A1) and

(A′0, A
′
1)

end for
Result A0 = (|X ′M |N , |Y ′M |N , |Z ′M |N )) in Mont-

gomery form
Return to the Non-Montgomery form [28]
A0 = (|X ′|N , |Y ′|N , |Z ′|N )

end function

The elliptic curve domain of E(FN ) is defined by a finite
field FN with N a prime number, two elements a and b
∈ FN , an equation E : y2 ≡ x3 + ax+ b mod N , G(xG, yG)
a point base of E(FN ) and nG is a prime number that is the
order of G on E(FN ).

In our implementation, we use the elliptic curves recom-
mended by Certicom [21] employing Jacobian coordinates
that avoid the division and reduce computations [29], [30],
[31]. Each point is defined by three Jacobian coordinates
(X;Y ;Z) with the affine representation (X/Z2;Y/Z3).

Associated to the equation E is Y 2 = X3 +aXZ4 +bZ6,
(X;−Y ;Z) is the inverse of (X;Y ;Z) and the infinite point
is chosen to be equal to (1; 1; 0). The addition and doubling
operations can be found in [29].

Cryptographic
system with RNS

A

Moduli configuration C 

AKey K 

A

H0 

H1 

Hd-1 

Hamming
Distances 

A
A

...

Fig. 1. Hamming distances with respect to randomness sources

Algorithm 2 shows exactly at which step of MPL we
choose to compute the Hamming distances for ECC in RNS.
We remind that M is the product of the moduli of base Bn.

2.3 Goal of randomization
The goal of randomization according to the involved moduli
is to make as unpredictable as possible the secret from the
Hamming distance (number of different bits) between two
consecutive states. As sketched on Figure 1, we distinguish
two randomness sources given by both the configuration of
moduli C and the key K . K is also considered as a random
variable in our analysis.

H = (H0, ...,Hd−1) are the Hamming distances ob-
served through the execution of a cryptographic algorithm.
For example, we study here MPL algorithm associated to
ECC. The random vector H = (H0, ...,Hd−1) can be consid-
ered as a deterministic function of the couple of random
variables (K,C). Consequently, the link between K and
H is difficult to establish when the noise generated by
C is significant. The perfect noise would be the one that
mimics an independence between K and H . Without loss of
generality, let us denote informally:
• L(H,K) the joint distribution of (H,K),
• L(H|K) the conditional distribution of H given K ,
• L(H) and L(K) the marginal distributions of H and K .

The perfect noise must fulfill

L(H,K) = L(H|K)L(K) = L(H)L(K) (2)

or equivalently L(H|K) = L(H), meaning that K must not
provide any information on H . Although (2) is impossible
to obtain because each Hi as a function of K and C , will
always depend on K , it tells us that the independence of
the coordinates of H = (H0, ...,Hd−1) is not necessary to
have a perfect noise.

This paper studies the distinguishability between
L(H|K) and L(H|K ′) (K 6= K ′) with respect to n, the num-
ber of moduli in the RNS representation denoted by RNSn.
Nevertheless, because studying L(H|K) for the whole vec-
tor H is computationally barely possible, we develop a
strategy based on few Hamming distances that provide the
most valuable information on the key K . Unlike DPA and
CPA that use only the marginal information associated to
each step, our conditional strategy combined with MLE uses
a cross-information based on about 10 Hamming distances.
Therefore, our main contribution can be summarized by:

1) We show that a cryptographic system has to be resilient
with respect to the cross-information.

2) The randomization makes CPA inefficient and we ex-
plain why MIA applied to the randomization fails.

3) The DPA results are inconsistent with the level of ran-
domization and we show that second-order DPA does
not overcome this inconsistency.
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4) We used the Maximum Likelihood Estimator (MLE)
to measure the level of information leakage. We show
that the information leakage, is monotonous, unlike the
DPA.

5) We propose a number of randomized moduli to protect
ECC from a template attack.

In real implementation, physical hardware noises will
be added to the noise generated by the random selection of
RNS bases. This makes harder the detection of the Hamming
distances. In our study, as we want to measure the impact
of the randomization of the RNS bases, we consider only
the ideal case when the Hamming distances are known. We
focus on ECC as it is well suited for the evaluation of mod-
uli randomization countermeasure because its arithmetic is
dominant and performing DPA can be efficient. Indeed, all
the probability tools like: total variation, covariance matrix,
asymptotic error of Monte Carlo (Cf. Appendix B) can be
reused in the same fashion for other systems. We point out
also that our work is different from [16] where the authors
study protection against memory addressing attack. Indeed,
our paper focuses on the resilience of randomization when
the system is supposed to be protected against memory
addressing attacks. We use 112 bits ECC curve essentially to
illustrate the results and conjecture that S = O((2n)!/(n!)2).
The results are quite similar when dealing with Edwards
curves of 255 bits [20] or ECCsecp256r1 [21].

3 A CONDITIONAL STRATEGY AND LIMITATIONS OF
CPA, DPA, SECOND-ORDER DPA AND MIA

With randomized RNS, we verify that Hamming distance
has a Gaussian distribution (see Figure 4). Unfortunately,
most of the statistic tests, like NIST’s ones [32], evaluate uni-
form distribution. Therefore, we mainly use methods from
side-channel attacks as tools for assessing randomization.

The randomization of moduli effectively generates noisy
data. Consequently, we should target the most sensitive
values that provide exploitable information on the secret
key K . When the latter fact is studied in Section 3.1, Section
3.2 shows that CPA is impossible to use and the size S
of observations to achieve a DPA is not monotonous with
respect to the number of moduli. Section 3.3 discusses the
adaptation of other methods to RNS randomization.

3.1 Sufficient information and conditional strategy

From now on, we denote S the sample size of simulations.
The following three properties of Hamming distances are
presented:

α) For fixed choice of moduli, the first Hamming distances
are the one that provide the strongest information (de-
pendence) on the secret K .

β) For fixed choice of moduli, the correlation between
Hamming distances decreases significantly with respect
to the gap l that separates Hi and Hi±l.

γ) Under randomization of moduli, each Hamming dis-
tance Hi has a normal distribution. This property shall
not make absurd the assumption that the whole vector
H is Gaussian.

Consequently, the first bits of a secret key K can be
deduced from the information extracted from the first Ham-
ming distances. Once these few first bits known, the follow-
ing ones can be found step by step, until we recover the
whole key.

At each step of Algorithm 2 (MPL), we evaluate the
dependency of the random variables K and Hi. The val-
ues of K and Hi are integers belonging to the intervals
I = [0, 2p[ (p ≤ d) and Hi = [min(Hi),max(Hi)]. In order
to reduce the complexity of computations and increase the
Monte Carlo accuracy (Cf. Appendix B), we use appropriate
subdivisions of those intervals I and Hi respectively into
2p
′

and q sub-intervals. The details of the subdivisions are
given in Appendix C.

Monte Carlo is used for the estimation of probability
terms involved in the Total Variation to Independence (TVI)
[33] expression (3) given below. The Law of Large Numbers
ensures the convergence and the Central Limit Theorem
provides its rate. Consequently, we quantify the accuracy
thanks to the 95% confidence interval, with 95% chance of
having at most a 10% relative error. The relative error is
defined as the width of the confidence interval normalized
by the estimated value.

As introduced informally above, the perfect noise must
fulfill L(H,K) = L(H)L(K) (2) which yields

P
(
Hi ∈ Hij ,K ∈ Ik

)
= P (K ∈ Ik)× P

(
Hi ∈ Hij

)
.

Thus the dependence is quantified through the
distance between the probability of the product
P
(
Hi ∈ Hij ,K ∈ Ik

)
= P (K ∈ Ik)×P

(
Hi ∈ Hij |K ∈ Ik

)
and the product of probabilities P (K ∈ Ik)×P

(
Hi ∈ Hij

)
.

We compute this distance using TVI [33] given by

TVIi =

1

2

2p
′
−1∑

k=0

q−1∑
j=0

P (K ∈ Ik)
∣∣∣P (Hi ∈ Hi

j

)
− P

(
Hi ∈ Hi

j |K ∈ Ik
)∣∣∣ .
(3)

The value of P (K ∈ Ik) is known since we draw uni-
formly an integer value on [0, 2p[. However, the value
P
(
Hi ∈ Hij |K ∈ Ik

)
, and subsequently P

(
Hi ∈ Hij

)
, is

approximated using Monte Carlo simulation. For more
mathematical details on Monte Carlo, we refer the reader
to [34].

In Figure 2, we calculate TVIi for each step in MPL either
for a fixed choice of moduli or when they are randomized.
When the moduli configuration is fixed we draw only inde-
pendent keys {Kl}1≤l≤S . When the moduli are randomized
we draw independent couples {(Kl, Cl)}1≤l≤S of keys and
moduli configurations. The Monte Carlo approximation is
then given either by

P
(
Hi ∈ Hij ,K ∈ Ik

)
≈ 1

S

S∑
l=1

1{Hi(Kl)∈Hi
j

⋂
Kl∈Ik}.

or by

P
(
Hi ∈ Hij ,K ∈ Ik

)
≈ 1

S

S∑
l=1

1{Hi(Kl,Cl)∈Hi
j

⋂
Kl∈Ik}.
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Fig. 2. Total variation as a function of the calculation step.

We simulate with S = 8 × 106 or S = 106 in order to
have a sufficiently accurate results to compute TVI. We use
the random number generator proposed in [35]. This choice
is appropriate computationally and statistically for Monte
Carlo simulation.

According to Figure 2, randomizing moduli reduces
effectively TVI for all Hamming distances. Also, according
to Figure 2, we see clearly that TVI almost vanishes for
Hamming distances of a rank bigger than 10 which confirms
property α). This observation can be explained by the fact
that the first ∼ 10 Hamming distances depend strongly on
the first ∼ 10 bits of the key. Because a large choice of
combinations of bits can produce the same value on each
{Hi}i>10, the dependence between {Hi}i>10 and the key is
reduced significantly.

Regarding property β), we approximate the covariance
of each couple of Hamming distances with a Monte Carlo
simulation on keys for a fixed choice of moduli:

Cov(Hi, Hj) ≈
1

S

S∑
l=1

Hi(K
l)Hj(K

l)−
[

1

S

S∑
l=1

Hi(K
l)

]2

.

We get the results presented in Figure 3 for the co-
variance H1, H4, H8 and H10 with the other Hamming
distances. In Figure 3, the fact that |Cov(Hi, Hi±l)|l≥0 de-
creases with respect to the gap l is due to the difference in
term of bits that separates Hi and Hi±l.

Fig. 3. ECC112 RNS10, Cov(Hj , Hi)j=1,4,8,10.Fixed moduli

Fig. 4. Frequency of H10, 2× 106 computations.

The importance of the covariance comes from the prop-
erty γ. Indeed, in a multivariate Gaussian vector, each two
coordinates are independent if and only if their covariance
is equal to zero. A Chi Square test does not disapprove the
Gaussian distribution of each Hamming distance Hi when
moduli are randomized. We also present in Figure 4 an
histogram associated to H10 that shows a bell-shaped dis-
tribution. This property does not contradict the assumption
that the whole vector H is Gaussian. For more mathematical
details on multivariate Normal distribution, we refer the
reader to [34].

3.2 Unreliable CPA and inconsistent DPA

The essential result of Section 3.1 is that exploitable informa-
tion leakage should be based on the first ∼ 10 computation
steps. Once the bits associated to some of these steps are
known, one should fix them to continue with the following
∼ 10 computation steps and so on. This conditional strategy
(conditioning on the bits found) not only uses the marginal
information of each step but must use the cross-information
of the ∼ 10 successive steps. Indeed, according to Figure
2, the first ∼ 5 Hamming distances have almost the same
strength of dependence on the secret key K and we waste
information if we use only the marginal distributions. Nev-
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ertheless, CPA and DPA are not conceived to take advantage
of this cross-information.

As we study the effect of the randomized moduli on
Hamming distances. Our approach can be justified by the
leakage models introduced in [1] between the power con-
sumption and the Hamming distances. We explore the link
between the randomization of representation and Hamming
distances, independently of the implementation support.

3.2.1 Methodology

We denote K =
d−1∑
l=0

bl2
d−1−l the key of d bits to guess.

Assuming that we know the j first bits, we denote K ′j =
j−1∑
l=0

bl2
d−1−l +

d−1∑
l=j

2d−1−l a key of d bits which begins like

K and have only ones after. At each step i, Hi(K,C
l) is an

observation associated to the real key K and Hi(K
′
j , C

l+S)
is the simulation associated to the guessed one K ′j . The
term +S in Cl+S expresses the independence between
the moduli configurations {Cl}1≤l≤S and {Cl+S}1≤l≤S .
This results from the independece of the whole sequence
C = {C1, C2, . . . , CS , CS+1, . . . , C2S}.

Using the discrepancy induced by
{
H(K,Cl)

}S
l=1

and
by
{
H(K ′0, C

l+S)
}S
l=1

, we determine the position j1 of the
first zero in the binary expansion of K . Then, we do the
same for K and K ′j1 which provides the position j2 of the
second zero and so on till we find K . For example, when
K = 111011011102:

• We get j1 = 3 from K = 111 0 11011102 and K ′0 =
111111111112.

• We get j2 = 6 from K = 111011 0 11102 and K ′3 =
111011111112.

• We get j3 = 10 from K = 1110110111 0 2 to K ′6 =
111011011112.

Formerly speaking, denoting H l
i (K) = Hi

(
K,Cl

)
,

H l+S
i

(
K ′jp−1

)
= Hi

(
K ′jp−1

, Cl+S
)

and setting min(∅) = d

then

j0 = 0 (4)

jp = min

{
i > jp−1,

∣∣∣∣fi({Hl
i (K) , Hl+S

i

(
K′jp−1

)}S

l=1

)∣∣∣∣ > T }

and the key is recovered when jp = d which means that
K = K ′jp−1

. T > 0 is the distinguishing threshold and fi
is a distinguisher defined in Section 3.2.2 for CPA and DPA.
In the worst case (K = 2d−1), this method requires to check
d− 1 hypothesis instead of checking 2d−1 hypothesis.

With this approach, we search the number of moduli
needed to make the key K indistinguishable from K ′j for
a DPA or CPA. In classic DPA [1], [5], for a key hypothesis
and a set of messages, messages are classified in two sets:
those that give a high Hamming weight and those that give
low Hamming weight. Thus, the leaks are classified and the
difference of their average produces a peak if the hypothesis
is correct. The randomization of moduli does not allow
to classify Hamming distances with respect to messages.

Fig. 5. RNS5, Correlation between 0xdeeefbf7 and 0xffffffff, 50000 and
100000 traces. Nothing appears at bit 2 and the correlations are too
small.

Consequently, the average on messages has been replaced
by the average on configurations of moduli:

Hi(K,C) =
1

S

S∑
l=1

Hi(K,C
l) and

Hi(K
′
j , C) =

1

S

S∑
l=1

Hi(K
′
j , C

l+S). (5)

.
We point out that we are not allowed to classify Ham-

ming distances with respect to moduli configurations. In-
deed, an attacker does not control the moduli configuration
of the system.

3.2.2 Results

A CPA on Hamming distances is based on the correlation
ξi (6) that exists at step i between observations Hi(K,C

l)
on the real key K and simulations Hi(K

′
j , C

l+S) on the
guessed one K ′j which yields

ξi = fi

({
H l
i (K) , H l+S

i

(
K ′jp−1

)}S
l=1

)

=

S∑
l=1

[
Hi(K,C

l
)−Hi(K,C)

] [
Hi(K

′
j , C

l+S
)−Hi(K

′
j , C)

]
√√√√ S∑

l1=1

[
Hi(K,C

l1 )−Hi(K,C)
]2 S∑

l2=1

[
Hi(K

′
j , C

l2+S
)−Hi(K

′
j , C)

]2 .
(6)
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Fig. 6. RNS6 and RNS7: Differencial between 0xffffffff and 0xdeeefbf7
with respectively 1000000 and 90000 traces. A jump appears for the bit
2 for RNS7 as we expected but the jump is not obvious for RNS6 and
we needed more traces to have this little jump

The independence of the sequence {Cl}1≤l≤2S makes
the use of CPA completely irrelevant as shown in Figure 5.
We use K = 0xdeeefbf7 as a model key and K ′0 = 0xffffffff
is used as a distinguisher.

Regarding the DPA based on Hamming distances, the
differential value to evaluate the distinction is given at each
step i of the MPL by

DIFFi = fi

({
H l
i (K) , H l+S

i

(
K ′jp−1

)}S
l=1

)
= Hi(K,C)−Hi(K

′
j , C). (7)

Unlike for CPA, the lag +S involved in the expression of
DPAi is less disturbing because, by the law of large num-

bers, 1
S

S∑
k=1

Hi(K
′
j , C

k+S) and 1
S

S∑
k=1

Hi(K
′
j , C

k) converge

to the same value as S → ∞. Consequently, DPA can be
used to exploit information leaks when S is big enough.
The fact that we do not know how big S must be (except
doing very coarse domination) makes DPA difficult to use.
Indeed, as shown in Figure 6, sometimes we even need a
bigger S for an RNS with less randomized moduli!

3.3 Further analysis: Second order DPA and MIA

Like in Section 3.2, we focus only on Hamming distances.
Generally, DPA and MIA are used when the information
leakage is observed with a hardware noise. In our study,

the noise is due to the RNS randomization that reduces the
dependence between the secret K and Hamming distances.

3.3.1 Second order DPA
We use a simulation of second order DPA (2ODPA) as
follows:

2ODPA0 = DIFF0

2ODPAi = DIFFi+1 −DIFFi if i > 0

Fig. 7. RNS6: Second order DPA between 0xffffffff and 0xdeeefbf7 with
1000000 traces.

According to Figure 7, we see that the second order DPA
on Hamming distances does not improve the results of DPA
presented in Figure 6 (RNS6). This can be explained by the
absence of a heterogeneity in the code between two steps of
computations and thus between two successive Hamming
distances. Moreover, the second order DPA defined in [6]
(Proposition 2) involves marginal information since it av-
erages on the realizations of one random variable defined
as the difference between the power consumptions of two
successive steps.

3.3.2 Mutual Information Analysis
Introduced in Section 3.1, the TVI computation involved
the estimation of P1 = P

(
Hi ∈ Hij

)
and of P2 =

P
(
Hi ∈ Hij |K ∈ Ik

)
. These quantities have unbiased es-

timators with a Mean Square Error MSE (cf. [36]) equal
to σ2

(
1Hi∈Hi

j

)
/S and to σ2

(
1Hi∈Hi

j
|K ∈ Ik

)
/S respec-

tively, where σ2 (·) is the variance and σ2 (·|K ∈ Ik) is
the conditional variance. The approximation of P1 and P2

required many traces to reach an error smaller than 10%;
more than 200000 traces in RNS10 for the first 10 Hamming
distances, and more than 1000000 for 112 Hamming dis-
tances. Despite these relatively heavy computations when
we randomized moduli, TVI was not able to measure the
dependence structure. Randomized moduli TVI does not
distinguish between the distribution of Hi and of Hi con-
ditionally on K ∈ Ik, i.e between P1 and P2.

The MIA distinguisher (cf. [8]) is based on the mutual
information of two random variables (X,Y ) ∈ X × Y :
I(X,Y ) =∑
x∈X

P (X = x)
∑
y∈Y

P (Y = y|X = x) log

(
P (Y = y|X = x)

P (Y = y)

)
.
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In our case, using the subdivision described in Appendix C,
one has to approximate:

2p
′
−1∑

k=0

P (K ∈ Ik)

q−1∑
j=0

P (Hi ∈ Hi
j |K ∈ Ik) log

(
P (Hi ∈ Hi

j |K ∈ Ik)

P (Hi ∈ Hi
j)

)
.

Therefore to apply MIA, we have to compute
log
(
P
(
Hi ∈ Hij

))
and log

(
P
(
Hi ∈ Hij |K ∈ Ik

))
that

have biased Monte Carlo estimators as pointed out in Ap-
pendix B. The quality of these biased estimators can be
measured with MSE. For example, according to equality
(15) in Appendix D, the MSE of log

(
P
(
Hi ∈ Hij

))
is

approximately
σ2

(
1{Hi∈Hi

j
}

)
SP 2(Hi∈Hi

j)
. We notice that is divided by

the number P 2
(
Hi ∈ Hij

)
<< 1. The logarithm increases

the distances but amplifies significantly the variance; it
becomes difficult to estimate. This makes the use of MIA
even harder than TVI to distinguish the dependence on the
key K . Thanks to the Gaussian assumption on the distribu-
tion of Hamming distances, MLE distinguisher requires less
computations.

4 EVALUATION WITH MAXIMUM LIKELIHOOD ESTI-
MATOR (MLE)
4.1 Gaussian model and MLE to evaluate RNS random-
ization

Applying the Maximum Likelihood Estimator (MLE) [37],
used for the Template attack [7], on Hamming distances
provides better results than DPA. MLE requires a learning
phase that precomputes the mean vector and the covariance
matrix (mk,i,Γk,i) of Hi = (H0, ...,Hi)

T . Given the value
of the secret K = k, for each i ∈ {0, ..., d − 1}, we suppose
Hi = (H0, ...,Hi)

T has a multivariate normal distribution
with density

pk,i(xi) =

exp

(
− (xi−mk,i)T Γ−1

k,i(xi−mk,i)

2

)
(√

2π
)i+1√

det(Γk,i)
, (8)

where xi = (x0, ..., xi)
T ∈ Ri+1.

The MLE analysis that we perform can be summarized
in the following steps: for i = 0, 1, ..., d− 1,

• Either we compute the exact value of (mk,i,Γk,i) with
all (2n)!

n!2 combinations in RNSn 1, or we estimate
(mk,i,Γk,i) using fewer combinations simulated with
a Monte Carlo method. This is the learning phase.

• We observe S realizations xi1≤j≤S of Hi =
(H0, ...,Hi)

T .

• We select the secret K = k that maximizes
S∏
j=1

pk,i(xij).

Due to the floating-point precision, it is better to select

the value that maximizes
S∑
j=1

log(pk,i(xij)). This is the

estimation phase.

1. This is our default choice in all the following figures and tables.
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Fig. 8. Frequency of success to find the first bit of the key with MLE on
ECC 112 in RNS5 (n = 5) for different size (mk,i,Γk,i) of the template

n 5 6 7 8 9 10 11
β 2.37 2.38 2.30 2.40 2.31 2.24 2.33

TABLE 1
slope of the linear regression

• We quantify the value of S that makes the information
leakage exploitable.

We point out that this MLE analysis was possible largely
to our GPU (Graphics Processing Unit) implementation
that provides sufficient throughput to perform this study,
especially for Figure 9.

Figure 8 shows that there is a remarkable information
leak in the first ∼ 10 successive Hamming distances. In
particular, we see that there is not substantial amelioration
between i = 9 and i = 11. This confirms what was already
explained with TVI in Section 3.1.

According to Figure 9, with S = (2n)!
n!2 we get almost

100% of success for ten bits. It is quite remarkable to see that
S should be of the order of (2n)!/(n!)2 that is the number
of combinations in a RNSn. We point out that we obtain
similar results with other curves including: Edwards 25519
[20] and ECCsecp256r1 [21].

Denoting Hi
K = (H0,K , ...,Hi,K), a sequence of Ham-

ming distances given by a key K , MLE shows that dis-
tribution of each Hi

K is completely distinguishable with
its couple of mean and covariance matrix. Moreover, our
study shows that the distribution differences reduce with
an increase of the number of moduli till reaching the order
of
(2n
n

)
= (2n)!/(n!)2.

Let us denote f the frequency of success. Figure 9
shows that f depends on S

(2n
n )

and is almost linear with

respect to x = S

(2n
n )

for 0 < x < 0.3. Moreover, as

we see in Table 1, the value of the slope barely changes
for n ∈ {5, 6, 7, 8, 9, 10, 11}. Consequently, one can set
f ≈ β S

(2n
n )

with 2.2 < β < 2.4 and 0 ≤ S

(2n
n )

< 0.3.

To protect the system, the frequency of success f should
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Fig. 9. Frequency of success to find a 10-bit key with MLE for different
RNSn on ECC 112 Montgomery in Jacobian coordinates.

pt
S 0.1 0.2 0.3 0.4 0.5 0.6

210 9 8 8 8 8 8
215 12 11 11 11 10 10
220 14 14 13 13 13 13
225 17 16 16 16 16 15
230 19 19 18 18 18 18
235 22 21 21 21 21 20
240 24 24 24 23 23 23
245 27 26 26 26 26 26
250 29 29 29 28 28 28

TABLE 2
Minimum n to protect 10 first bits of the key till S traces with a success

frequency smaller than pt.

not be greater than a frequency threshold pt:

β
S(2n
n

) < pt. (9)

If we extrapolate the result for n > 10, we obtain, in Table 2,
the minimum number of 32-bit-moduli to fulfill the previous
condition for the first 10 bits of the key. If we want to protect
the whole key from a conditional strategy (cf. Section 3.1),
we must consider another condition:

β
S(2n
n

) < p
9

#ECC−1

t , (10)

knowing the value of the first bit and #ECC is the bit
length of the cardinality of the ECC. Thus, Table 3 gives
the minimum n to protect the whole key. This minimum is
necessarily bigger than the smallest n required to implement
an ECC of #ECC bits based on 32-bit moduli.

4.2 Additional considerations to choose the number of
moduli

4.2.1 From which level we loose the random behaviour?
Let us denote the null hypothesis
Hyp0: ”We obtain 10 bits of the key with a probability equal
to 2−9”

#ECC
S × #ECC−1

9
112 256 384 521

210 6 9 13 18
215 8 9 13 18
220 11 10 13 18
225 13 13 13 18
230 16 15 15 18
235 19 18 18 18
240 21 20 20 20
245 24 23 23 22
250 26 26 25 25

TABLE 3
Minimum n to protect the whole key till S × #ECC−1

9
traces from the

target key: pt = 0.1.

We calculate the 95% prediction interval with p = 2−9:

Ip =

p− 1.96

√
p(1− p)
SE

; p+ 1.96

√
p(1− p)
SE

 .
SE is a sample size. If f ∈ Ip, we do not reject Hyp0

otherwise we reject Hyp0 .
We can notice in Table 4 that we have to use n > 7

to avoid an attack with a single trace. This confirms the
suggestion of [19].

n 5 6 7 8 9 10 11
S 1 1 1 5 7 16 130

TABLE 4
Minimum size to reject Hyp0 with a sample size SE = 32256

(error < 0.1% for a 95% prediction interval)

4.2.2 The learning phase costs more than the estimation
phase even with Monte Carlo.
We used an exact value of (mk,10,Γk,10) to set the template,
so we needed 29×

(2n
n

)
traces. Comparing this value to Table

3, we notice that the learning phase costs more than the
estimation phase. Thus, the former determines the number
of moduli needed for protection. Even with Monte Carlo,
the success decreases by half when we use 80% of 29 ×

(2n
n

)
traces to set the template (Fig. 10). If the attacker chooses to
reduce computations via Monte Carlo, he decreases signifi-
cantly his chance to find the secret.

5 CONCLUSION AND FUTURE WORK

In this work, we used MLE that takes advantage of the
cross-information in the Hamming distances. This provides
an efficient evaluation of the information leakage even for
cryptographic systems protected by RNS randomization. We
showed however that this efficiency decreases as the num-
ber of needed observations is of the order of (2n)!/(n!)2.
With this evaluation, we gave an estimation of the number
of moduli to protect efficiently a system against a template
attack. For example, since RNS12 requires 230.36 compu-
tations to construct a good template, it provides a good
protection for the actual standard of ECC like Edwards
curve 25519 [20] and ECCsecp256r1 [21]. A RNS15 protects
also against the estimation phase at the same level and in
any case, it is better to have n > 7 to have a correct random
behaviour against a single trace attack.
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Fig. 10. Frequency of success to find a 10-bits key with MLE on ECC
112. Comparison between Template exact and Monte Carlo.

As a future work, we would like to explore if there
exists a method to decrease the number of moduli for a
given level of randomness in order to reduce calculations.
Furthermore, it would be good to prove theoretically the
behaviour obtained in Figure 9 or at least establish an
upper bound curve. It could be also interesting to do this
same study when the template phase is evaluated with a
Monte Carlo method and/or investigate variance reduction
techniques.
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