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NON-ULRICH REPRESENTATION TYPE

DANIELE FAENZI, FRANCESCO MALASPINA, GIANGIACOMO SANNA

Abstract. We show a remarkable property of the CM-wild variety P
1
×P

2,
namely that the only ACM sheaves moving in positive-dimensional families are
Ulrich bundles. A complete classification of the non-Ulrich range is given.

We prove that this feature is unique in the sense that any other ACM
reduced closed subscheme X ⊂ P

N of dimension n ≥ 1 belongs to the well-
known list of CM-finite or CM-tame varieties, or else it remains CM-wild upon
removing Ulrich sheaves.

1. Introduction

Given a reduced closed subscheme X ⊂ PN of dimension n > 0 over an alge-
braically closed field k, we say that X is arithmetically Cohen-Macaulay (ACM)
if its homogeneous coordinate algebra k[X] is a graded Cohen-Macaulay ring. A
coherent sheaf E on X is ACM if the module E of global sections of E is a maximal
Cohen-Macaulay (MCM) module over k[X].

A few ACM varieties X support only finitely many isomorphism classes of
indecomposable ACM sheaves (up to twist), so X is of finite CM representation
type, or CM-finite. These varieties are classified in [EH88] and turn out to be:
projective spaces, smooth quadrics, rational normal curves, the Veronese surface
in P5 and the rational surface scroll of degree 3 in P4.

All ACM subvarieties X besides these cases are CM-infinite. In a few cases, X
supports only discrete families of non-isomorphic indecomposable ACM sheaves.
This happens for quadrics of corank 1 and char(k) 6= 2 (see [BGS87, §4]) and
t-chains of rational curves, i.e. At-configurations of smooth rational projective
curves, for t ≥ 2 (see [DG01]). We call these varieties CM-discrete (although
some authors call these varieties CM-finite as well).

Some CM-non-discrete varieties support at most 1-dimensional families of iso-
morphism classes of indecomposable ACM sheaves. In dimension 1, this happens
when X is an elliptic curve (by [Ati57]), or, in view of [DG01], an Ãt-configuration
of smooth rational projective curves for t ≥ 2, or a rational projective curve with a
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single simple node (which one may think of as an Ã1-configuration). These curves
are called cycles of rational curves. In higher dimension, this happens when X
is a rational surface scroll of degree 4 in P5, see [FM17]. A variety X with this
property is of tame CM-type.

As opposed to the previous kinds of varieties, whose CM-categories are under
control, one introduces CM-wild varieties. In terms of representation theory of
algebras, X is of CM-wild type if the category of finitely generated modules over
any finitely generated associative k-algebra Λ admits a representation embedding
into the category of graded MCM modules over k[X]. This means that there
is an exact functor Φ that carries finitely generated Λ-modules to graded MCM
k[X]-modules such that, given finitely generated Λ-modules M and M ′, Φ(M) ≃
Φ(M ′) implies M ≃ M ′ and Φ(M) is indecomposable whenever M is. We refer
e.g. to [SS07, §XIX] and [DG01] for more precise definitions of tame and wild
representation type of algebras.

The category of ACM sheaves over a CM-wild variety is at least as rich as the
category of finitely generated modules of an arbitrary finitely generated associative
algebra. It is clear that, if X is CM-wild in the algebraic sense, then X supports
families of pairwise non-isomorphic indecomposable ACM sheaves of arbitrarily
large dimension, so X is CM-wild in the geometric sense.

The main result of [FPL15] asserts that all ACM integral closed subschemes
in PN which are not in the list of CM-finite, CM-discrete or CM-tame varieties
mentioned above are CM-wild in the algebraic sense.

Among ACM sheaves, a special role is played by Ulrich sheaves. These are
characterized by the linearity of the minimal graded free resolution over the poly-
nomial ring of their module of global sections. Ulrich sheaves, originally stud-
ied for computing Chow forms, conjecturally exist over any variety (we refer to
[ESW03]). They are important for Boij-Söderberg theory (cf. [ES09, SE10]) and
for the determination of the representation type of varieties (see [FPL15]).

Over many smooth algebraic varieties, heuristics about Ulrich sheaves point
out that, among ACM sheaves of a fixed rank, they frequently move in the largest
families, i.e. the dimension of their deformation space is maximal among such
sheaves. For instance, Fano threefolds of Picard number one and index at least two
admit ACM sheaves of rank two; most of them are semistable, and their moduli
space has the largest dimension precisely in the case of Ulrich sheaves (see [BF11]).
This happens also on some Fano threefolds of higher Picard rank (we refer e.g.
to [CFM18] and references therein). The above considerations motivate the belief
that, when X is CM-wild, there should exist families of pairwise non-isomorphic
indecomposable Ulrich sheaves of arbitrarily large dimension (so X should be
Ulrich wild). Algebraically, it should be possible to construct the representation
embedding Φ in such a way that it lands into the category of Ulrich (also known
as maximally generated) MCM modules.

The present paper is devoted to further study the impact of Ulrich sheaves on
the representation type of varieties, mostly on smooth ones. Namely, taking for
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granted the slogan that Ulrich sheaves should move in the largest families, we
ask what happens if we exclude them: does the representation type of X change?
More precisely, can X be downgraded to a CM-finite or CM-tame variety if we
require that the image of the representation embedding Φ contains only finitely
many Ulrich modules for any given rank, so that X is algebraically non-Ulrich
CM-wild? In particular, are there unbounded families of indecomposable ACM
sheaves on X which are not Ulrich?

Our first main contribution is that the answer to this question is negative,
except for the two smooth CM-tame surfaces and for a single CM-wild variety,
which is P1×P2. More specifically, after excluding Ulrich sheaves, the two rational
scrolls of degree 4 and P1 × P2 become of finite CM representation type, while
all other varieties keep their representation type unchanged. This holds for all
reduced ACM varieties of dimension n ≥ 1 and char(k) 6= 2.

Theorem A. Let X ⊂ PN be a reduced closed non-degenerate ACM subscheme
of dimension n ≥ 1. Then X is algebraically non-Ulrich CM-wild unless X is:

i) a linear space;
ii) a quadric hypersurface of corank at most one;
iii) an At-configuration of smooth rational curves, for some t ≥ 1;

iv) an Ãt-configuration of smooth rational curves, for t ≥ 1, or an elliptic
curve;

v) a surface scroll of degree d in Pd+1 with d ∈ {3, 4};
vi) the Segre product P1 × P2 in P5.

In cases v) and vi), X supports only finitely many non-Ulrich ACM sheaves.

For the second theorem, we use suitably chosen sets of generators of the derived
category of coherent sheaves over projective bundles over P1 to obtain a complete
classification of the ACM indecomposable bundles (Ulrich or not) over P1×P2 and
quartic scrolls. This second case is actually a direct extrapolation from [FM17],
so the main point is to treat P1 × P2, embedded as a degree 3 submanifold of
P5 via the Segre product. To state the result, let us introduce some notation.
Consider the projection π from X = P1×P2 to P1 and put F for the divisor class
of a fibre of π and L for the pull-back of the class of a line on P2. Set Ωπ for the
cotangent bundle of P2, pulled-back to X.

Theorem B. Let F be an indecomposable ACM sheaf on P1×P2, assume H0(F) =
0 and H0(F(1)) 6= 0. Then F is:

i) either an Ulrich bundle of the form:

(1) 0→ OX(−F )⊕a → F → OX(F − L)⊕b → 0, for some a, b ∈ N,

ii) either OX(−1) or OX(−L) or the Ulrich bundle Ωπ(L).

This has the following surprising corollaries.

Corollary C. Given a polynomial p ∈ Q[t], any non-empty moduli space of H-
semistable ACM sheaves on X with Hilbert polynomial p is a finite set of points.
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Put c0 = 0, c1 = 1, ck+2 = 3ck+1 − ck and c−k = ck for all k ≥ 0. The numbers
ck are the odd terms of the Fibonacci sequence.

Corollary D. For any k ∈ Z there is a unique indecomposable sheaf Uk fitting
into:

0→ OX(−F )⊕ck−1 → Uk → OX(F − L)⊕ck → 0.

The sheaves Uk are Ulrich and rigid, and satisfy:

U∨
k ⊗ ωX(2) ≃ U1−k.

Up to twist by OX(t), any rigid indecomposable ACM sheaf on X is isomorphic
either to OX , or to OX(−L), or to Ωπ(L), or to Uk, for some k.

The paper is organized as follows. We start by recalling some basic notions
and preparing the proof of our main results in §2, where we quickly sketch how
to deal with the case of curves by following the literature. In §3 we provide a
result ensuring the existence of unbounded families of ACM non-Ulrich sheaves
under certain conditions; this is actually a slight modification of [FPL15, Theorem
A]. Sections 4 and 5 are devoted to the proof of Theorem A in dimension 2 and
higher, with the exception of the statement concerning P1×P2. More specifically,
§5 proves it for varieties of minimal degree (except for P1×P2), i.e. non-degenerate
integral varieties X ⊂ PN of dimension n ≥ 2 and degree d = N − n + 1, while
§4 proves it when d > N − n + 1, the special case n = 2 being treated in §4.1,
separately from the range n ≥ 3 showing up in §4.2. Finally, in §6 we analyze
ACM bundles on the exceptional case mentioned above, namely the Segre product
P1 × P2 ⊂ P5. Theorem B is proved in §6.3, cf. in particular Theorem 6.3. The
two corollaries above are proved in §6.3.1.

Acknowledgements. We are grateful to Gianfranco Casnati for invaluable help.

2. Basic facts

Let k be a field. Given an integer N , set PN for the projective space of
hyperplanes through the origin of kN+1.

2.1. Notation and conventions. LetX ⊂ PN be a closed integral subscheme of
dimension n. We assume throughout the paper that X is non-degenerate, namely,
there is no hyperplane of PN that contains X. The variety X is equipped with
the very ample line bundle OX(1) defined as the restriction of OPN (1) via the
embedding X ⊂ PN . We will write H for the divisor class of OX(1).

The coordinate ring R of PN is the graded polynomial algebra in N+1 variables
with the standard grading, namely R = k[x0, . . . , xN ]. The homogeneous coordi-
nate ring k[X] is the graded algebra k[X] = R/IX , where IX is the homogeneous
radical ideal of polynomials vanishing on X.

The degree of X is computed via the Hilbert polynomial of IX . We will be
denoted it by d.
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2.2. Cohen-Macaulay and Ulrich conditions. Given a coherent sheaf E on
X, the i-th cohomology module of E is the k[X]-module:

Hi
∗(E) =

⊕

k∈Z

Hi(X,E ⊗ OX(k)).

For i ≥ 1, the k[X]-modules Hi
∗(E) are artinian.

Definition 2.1. A coherent sheaf E on X is called ACM, standing for Arithmeti-
cally Cohen-Macaulay, if E is locally Cohen-Macaulay on X and:

Hi
∗(E) = 0, ∀i ∈ {1, . . . , n− 1}.

Equivalently, the minimal graded free resolution of the module of global sections
E = H0

∗(E), seen as R-module, has length N − n.

A locally Cohen-Macaulay sheaf on a smooth scheme is locally free, we also call
it a vector bundle or simply a bundle.

The variety X itself is said to be ACM if X is projectively normal and OX is
ACM. This is equivalent to ask that k[X] is a graded Cohen-Macaulay ring, which
in turn amounts to the fact that the minimal graded free resolution of k[X] as
R-module has length N − n. In this case, the line bundles OX(k) are ACM.

Definition 2.2. Let d be the degree of the embedded variety X ⊂ PN . For
r > 0, a rank-r ACM sheaf E on X is said to be Ulrich if there is t ∈ Z such that
H0(X,E(t − 1)) = 0 and h0(X,E(t)) = rd. We say that E is initialized by t (we
omit “by t” if t = 0).

Given a coherent sheaf E on X, asking that E is initialized and Ulrich is tanta-
mount to H∗(X,E(−j)) = 0 for all 1 ≤ j ≤ n, cf. [ES09, Proposition 2.1].

Remark 2.3. We should warn the reader that the usual definition of Ulrich
sheaf in the literature is equivalent to our definition of initialized Ulrich sheaf.
We adopted this slightly different definition in order to work with sheaves which
are Ulrich up to a twist.

2.3. Semistability. Let X ⊂ PN be a closed subscheme of dimension n > 0
embedded by the very ample divisor H. Stability of sheaves on X will always
mean Gieseker stability of pure n-dimensional sheaves with respect to the divisor
H.

The Hilbert polynomial of a coherent sheaf E on X, computed with respect
to H, is denoted by P (E, t). The rank of E is defined as the element r ∈ Q

such that the leading coefficient of P (E, t) equals rd/n!. For r 6= 0, we write
p(E, t) := P (E, t)/r for the reduced Hilbert polynomial of E.

Given polynomials p, q ∈ Q[t], we write p � q if p(t) ≤ q(t) for t ≫ 0. A
coherent sheaf E of rank r 6= 0 is semistable if it is pure (i.e. all its subsheaves
have support of dimension n) and, for any non-zero subsheaf F ( E, we have
p(F, t) � p(E, t). Stability is defined by strict inequalities.

A coherent sheaf E on X is simple if HomX(E,E) is generated by idE.
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2.4. Basic remarks on Theorem A. Here are some comments about Theorem
A from the introduction. Again, we assume that X ⊂ PN is a n-dimensional
closed subscheme over a field k, with n ≥ 1.

Remark 2.4. To obtain CM-wildness of X, it suffices to find a representation
embedding of some algebra of wild representation type to the category of ACM
sheaves on X (cf. for instance [FPL15, §1.2]). We will mostly take such algebra
to be the free k-algebra in two generators or the path algebra of the Kronecker
quiver with two vertices and three arrows.

Remark 2.5. In the setting of Theorem A (i.e. X ⊂ PN is reduced closed,
non-degenerate, ACM and k is algebraically closed), the restriction char(k) 6= 2
is only needed to deal with the case of quadric hypersurfaces of corank 1, which is
derived from [BGS87], so the result is valid also in characteristic 2 except perhaps
for this case. More information on MCM modules on quadrics in characteristic 2
can be found in [BEH87].

Remark 2.6. The statement for curves in Theorem A is a consequence of [DG01],
cf. also [BDG01, BBDG06]. It should be pointed out that the cohomological
vanishing required for a sheaf to be ACM plays no role in dimension 1 so the
statement is really about locally Cohen Macaulay sheaves.

More in detail, given a reduced connected projective curve X ⊂ PN of degree
d over an algebraically closed field k, in order to check that X is non-Ulrich CM-
wild it suffices to find a representation embedding of some wild k-algebra into the
category of vector bundles over X in such a way that, for any given rank r, the
resulting rank-r bundles E satisfy:

(2) H0(E(−H)) = 0, 0 6= dimH0(E) 6= dr,

except for finitely many choices of E.
In turn, this is already the case for all vector bundles appearing in [BBDG06,

Theorem 7] if X has arithmetic genus g > 1. Indeed, such bundles have degree r
so (2) follows easily from Riemann-Roch.

For curves of arithmetic genus g ≤ 1 which are not of type At or Ãt, the con-
struction of [DG01] provides bundles E whose pull-back under the normalization

π : X̃ → X decompose as a direct sum ⊕t
i=1Ei, where (X̃i | i = 1, . . . , t) is the set

of irreducible components of X̃ and, for each i ∈ {1, . . . , t}, the sheaf Ei is a vector

bundle on X̃i. One checks that the degrees of the bundles (Ei | i = 1, . . . , t) can
be chosen in such a way that π∗(E), and hence E, satisfy (2) by Riemann-Roch.

In the same way, the freedom in the choice of deg(Ei)i allows to define infinitely
indecomposable vector bundles which are not isomorphic up to twist over At-
configurations for t ≥ 2, as well as 1-parameter family thereof over elliptic curves
and Ãt-configurations for t ≥ 1.

In view of the previous remark, in the proof of Theorem A we will be allowed
to assume that the dimension n of X is at least 2.
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3. Representation embeddings and non-Ulrich sheaves

Let X ⊂ PN be a non-degenerate closed subscheme of dimension n > 0 over
a field k. We propose here a criterion, based on classical ideas about extensions
of sheaves and modules, for X to be non-Ulrich CM-wild. Since this does not
really depend on X being smooth or ACM, we formulate it in a more general
setting than what is actually needed to prove Theorem A. The result is a slight
modification of [FPL15, Theorem A].

Theorem 3.1. Let A and B be simple semistable ACM sheaves such that p(B) ≺
p(A) and assume dimk Ext

1
X(B,A) ≥ 3. Then the following holds:

i) the subscheme X is CM-wild;
ii) if n ≥ 2 and A and B are not Ulrich initialized by the same integer, then

X is algebraically non-Ulrich CM-wild;
iii) the same conclusion as in ii) holds also for n = 1 if there is no t ∈ Z such

that H0(X,A(t)) = H1(X,B(t)) = 0.

Proof. We use the setting and notation of [FPL15, Theorem A]. To be in position
of applying that result, we should verify that any non-zero morphism A→ B is an
isomorphism. But this is obvious since p(B) ≺ p(A) and A and B are semistable,
so any morphism A→ B is actually zero, so i) is clear.

Therefore X is algebraically CM-wild. Assume now that no integer t turns
A(t) and B(t) into initialized Ulrich sheaves. Recall that, by construction, the
sheaves appearing in the families provided by [FPL15, Theorem A] are extensions
of copies of A and B. If a sheaf E is an extension of say a copies of A and b copies
of B, it suffices to prove that E is actually non-Ulrich, as soon as a, b are both
non-zero.

To check this, by contradiction we let t be an integer that initializes E as Ulrich
sheaf, i.e. such that H∗(X,E(t − j)) = 0 for all 1 ≤ j ≤ n. Since A and B are
ACM by assumption, we have the vanishing Hi(X,A(t− j)) = Hi(X,B(t− j)) for
1 ≤ i ≤ n− 1 and for all j ∈ Z.

By definition, E fits into an exact sequence of the form:

0→ A⊕a → E→ B⊕b → 0,

where we may assume a 6= 0 6= b. Therefore, from the vanishing Hi(X,E(t−j)) = 0
we deduce H0(X,A(t − j)) = 0 = Hn(X,B(t − j)) for 1 ≤ j ≤ n.

Now, if n ≥ 2, because A is ACM, the vanishing H1(X,A(t − j))) takes place
for all j ∈ Z so we see that H0(X,E(t − j)) = 0 implies H0(X,B(t − j)) = 0 for
1 ≤ j ≤ n. This implies that B is Ulrich, initialized by t, and similarly we get
that the holds true for A. But this is excluded, and we conclude that ii) holds.

With the same setup we can prove also iii). Indeed, when X is a curve, a
coherent sheaf E is Ulrich if and only if there is t ∈ Z such that Hi(X,E(t)) = 0
for all i, which implies H0(X,A(t)) = 0 and H1(X,B(t)) = 0. But our assumption
implies that there is no t ∈ Z such that H0(X,A(t)) and H1(X,B(t)) vanish
together, so E is not Ulrich. �
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4. Varieties of non-minimal degree

Let X ⊂ PN be a non-degenerate closed subscheme of dimension n over an
algebraically closed field k. Assume X is reduced and ACM. Put d = deg(X).

We mentioned in §2.4 that, in order to prove Theorem A, we can assume n ≥ 2.
In this section we would like to treat the case when X is not of minimal degree,
which is to say d ≥ N − n+ 2.

We first look at the case (n, d) = (2, N), so X is a surface of quasi-minimal
degree, which we deal with in the next paragraph. The remaining cases are
basically already in [FPL15], up to the the result, proved in §4.2, that the c-th
syzygy of an ACM sheaf supported on a c-codimensional linear section is an ACM
sheaf which is never Ulrich when d ≥ N − n+ 2.

4.1. Surfaces of quasi-minimal degree. For this subsection, X ⊂ PN is an
ACM reduced closed surface of degree N , soX is of quasi-minimal degree. It turns
out that X is locally Gorenstein, namely ωX ≃ OX(−1), see [Mig98, Corollary
4.1.5].

Let us first observe that, if X is reducible, then X is non-Ulrich CM-wild. In-
deed, in view of [FPL15, §7.1] and since n ≥ 2, we are in position to apply [FPL15,
Theorem 5.2] and show that X is CM-wild. However, the sheaves obtained in this
way are not Ulrich. Indeed, such a sheaf E appears as an extension of an ACM
sheaf F1(q), on a first component X1 of X, for some q > 0, and the structure
sheaf of a second component X2 of X, and the resulting sheaf E is not Ulrich for
q ≫ 0. So we may assume until the end of the section that X is integral.

4.1.1. Syzygies of Ulrich bundles. Let X be an integral ACM surface of quasi-
minimal degree. We first assume that X is not a cone. In view of [FPL15,
§7.4], there exist stable initialized Ulrich bundles E1 and E2 of rank 2 on X and
determinant OX(2), such that:

(3)

HomX(Ei,Ei) = kidEi
, for i ∈ {1, 2},

HomX(Ei,Ej) = 0, if {i, j} = {1, 2},

dimExt1X(Ei,Ei) = 5, for i ∈ {1, 2},

dimExt1X(Ei,Ej) = 4, if {i, j} = {1, 2},

ExtpX(Ei,Ej) = 0, for i, j ∈ {1, 2} and p ≥ 2.

Consider the evaluations of global sections, for i ∈ {1, 2}:

eEi
: H0(Ei)⊗ OX → Ei.

We define Ai = ker(eEi
)∨, for i ∈ {1, 2}.
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Proposition 4.1. The sheaves A1 and A2 are simple, ACM vector bundles which
are not Ulrich. They satisfy:

(4)

HomX(Ai,Ai) = kidAi
, for i ∈ {1, 2},

HomX(Ai,Aj) = 0, if {i, j} = {1, 2},

dimExt1X(Ai,Ai) = 5, for i ∈ {1, 2},

dimExt1X(Ai,Aj) = 4, if {i, j} = {1, 2},

ExtpX(Ai,Aj) = 0, for i, j ∈ {1, 2} and p ≥ 2.

Proof. It is well-known that the module of global sections of an initialized Ulrich
bundle of rank r over X is generated by Nr elements of degree 0. Therefore the
evaluation maps eEk

are surjective for k ∈ {1, 2} and the sheaves ker(eEk
) are

locally free and ACM of rank 2(N − 1) on X. In other words, H1
∗(A

∨
k ) = 0 for

k ∈ {1, 2}. Also, by definition of eEk
, we have H0(A∨

k ) = 0 for k ∈ {1, 2}.
Using the isomorphism ωX ≃ OX(−1) and Serre duality we get that Ak are

ACM bundles on X for k ∈ {1, 2}. Also, E∨
k ≃ Ek(−2), so we have:

(5) 0→ Ek(−2)→ O
⊕2N
X → Ak → 0.

This gives at once H0(Ak(−1)) = 0 and dim(H0(Ak)) = 2N < 2N(N−1) hence
Ak is not Ulrich, for k ∈ {1, 2}.

For i, j, k ∈ {1, 2}, since Ej is an initialized Ulrich bundle, we have
H∗(Ej(−2)) = 0, thus applying HomX(−,Ej(−2)) to (5) we get ExtpX(Ek,Ej) ≃

Extp+1
X (Ak,Ej(−2)) for all p ≥ 0. Using Serre duality and the vanishing we al-

ready proved for A∨
i we get Ext∗X(Ai,OX) = 0. Therefore, applying HomX(Ai,−)

to (5), we get Extp+1
X (Ai,Ek(−2)) ≃ ExtpX(Ai,Ak) for all p ≥ 0. Summing up we

get:

ExtpX(Ei,Ej) ≃ ExtpX(Ai,Aj), for all p and all i, j ∈ {1, 2}.

Hence (4) follows from (3) and the proposition is proved. �

If X is a cone, then we use the construction of [FPL15, §7.3]. This gives two
initialized Ulrich sheaves E1 and E2 of rank 1 on X such that:

HomX(E∨
i ,E

∨
i ) = kidEi

, for i ∈ {1, 2},

HomX(E∨
i ,E

∨
j ) = 0, if {i, j} = {1, 2},

dimExt1X(E∨
i ,E

∨
i ) = N + 1, for i ∈ {1, 2},

dimExt1X(E∨
i ,E

∨
j ) = N, if {i, j} = {1, 2}.

Since Ext1X(Ei,OX) = 0 for i ∈ {1, 2}, this allows to define two reflexive ACM
sheaves A1 and A2 of rank (N − 1) as in the previous proposition and show that
A1 and A2 are not Ulrich as H0(Ak(−1)) = 0 and dim(H0(Ak)) = N < N(N −1).
Note that, for i ∈ {1, 2}, we have H∗(E∨

i ) = 0 by Serre duality since ωX ≃ OX(−1)
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and Ei is initialized Ulrich. Again, ExtpX(Ai,OX) = 0 for all p and i ∈ {1, 2} so,
by the same argument as before, we get:

HomX(Ai,Ai) = kidAi
, for i ∈ {1, 2},

HomX(Ai,Aj) = 0, if {i, j} = {1, 2},

dimExt1X(Ai,Ai) = N + 1, for i ∈ {1, 2},

dimExt1X(Ai,Aj) = N, if {i, j} = {1, 2}.

Summing up, independently on whether X is a cone or not, in view [FPL15,
Theorem A], we get that X is non-Ulrich CM-wild and even strictly CM-wild.

4.1.2. A second construction for del Pezzo surfaces. Let us give a second con-
struction, with the further assumption that X is smooth, so X is an anticanoni-
cally embedded del Pezzo surface. This construction has the advantage of being
self-contained and the drawback of relying on the explicit description of X as a
blown-up plane or a quadric surface. More precisely, recall that X is either a
blow-up of P2 at 9− d points or the product variety P1×P1. We construct ACM
bundles (Ulrich or not) on X with the same methods in both cases, only with a
slightly different choice of the invariants.

If X is a blow-up of P2, we fix a birational surjective morphism π : X → P2

and let OX(L) = π∗(OP2(1)), M = 2L. Given (a, b) ∈ N2, with a ≥ 2, we put
D(a, b) = 3ab − a2 − b2 + 1 and ba = 2a. In the second case we set π1 and π2
to be the projection maps onto the two P1 factors and let OX(L) = π∗

1(OP1(1))
and OX(F ) = π∗

2(OP1(1)). This time we take (a, b) ∈ N2 with a ≥ 1 and we put
D(a, b) = 4ab− a2 − b2 + 1, ba = 3a, M = 2L+ F .

Proposition 4.2. Choose (a, b) so that D(a, b) > 0 and b ≥ ba. Then, for f
general enough in HomX(OX(L)⊕b,OX(M)⊕a), the sheaf E = ker(f) is simple,
locally free and ACM, with dimExt1X(E,E) = D(a, b) and Ext2X(E,E) = 0; E is
not Ulrich when b > ba.

Proof. Note that b ≥ ba ≥ a and that the locally free sheaf H =
HomX(OX(L)⊕b,OX(M)⊕a) ≃ OX(M − L)⊕ba is globally generated. Therefore,
for a general choice of f ∈ H0(H) and for any integer k ∈ {0, . . . , a − 1}, the
degeneracy locus Dk(f) defined by the (k + 1)-minors of the associated map
f : OX(L)⊕b → OX(M)⊕a has codimension (b − k)(a − k) in X in view of a
Bertini-type result, see for instance [Ott95, Teorema 2.8], or [CACJ18, Lemma
11.6]. In particular, for k = a−1, since b−a+1 ≥ ba−a+1 ≥ 2a−a+1 ≥ a+1 ≥ 3
and dim(X) = 2, we have Da−1(f) = ∅ so f is surjective.

Then, the sheaf E = ker(f) is locally free of rank b− a ≥ 2. We write down the
exact sequence:

(6) 0→ E→ OX(L)⊕b → OX(M)⊕a → 0.

Next, observe that the k-vector space HomX(OX(L),OX (M)) has dimension
3 or 4 depending on whether X is a blow-up of P2 or X ≃ P1 × P1. In both
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cases, the assumption D(a, b) > 0 ensures that [Kac80, Theorem 4] applies (cf.
the argument of [CMRPL12, Proposition 3.5 (i)]) and shows that E is simple if
f is general enough. The same argument proves dimExt1X(E,E) = D(a, b) and
Ext2X(E,E) = 0.

Next, we show that E is ACM. Note that OX(L) is ACM for the polarization H
and that H0(OX(M+ tH)) = 0 for any integer t ≤ −1, so (6) gives H1(E(tH)) = 0
for all t ≤ −1. Also, Serre duality gives Hk(OX(L−H)) = Hk(OX(M −H)) = 0
for all k. So once we make sure that H1(E) = 0, we will get that E(H) is H-regular
and hence H1(E(tH)) = 0 for t ≥ 0, so that E will be proved to be ACM.

So let us prove that H1(E) = 0. IfX is a blow-up of P2, this follows from [EH92,
Propositions 1.1 and 4.1] in view of the assumption b ≥ ba. When X ≃ P1 × P1,
first we note that the condition H1(E) = 0 is open on flat families, and that:

{ker(f) | f ∈ H0(H) gives a surjective map OX(L)⊕b → OX(M)⊕a}

defines a family of vector bundles on X which is indeed flat.
In view of this discussion, in order to get the statement for general f ∈ H0(H),

it suffices to prove it for one choice of f0 ∈ H0(H), provided that the associated
f0 : OX(L)⊕b → OX(M)⊕a is surjective. To choose a convenient element f0,
note that again a Bertini-type argument ensures that, for a general choice of
g ∈ HomX(OX(L)⊕3,OX(M)), the map g is surjective. Define F = ker(g), so:

(7) 0→ F→ OX(L)⊕3 → OX(M)→ 0.

Then, choose f0 to be a diagonal map consisting of a copies of g as above, com-
pleted by b − ba = b − 3a zeroes. We get thus a surjective map f0 : OX(L)⊕b →
OX(M)⊕a and E0 = ker(f0) ≃ OX(L)b−3a ⊕ F⊕a.

We still have to prove H1(E0) = 0. To do it, it suffices to show H1(F) = 0.
In turn, we use an argument analogous to [ESW03, Proposition 5.9] to show this
and actually prove that F is Ulrich on (X,H), where H = 2L + 2F . Indeed,
c1(F) = L− F so F ≃ F∨(L− F ) and the dual of (7) yields the exact sequence:

0→ OX(−L− 2F )→ OX(−F )⊕3 → F→ 0.

This implies immediately H∗(F) = 0. Also, (7) gives:

0→ F(−H)→ OX(−L− 2F )⊕3 → OX(−F )→ 0.

which implies H∗(F(−H)) = 0, so that F is Ulrich.
We have thus proved that E is ACM. Finally, E is not Ulrich as soon as b > ba.

Indeed, from (6) we have H0(E(−H)) = 0 so we have that E is not Ulrich as soon
as we show:

0 < χ(E) < d(b− a).

Now, on one hand, the assumption b > ba guarantees χ(E) > 0. On the other
hand, when X is a blow-up of P2 we get χ(E) = 3(b− 2a) < 3(b − a) ≤ d(b− a),
while forX ≃ P1×P1 (hence d = 8) we have χ(E) = 2(b−4a) < 2(b−a) ≤ 8(b−a).
In both cases the desired equality holds and the statement is proved. �
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Remark 4.3. The previous proof actually implies that, for X ≃ P1 × P1 em-
bedded by 2L + 2F and b = 3a, the sheaf E obtained by f as in the previous
proposition is a simple Ulrich bundle of rank 2a.

The previous proposition shows the geometric version of Theorem A whenX is a
del Pezzo surface. Indeed, choosing for instance b = ba+1, the above construction
provides families of non-Ulrich pairwise non-isomorphic indecomposable bundles,
whose dimension grows as a quadratic function of a.

4.2. The higher range. According to §4.1, we have to justify that Theorem
A holds for all non-degenerate reduced closed ACM subschemes X ⊂ PN of
dimension n ≥ 2 and degree d, provided that (d, n,N) lie in the higher range,
namely d ≥ N − n + 3, or n ≥ 3 and d = N − n+ 2. We essentially extract this
from [FPL15] up to the result, proved below, that syzygies of Ulrich sheaves are
never Ulrich.

Indeed, [FPL15, Theorem 4.2] already asserts that, when a subscheme X of
dimension at least two as above is in the range d ≥ N − n + 2 (i.e. X is not of
minimal degree), then it is of wild CM-type.

What we do here is to show that the proof of [FPL15, Theorem 4.2] already
yields non-Ulrich sheaves. Looking into this proof we see that it proceeds by
reduction to a transverse linear section Y of X of dimension one in case d ≥
N − n+ 3, or of dimension two in case d = N − n+ 2. Namely, setting c for the
codimension of Y in X, one first constructs families of arbitrarily large dimension
of indecomposable pairwise non-isomorphic ACM sheaves F on Y . Then, one
considers a minimal graded free resolution F • → F of the finitely generated
k[X]-module F = H0

∗(F), of the form:

(8) 0← F ← F0 ← F1 ← · · · ← Fℓ−1
dℓ←− Fℓ ← · · ·

where, for all i ≥ 0, Fi is a finitely-generated free k[X]-module. For i ≥ 0, we
write ΣX

i (F ) = Im(di) and ΣX
i (F) for the sheafification of ΣX

i (F ).
The sheaf E = ΣX

c (F) is ACM over X. One shows via [FPL15, Theorem
B] that the families of sheaves E constructed in this way are still made-up of
indecomposable pairwise non-isomorphic ACM sheaves, provided that the sheaves
F are actually Ulrich.

Having this in mind, we consider the following setup. Let X ⊂ PN be a non-
degenerate reduced closed ACM subscheme of dimension n and degree d over a
field k. Let M ⊂ PN be a linear subspace of codimension c ≥ 1 and assume
Y = X ∩M is of dimension n − c ≥ 1. Let F be an ACM sheaf on Y . By §4.1
and the discussion above, Theorem A holds for d ≥ N −n+2, once we prove the
following result.

Theorem 4.4. The sheaf E = ΣX
c (F) is Ulrich on X if and only if F is Ulrich

on Y and d = N − n+ 1.
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Proof. If F is Ulrich on Y and d = N − n+1 then E is Ulrich on X, according to
[FPL15, Proposition 3.6]. What we have to prove is that E is not Ulrich on X if
either F is not Ulrich on Y , or d ≥ N − n+ 2.

Put RX = k[X] and RY = k[Y ]. We consider F = H0
∗(F) as a graded RX -

module. Recall that F is a graded Cohen-Macaulay module on RX , which is
non-maximal as its dimension is dim(RY ) = n − c + 1 < n + 1 = dim(RX).
Without loss of generality, we may assume that F is initialized. So, the RX -
module F is generated by finitely many elements of positive degree. Therefore,
the free modules (Fi | i ≥ 0) appearing in the minimal graded free resolution F •

of F over RX take the form:

Fi =
⊕

j∈{i,...,ri}

RX(−j)⊕ai,j ,

for some sequence of integers (ri | i ∈ N) with ri ≥ i for all i ∈ N, and some
uniquely determined integers (ai,j | i ∈ N, j ∈ {i, . . . , ri}), called the RX-Betti
numbers of F .

Write the Koszul resolution K • of RY over RX as:

0← RY ← K0 ← · · · ← Kc ← 0, with Ki = RX(−i)⊕(
c
i) for all i ∈ {0, . . . , c}.

Since F is an initialized ACM sheaf over Y , there exists an injective map ϕ :
RY → F . This map lifts to a map of graded complexes ϕ • : K • → F • which we
write, for i ∈ {0, . . . , c} as:

(9) ϕi : RX(−i)⊕(
c

i) →
⊕

j∈{i,...,ri}

RX(−j)⊕ai,j .

In particular, the polynomial maps ϕ0, . . . , ϕc are actually constant.
Next, we observe that ϕi is injective for all i ∈ {0, . . . , c}. Indeed, ϕ0 is injective

since ϕ 6= 0 and K0 = RX . For i ∈ {1, . . . , c}, by induction on i we may assume
that ϕi−1 is injective so that the induced map ΣX

i (RY )→ ΣX
i (F ) is also injective.

Thus ker(ϕi) is contained in ΣX
i+1(RY ). But looking at (9) we see that ker(ϕi) is

generated by elements of degree i, while all elements of ΣX
i+1(RY ) have degree at

least i+ 1. Therefore ker(ϕi) = 0.
In view of the previous paragraph, for each i ∈ {0, . . . , c} we have a splitting

Fi ≃ Ki⊕Gi for some graded RX -module Gi such that for each i ∈ {1, . . . , c} the
differential di : Fi → Fi−1 is upper triangular according to the block-matrix form:

(10) di : Ki ⊕Gi → Ki−1 ⊕Gi−1,

i.e. Ki → Ki−1 ⊕Gi−1 factors through the Koszul differential Ki → Ki−1.
Thus the map ϕc−1 induces an injection:

RX(−c) = ΣX
c (RY ) →֒ ΣX

c (F ) = E.

This says that H0(X,E(c)) 6= 0.

Next, use [FPL15, Sequence (3.2)] to get a long exact sequence:

0← HomRY
(F,RY (1))← E∨(1− c)← F∨

c−1(1− c)← · · · ← F∨
0 (1− c)← 0.
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Set Q0 = F0 and, for i ∈ {1, . . . , c− 1}, define:

Qi = Coker(F∨
i−1(1− c)→ F∨

i (1− c)),

where the maps are extracted from the above complex. We get an injection
Qc−1 → E∨(1 − c). Note that the above maps have a block-matrix form which
is the transpose of (10) and that the cokernel of the transpose of the Koszul
differential K∨

c−2(−c) → K∨
c−1(−c) is the homogeneous ideal IY/X of Y in X.

Therefore, the map F∨
c−2(1 − c) → F∨

c−1(1 − c) commutes with restricting the
source to K∨

c−2(1 − c) and the target to K∨
c−1(1 − c). This gives an induced

surjection Qc−1 → IY/X(1). Then, we may extract a non-trivial map:

R⊕c
X = K∨

c−1(1− c)→ Qc−1,

which composes to a non-trivial map R⊕c
X → E∨(1− c). So H0(X,E∨(1− c)) 6= 0.

Having set up all this, we can prove that, if d ≥ N − n + 2, no integer t
turns E into an initialized Ulrich sheaf. Indeed, let t be such an integer, so that
H∗(X,E(t − j)) = 0 for 1 ≤ j ≤ n. We proved H0(X,E(c)) 6= 0 and hence t ≤ c.

On the other hand, by [FPL15, Lemma 3.1] we have, since X is not of minimal
degree, that H0(X,ωX(n − 1)) 6= 0. So there is an injective map OX → ωX(n −
1). Tensoring E∨(1 − c) with this map and using H0(X,E∨(1 − c)) 6= 0, we get
H0(X,E∨ ⊗ ωX(n− c)) 6= 0. By Serre duality we have thus Hn(X,E(c − n)) 6= 0,
which implies t ≥ c+1. Thus no integer t turns E into an initialized Ulrich sheaf.

Finally we prove that, if F is not an initialized Ulrich sheaf on Y , then again no
integer t turns E(t) into an initialized Ulrich sheaf onX. By the previous argument
we have t ≤ c and we only need to prove Hn(X,E(c− n)) 6= 0. Now, if F is ACM
but not Ulrich over the (n − c)-dimensional variety Y , since H0(Y,F(−1)) = 0 6=
H0(Y,F), we must have Hn−c(Y,F(c−n)) 6= 0. Sheafifying the resolution F • → F
and taking cohomology, we get injections, for k ∈ {1, . . . , c}:

Hn−c(Y,F(c − n)) →֒ · · · →֒ Hn−c+k(X,ΣX
k (F)(c − n)) →֒ · · · →֒ Hn(X,E(c − n)).

Therefore Hn(X,E(c − n)) 6= 0. This concludes the proof. �

5. Varieties of minimal degree

For this section, letX ⊂ PN be a non-degenerate closed subscheme of dimension
n ≥ 2 over an algebraically closed field k. Assume that X is ACM of degree
d = N − n+ 1, i.e., X is of minimal degree. We want to prove Theorem A for X.

Assume first thatX is not integral (not reduced, or reduced but not irreducible).
Then the argument of [FPL15, §6] applies to show that X is non-Ulrich CM-
wild. This follows from the fact that X supports ACM sheaves supported on the
different components of X, or on the reduced structure of a component of X, and
that we can twist the leftmost term of this extension by OX(q) for q ≫ 0 and
therefore obtain a representation embedding whose source is a wild algebra and
whose target consists of ACM sheaves on X which are not Ulrich.
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If X is integral but not smooth, then X is a cone over a smooth variety which
is again ACM and of minimal degree, whose apex is a linear space of dimension
m ≥ 0. Also in this case, the argument of [FPL15, §6.1] gives rise to ACM sheaves
E which are not Ulrich except for finitely many choices of E. Indeed, these sheaves
arise as extensions of the form:

0→ A(q)→ E→ B→ 0,

where A, B are sheaves obtained extending to X the presentation of initialized
Ulrich sheaves on the base of the cone and q > 0. For q ≫ 0, the sheaf E cannot
be Ulrich, so we get that X is non-Ulrich CM-wild.

So from now on, in order to prove Theorem A, we can assume that X is
smooth and irreducible, hence, according to the Bertini-del Pezzo’s classification
(cf. [EH87]), X is a quadric hypersurface or a rational normal scroll.

After setting up some notation, this case will be settled in the next lemma.
Given n ≥ 2 and a non-decreasing sequence a = (a1, . . . , an) of integers 1 ≤ a1 ≤
· · · ≤ an put d =

∑n
i=1 ai and N = d+ n− 1. We denote by S(a) = S(a1, . . . , an)

the rational normal scroll defined as the projectivization of ⊕n
i=1OP1(ai), embed-

ded as a submanifold of degree d in Pd+n−1 by the tautological relatively ample
line bundle. We set H for the hyperplane class of S(a) and F for the class of a
fibre of the projection S(a)→ P1. Let L = OX((d − 1)F −H).

It is well-known that X = S(a) is CM-finite if:

a ∈ {(1, 1), (1, 2)}.

By [FM17], X is CM-tame if:

a ∈ {(1, 3), (2, 2)}.

We know by [MR13] that the rational normal scroll X = S(a) is Ulrich-wild
except for the cases above:

a ∈ {(1, 1), (1, 2), (1, 3), (2, 2)}.

If we seek unbounded families of non-Ulrich bundles, we should be a bit more
careful and exclude the exceptional cases appearing in the statement of Theorem
A, which is to say:

a ∈ {(1, 3), (2, 2), (1, 1, 1)}.

So we actually assume from now on:

n ≥ 4, or n = 3, d ≥ 4, or n = 2, d ≥ 5.

We start by noting that the setup of [FM17, Theorem B] applies in any dimen-
sion to give rigid Ulrich bundles on X associated with Fibonacci-like sequences.
Indeed, put ℓ = (n− 1)d−n, so that hi(OX(H − dF )) = 0 for all i 6= 1 and hence
by Riemann-Roch:

ℓ = −χ(L∨(−F )) = h1(OX(H − dF )) ≥ 2,
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in our range for (d, n). Define recursively the Fibonacci-like numbers aℓ,k ∈ N by:

aℓ,0 = 0, aℓ,1 = 1, aℓ,k+2 = ℓaℓ,k+1 − aℓ,k, ∀k ∈ N.

Since ℓ ≥ 2, the sequence (aℓ,k) is strictly increasing along k.

Recall the notion of exceptional sheaf E on X, namely E is a simple coherent
sheaf such that ExtiX(E,E) = 0 for i > 0. Recall also that two exceptional sheaves
(E,F) form an exceptional pair if ExtiX(F,E) = 0 for all i. The pair (L,OX(−F ))
is exceptional. We mentioned that h1(L∨(−F )) = ℓ and hi(L∨(−F )) = 0 for
i 6= 1,

Then, making use of mutations like in [FM17, §2], we get that for each k ≥ 0
there is a unique exceptional sheaf Uk which fits into:

(11) 0→ OX(−F )⊕aℓ,k → Uk → L⊕aℓ,k+1 → 0.

Theorem A will be proved for X if check the following result.

Lemma 5.1. The sheaves B = Uk and A = OX satisfy the assumptions of The-
orem 3.1 as soon as we choose:

• k = 0 for n ≥ 4;
• k = 1 for n = 3 and d ≥ 4;
• k = 3 for n = 2 and d ≥ 5.

Proof. Working as in [FM17, §2] we check that Uk is an exceptional Ulrich bundle
which is actually initialized by t = 1. As a consequence, Uk is (strictly) semistable
simple sheaf with:

p(Uk) =
td

n!

n−1
∏

i=1

(t+ i) ≺
td+ n

n!

n−1
∏

i=1

(t+ i) = p(OX).

The sheaf OX is not Ulrich and is obviously stable. So, in order to verify
the assumptions of Theorem 3.1, it only remains to check the condition on the
dimension of the extension space. We note that hi(L∨) = 0 for i ≥ 2 and that,
by Riemann-Roch:

χ(L∨) = 2n+ (1− n)d.

Looking at (11), we deduce hi(U∨
k ) = 0 for i ≥ 2 so:

dimk Ext
1
X(Uk,OX) = h1(U∨

k ) ≥ −χ(U
∨
k ) =(12)

= −aℓ,k+1χ(L
∨)− 2aℓ,k =

= aℓ,k+1((n − 1)d− 2n)− 2aℓ,k.

Assume now n ≥ 4. In particular, we have d ≥ 4. Recall that for the case
n ≥ 4 we have chosen k = 0. Hence we consider U0 = L and note that h1(L∨) =
−χ(L∨) ≥ 4 because (n − 1)d − 2n ≥ 3d − 8 ≥ 4. Thus the lemma is proved for
n ≥ 4.

Next, assume n = 3, so that our choice is k = 1. Then, formula (12) gives
h1(U∨

1 ) ≥ 4d2 − 18d+ 16, which is at least 8 as soon as d ≥ 4.
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Finally, let n = 2, in which case we have chosen k = 3. Then, evaluating (12)
we get h1(U∨

3 ) ≥ d4 − 10 d3 + 32 d2 − 36 d+ 10. This is at least 5 for d ≥ 5.
�

The proof of Theorem A is now complete.

6. The Segre product of a line and a plane

Let us now turn to the analysis of the Segre product X = P1 × P2, which we
consider as a smooth submanifold of P5. In other words, X is the rational normal
scroll X = S(1, 1, 1) of degree d = 3 embedded by the tautological relatively
ample divisor H, hence X has minimal degree. A smooth hyperplane section of
X is the CM-finite cubic scroll S(1, 2).

Our goal here is to classify all ACM indecomposable bundles on X. Of course,
this is not quite possible since Ulrich bundles form a wild class in terms of repre-
sentation theory, so we focus on non-Ulrich bundles and we classify all those.

6.1. A first classification result via homological non-vanishing. Let us
first give the basic ACM bundles that will be the output of the classification. Put
π for the projection X → P1 and Ωπ for the relative cotangent bundle. Here X is
a product so Ωπ is the pull-back of the cotangent bundle of P2 via the projection
σ : X → P2. Set L = H − F , so OX(L) = σ∗(OP2(1)). Recall:

ωX ≃ OX(−2F − 3L).

We easily see that OX(L) is ACM and Ωπ(H + L) is Ulrich. We start with a
lemma, inspired on [BM11], that classifies these sheaves as bundles with a specific
non-vanishing.

Lemma 6.1. Let E be a locally free sheaf on X. Then E ≃ Ωπ(L) if and only if
E is indecomposable and:

(13) H1(E) = H1(E(−1)) = H2(E(−2)) = 0, H1(E(−L)) 6= 0.

Proof. One implication is clear, so we assume that E is an indecomposable locally
free sheaf satisfying (13) and we prove that E ≃ Ωπ(L). Recall the standard
isomorphism Ext1X(OX(L),E) ≃ H1(E(−L)). Then, write the vertical Euler se-
quence:

(14) 0→ Ωπ(L)→ O⊕3
X → OX(L)→ 0,

and apply HomX(−,E) to it. Since Ext1X(OX ,E) = H1(E) = 0, we get a surjection:

HomX(Ωπ(L),E) ։ Ext1X(OX(L),E) ≃ H1(E(−L)).

Take e ∈ H1(E(−L))\{0} and consider a map f : Ωπ(L)→ E lying in the preimage
of e under the above surjection.

Further, we consider the dual vertical Euler sequence, written in the form:

(15) 0→ OX(−2L)→ OX(−L)⊕3 → Ωπ(L)→ 0.
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Note that, by Serre duality, our assumption gives:

Ext1X(E,OX (−L)) ≃ H2(E(−2))∨ = 0.

Next, we write the horizontal Euler sequence in the form:

(16) 0→ OX(−2L− 2F )→ OX(−2L− F )⊕2 → OX(−2L)→ 0.

Again our assumption gives, via Serre duality:

Ext2X(E,OX (−2L− F )) ≃ H1(E(−1))∨ = 0.

We have thus a surjection as composition of surjections:

(17) HomX(E,Ωπ(L)) ։ Ext1X(E,OX(−2L)) ։ Ext2X(E,OX(−2)).

Choose a generator kX of the vector space H3(ωX) and h ∈ Ext2X(E,OX (−2))
such that the Yoneda product

H1(E(−L)) ⊗ Ext2X(E,OX (−2))→ H3(OX(−2F − 3L)) ≃ H3(ωX)

sends e ⊗ h to k. Choose then g : E → Ωπ(L) lying in the preimage of h under
the surjection (17).

It is well-known that ΩP2 is a simple sheaf so the same holds for Ωπ(L). There-
fore, as soon as the map g ◦ f is non-zero it must be a non-zero multiple of the
identity. This implies immediately that Ωπ(L) is a direct summand of E, which
forces E ≃ Ωπ(L) because E is indecomposable.

It remains to check that g ◦ f 6= 0. To do this, we consider the following
commutative diagram of Yoneda maps.

(18) HomX(Ωπ(L),E) ⊗HomX(E,Ωπ(L)) //

��

HomX(Ωπ(L),Ωπ(L))

��

HomX(Ωπ(L),E) ⊗ Ext2X(E,OX (−2)) //

��

Ext2X(Ωπ(L),OX(−2))

��

Ext1X(OX(L),E) ⊗ Ext2X(E,OX(−2)) // H3(ωX)

Our goal is to prove that the map appearing in the top row sends f ⊗ g to a
non-zero element. The upper map in the left column sends f ⊗ g to f ⊗ h, so it
suffices to check that the map in the middle row sends f⊗h to a non-zero element.
In turn, the lower map in the left column sends f ⊗ h to e ⊗ h, so it is enough
to show that the map in the bottom row sends e⊗ h to a non-zero element. But
this last map sends e⊗ h to kX , hence we are done. �

In a similar vein we show the following.

Lemma 6.2. Let E be an indecomposable locally free sheaf on X. Then:

i) there is an isomorphism E ≃ OX(−L) if and only if:

(19) H0(E) = H1(E(−L)) = H2(E(−F − 2L)) = 0, H0(E(L)) 6= 0.
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ii) there is an isomorphism E ≃ OX(−1) if and only if:

(20) H0(E(L)) = H1(E(−F )) = H2(E(−1)) = 0, H0(E(1)) 6= 0.

Proof. Both items have an obvious implication, what we have to prove is that E
is isomorphic to the desired sheaf after assuming the cohomological conditions.

Let us prove i). Choose a non-zero element f of H0(E(L)) ≃
HomX(OX(−L),E). Next, we choose a generator kX of H3(ωX) and note that
by Serre duality there exists h ∈ Ext3X(E,OX (−2F − 4L)) such that the Yoneda
pairing

HomX(OX(−L),E)⊗ Ext3X(E,OX (−2F − 4L))→ H3(ωX)

sends f ⊗ h to k.
Next, write again the exact sequences (14), (15) and (16), twisted by lines

bundles on X so that they take the following form:

0→ OX(−2F − 4L)→ OX(−2F − 3L)⊕3 → Ωπ(−2F − L)→ 0,

0→ Ωπ(−2F − L)→ OX(−2)⊕3 → OX(−2F − L)→ 0,

0→ OX(−2F − L)→ OX(−1)⊕2 → OX(−L)→ 0.

We remark that the vanishing assumptions of i) and Serre duality imply:

Ext3X(E,OX (−2F − 3L)) ≃ H0(E)∗ = 0,

Ext2X(E,OX (−2)) ≃ H1(E(−L))∗ = 0,

Ext1X(E,OX (−1)) ≃ H2(E(−F − 2L))∗ = 0.

Therefore, applying HomX(E,−) to the three sequences above we get a surjection:

(21) HomX(E,OX (−L)) ։ Ext3X(E,OX(2F − 4L)).

We choose now g ∈ HomX(E,OX(−L)) in the preimage of h.
Therefore we have a commutative diagram of the form:

HomX(OX(−L),E) ⊗HomX(E,OX(−L))

��

// HomX(OX(−L),OX(−L))

��

HomX(OX(−L),E)⊗ Ext1X(E,OX(−2F − L))

��

// Ext1X(OX(−L),OX(−2F − L))

��

HomX(OX(−L),E) ⊗ Ext2X(E,Ωπ(−2F − L))

��

// Ext2X(OX(−L),Ωπ(−2F ))

��

HomX(OX(−L),E) ⊗ Ext3X(E,OX (2F − 4L)) // Ext3(OX(−L),OX (−2F − 4L))

where the horizontal maps are given by the Yoneda pairing, the left vertical ones
are given by the factorization of the map (21) while the maps in the right vertical
column are obtained by applying HomX(OX(−L),−) to the three exact sequences
above. Since the identity map of OX(−L) is sent to kX via the composition of
vertical maps by construction, it follows that g◦f is sent to the identity of OX(−L)
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via the top horizontal map. This says that OX(−L) is a direct summand of E,
and therefore proves E ≃ OX(−L) by the indecomposability of E.

The proof of ii) is similar, so we only sketch the argument. The strategy this
time is to apply HomX(E,−) to the exact sequences:

0→ OX(−3F − 4L)→ OX(−2F − 4L)⊕2 → OX(−F − 4L)→ 0,

0→ OX(−F − 4L)→ OX(−F − 3L)⊕3 → Ωπ(−1)→ 0,

0→ Ωπ(−1)→ OX(−F − 2L)⊕3 → OX(−1)→ 0,

and to use Serre duality which gives, via the assumption of ii):

Ext3X(E,OX (−2F − 4L)) ≃ H0(E(L))∗ = 0,

Ext2X(E,OX (−F − 3L)) ≃ H1(E(−F ))∗ = 0,

Ext1X(E,OX (−F − 2L)) ≃ H2(E(−1))∗ = 0.

The rest of the proof follows the same pattern as in i). �

6.2. Beilinson-type spectral sequence. We use the derived category D(X) of
bounded complexes of coherent sheaves over the smooth projective variety X, in
order to write the Beilinson-type spectral sequence associated with a coherent
sheaf E on X after fixing a convenient full exceptional sequence in D(X). Indeed,
the point is that the terms of this spectral sequence take a special form when E

is ACM, and this will be our basic tool to classify such sheaves.

6.2.1. Background on exceptional objects and mutations. Let us first recall some
terminology. An object E of D(X) is called exceptional if Ext•X(E,E) = k, concen-
trated in degree zero. An ordered set of exceptional objects (E0, . . . ,Es) is called
an exceptional collection if Ext•X(Ei,Ej) = 0 for i > j. An exceptional collection
is full when Ext•X(Ei,F) = 0 for all i implies F = 0. Equivalently, the collection
is full when Ext•X(F,Ei) = 0 implies F = 0.

Exceptional collections can be mutated, let us recall what that means. Let E

be an exceptional object in D(X). Then there are endofunctors LE and RE of
D(X), called respectively the left and right mutation functors such that, for all F
in D(X) there are functorial distinguished triangles:

LE(F)→ Ext•X(E,F) ⊗ E→ F→ LE(F)[1],

RE(F)[−1]→ F → Ext•X(F,E)∨ ⊗ E→ RE(F).

For all i = 0, . . . , s we define the right and left dual objects:

Ed
i = LE0

LE1
· · ·LEs−i−1

Es−i,

dEi = REs
REs−1

· · ·REs−i+1
Es−i.

It turns out that, if E• = (E0, . . . ,Es) is a full exceptional collection, then both
(Ed

0 , . . . ,E
d
s ) and

dE• = (dE0, . . . ,
dEs) also are full exceptional collections, called
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respectively the right and left dual collections of (E0, . . . ,Es). We refer to [GK04,
§2.6]. The dual collections are characterized by the following property:

(22) ExtℓX(dEi,Ej) ≃ ExtℓX(Ei,E
d
j ) ≃

{

k, if i+ j = s and i = ℓ,
0, otherwise.

Given an object F of D(X) and a full exceptional collection (E0, . . . ,Es), there
is a spectral sequence:

⊕

r+t=q

ExtrX(dEs−p,F)⊗Ht(Ep) = Ep,q
1 ⇒ Hp+q−s(F),

where Hi denotes the i-th homology sheaf of F. This means that, for all (p, q)
such that p+ q 6= s we have Ep,q

∞ = 0, while:
⊕

p+q=s

Ep,q
∞ ≃ gr(F),

where gr(F) denotes the graded object with respect to a filtration of F of the
form:

F = F0 ⊃ F1 ⊃ · · · ⊃ Fs ⊃ Fs+1 = 0, with: Fj/Fj+1 ≃ Ej,s−j
∞ .

The r-th differential of the spectral sequence reads δp,qr : Ep,q
r → Ep+r,q−r+1

r .

6.2.2. An exceptional collection adapted to ACM sheaves. Let us choose a full
exceptional collection over X adapted to the classification of ACM sheaves. Recall
that we denoted by F the divisor class of the P2-bundle map π : X → P1 so that
D(X) has the following semiorthogonal decomposition:

D(X) =〈π∗D(P1)⊗ OX(−2L), π∗D(P1)⊗ OX(−L), π∗D(P1)〉 =

=〈OX(−F − 2L),OX (−2L),OX (−F − L),OX(−L),OX (−F ),OX〉.

Twisting by a line bundle OX(L) and performing a right mutation given by the
Euler sequences on P1, this is replaced by:

D(X) = 〈OX(−L),OX(F − L),OX(−F ),OX ,OX(L− F ),OX (L)〉.

Since OX and OX(L− F ) are mutually orthogonal, mutation gives:

D(X) = 〈(OX (−L),OX(F − L),OX(−F ),OX(L− F ),OX ,OX(L)〉.

Finally, a right mutation given by the Euler sequences on P2 gives the following
full exceptional collection of vector bundles over X.

E• = (OX(−L),OX(F − L),OX(−F ),OX (L− F ),Ωπ(L),OX) .

Setting Tπ = Ω∨
π ≃ Ωπ(3L), we write the left dual of this collection as:

(23) dE• = (OX ,OX(L),OX (1)[1],Tπ(F )[1],OX (F + 2L)[2],OX (2)[2]) ,



22 D. FAENZI, F. MALASPINA, G. SANNA

Note that E1 = OX(F − L) is the Ulrich line bundle L from §5. By Künneth’s
formula one gets another special feature of this collection, namely that:

(24)

HomX(E0,E2) = HomX(E0,E3) = 0,

HomX(E1,Ej) = 0, for j 6= 1,

HomX(E2,E4) = 0,

HomX(E3,E4) = 0.

6.3. Beilinson resolution of non-Ulrich sheaves. Our goal for this subsection
is to prove the next result.

Theorem 6.3. Up to twist by OX(t), an indecomposable ACM bundle F on X is
either isomorphic to OX(−1), or to OX(−L) or to Ωπ(L), or to an Ulrich bundle
U fitting into:

0→ OX(−F )⊕a → U→ OX(F − L)⊕b → 0, for some (a, b) ∈ N2.

The words “up to a twist” have the following more precise meaning: up to
replacing F with F(t) we may assume that h0(F) = 0 and h0(F(1)) 6= 0. Then F

is exactly one of the sheaves appearing in the statement of Theorem 6.3. In other
words, Theorem 6.3 proves Theorem B from the introduction.

We will prove the theorem through several claims. The very first argument is
to use Lemma 6.1. Note that the vanishing conditions appearing in that lemma
are verified for any twist of F since F is ACM, so if there is a twist t ∈ Z such
that H1(F(tH − L)) 6= 0, we will have F(t) ≃ Ωπ(L). Theorem 6.3 is proved in
this case.

Therefore, from now on we may assume H1(F(tH − L)) = 0 for all t ∈ Z. The
next step is to observe that, since F locally free and OX(1) is very ample, there is
a unique t0 ∈ Z such that F(t0) satisfies h

0(F(t0)) = 0 and h0(F(t0 +1)) 6= 0. We
implicitly replace F with F(t0) from now on. In particular we have H0(X,F) = 0.
We put:

ai,j = dimk Ext
i
X(dEj ,F).

Claim 6.4. Let F be as above. Then a1,3 = a2,4 = a2,3 = a3,4 = 0.

Proof. Recall that, in view of Lemma 6.1 we may assume H1(F(−L)) = 0. Let us
summarize the vanishing conditions we have so far by writing down the matrix
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(ai,j). Traditionally one rather writes the table (bi,j) = (a5−i,5−j):

F(−2)[−2] F(−F − 2L)[−2] F ⊗Ωπ(−F )[−1] F(−1)[−1] F(−L) F

a5,5 a5,4 0 0 0 0
0 a4,4 a4,3 a4,2 0 0
0 a3,4 a3,3 0 a3,1 a3,0
0 a2,4 a2,3 0 a2,1 0
0 0 a1,3 0 0 0
0 0 0 0 0 0

OX(−L) OX(F − L) OX(−F ) OX(L− F ) Ωπ(L) OX

This table means that the (p, q)-th term of Ep,q
1 is the direct sum of as many

copies of Ei as the coefficient (bi,j) appearing in the above table. Also, the co-
efficients above are obtained by computing the dimension of the cohomology of
the bundle appearing on the i-th column of the first row, reading cohomological
degree from bottom to top, with a shift indicated by the brackets.

Let us focus on the summand OX(F−L)⊕a2,4 = E1,2
1 . By (24) we have δ1,21 = 0.

Obviously δ1,2r = 0 for r ≥ 2. Also, Ep,q
1 = 0 for p + q ≤ 2, so OX(F − L)⊕a2,4

survives to E1,2
∞ , which in turn is zero because Ep,q

∞ is concentrated at p + q = 5.
Therefore a2,4 = 0. By the same reason we get a1,3 = 0. Summing up, Ep,q

1 = 0
for p+ q ≤ 3.

Let us now look at the summand OX(−F )⊕a2,3 = E2,2
1 . The map δ2,2r is clearly

zero for all r ≥ 1, and since we proved Ep,q
1 = 0 for p+q ≤ 3 we get a2,3 = 0 again

because Ep,q
∞ is concentrated at p + q = 5. The last vanishing a3,4 = 0 follows a

similar pattern. �

In terms of the Beilinson spectral sequence, the previous claim shows Ep,q
1 = 0

for p + q ≤ 4. Because of (24), we have δ2,3r = 0 for all r ≥ 1, so the vanishing

of Ep,q
1 with p+ q ≤ 4 implies that the term OX(−F )⊕a3,3 survives at E2,3

∞ and is
thus a direct summand of gr(F). By the same reason, OX(F −L)⊕a4,4 survives at

E1,4
∞ . This means that the filtration of F induced by the Beilinson-type spectral

sequence takes the form:

0 = F6 ⊂ F5 ⊂ · · · ⊂ F0 = F, with: F5 = F4 = F3 = 0,(25)

F2 ≃ OX(−F )⊕a3,3 ,

F1/F2 ≃ OX(F − L)⊕a4,4 ,

F/F1 ≃ E0,5
∞ .

Our next goal is to compute E0,5
∞ .

Lemma 6.5. There is an exact sequence:

(26) 0→ E0,5
∞ → G→ Ωπ(L)

⊕a2,1 → 0,
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where G is a coherent sheaf on X fitting into a long exact sequence:

0→ G→ Ker(δ0,51 )→ Ker(δ2,41 )→ Ker(δ4,31 )→

→ Coker(δ0,51 )→ Coker(δ2,41 )→ Coker(δ4,31 )→ 0.
(27)

Before going into the proof, let us display the maps δp,q1 we are interested in:

δ0,51 : OX(−L)⊕a5,5 → OX(F − L)⊕a5,4 ,(28)

δ2,41 : OX(−F )⊕a4,3 → OX(L− F )⊕a4,2 ,(29)

δ4,31 : Ωπ(L)
⊕a3,1 → O

⊕a3,0
X .(30)

Proof. We rewrite the cohomology table (bi,j) in view of the vanishing proved in
the previous claim and after removing a3,3 and a4,4 which do not contribute to

E0,5
∞ as we have just seen.

F(−2)[−2] F(−F − 2L)[−2] F ⊗Ωπ(−F )[−1] F(−1)[−1] F(−L) F

a5,5 a5,4 0 0 0 0
0 0 a4,3 a4,2 0 0
0 0 0 0 a3,1 a3,0
0 0 0 0 a2,1 0
0 0 0 0 0 0
0 0 0 0 0 0

OX(−L) OX(F − L) OX(−F ) OX(L− F ) Ωπ(L) OX

In view of this table, we see that the differential δ1 has only three possibly

non-zero terms, namely δ0,51 , δ2,41 and δ4,31 . So Ep,q
2 differs from Ep,q

1 only when
(p, q) equals (0, 5), (1, 5), (2, 4), (3, 4), (4, 3) and (5, 3), and we get:

E0,5
2 ≃ ker(δ0,51 ), E1,5

2 ≃ Coker(δ0,51 ),

E2,4
2 ≃ ker(δ2,41 ), E3,4

2 ≃ Coker(δ2,41 ),

E4,3
2 ≃ ker(δ4,31 ), E5,3

2 ≃ Coker(δ4,31 ).

Now, since Ep,q
∞ is concentrated at p+ q = 5, we realize that actually E5,3

3 = 0

so the map δ3,42 : E3,4
2 → E5,3

2 is surjective and actually also E3,4
3 = 0, hence the

kernel of δ3,42 is the image of δ0,52 . We have thus proved the second line of (27).
By the same reason we have the exactness of the sequence:

(31) Ker(δ0,51 )→ Ker(δ2,41 )→ Ker(δ4,31 ),

where the maps are just δ0,52 and δ2,42 .
This completes the analysis of the second page. We turn now to E3. Note

that E1,5
3 ≃ Ker(δ1,52 ) is the kernel of the map δ1,52 : Coker(δ0,51 ) → Coker(δ2,41 )

appearing in (27). Similarly E4,3
3 ≃ Coker(δ2,42 ) is the cokernel of the map δ2,42 :

Ker(δ2,41 ) → Ker(δ4,31 ) showing up in (31). Since E1,5
4 = E4,3

4 = 0, δ1,53 gives
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an isomorphism of E1,5
3 to E4,3

3 , hence the exactness of (27) is proved at the
connecting map between the two rows.

Finally E0,5
3 ≃ Ker(δ0,52 ) is the kernel G of the first map appearing in (31)

and clearly E0,5
3 ≃ E0,5

4 . The map δ0,54 thus sends this kernel surjectively onto

E4,2
4 ≃ Ωπ(L)

⊕a2,1 , with kernel E0,5
5 ≃ E0,5

∞ . The lemma is thus proved. �

Lemma 6.6. In the previous setting, we have:

Ext1X(G,OX(F − L)) = Ext1X(G,OX (−F )) = 0.

Proof. We use the exact sequence (27). Indeed, let N be one of the two line
bundles OX(F − L) or OX(−F ) and apply HomX(−,N) to (27). Set Gi for the

image of the i-th map δ2i−2,6−i
2 of (27). Then our statement is proved if we show

that:

(32) ExtiX(Ker(δ2i−2,6−i
1 ),N) = 0, for i = 1, 2, 3.

Indeed, this would imply Exti+1
X (Gi,N) = 0 for i = 1, 2 which in turn would give

Ext1X(G,N) = 0, which is our statement.
To check (32) we look more closely at the defining maps (28), (29) and (30).

For i = 1, we note that (28) is constant along the factor P2 of the product

X ≃ P1 × P2 so ker(δ0,51 ) is the pull-back to X of a torsion-free sheaf on P1,
twisted by OX(−L). Such sheaf is then locally free on P1 and therefore splits as
a direct sum of line bundles. Actually, the form of (28) implies that there are
integers cj , one for each j ∈ N (with only finitely many values of j ∈ N satisfying
cj 6= 0) such that:

ker(δ0,51 ) ≃
⊕

j∈N

OX(−L− jF )⊕cj .

It follows plainly that Ext1X(ker(δ0,51 ),N) = 0 for our choices of N.

For i = 2, applying a similar argument to (29) we get that there exists a
torsion-free sheaf V on P2 such that:

(33) ker(δ2,41 ) ≃ σ∗(V) ⊗ OX(−F ), H0(P2,V(−1)) = 0.

Therefore, by Künneth’s formula we have:

Ext2X(ker(δ2,41 ),OX (F − L)) ≃ Ext2
P2(V,OP2(−1))⊗H0(P1,OP1(1)),

which vanishes because Serre duality and (33) imply:

Ext2
P2(V,OP2(−1)) ≃ HomP2(OP2 ,V(−2))∨ = 0.

The vanishing for N = OX(−F ) is clear.

For i = 3, again looking at (30) we get a torsion-free sheaf W on P2 such that:

(34) ker(δ4,31 ) ≃ σ∗(W).

This time Künneth’s formula provides Ext3X(ker(δ4,31 ),N) = 0 immediately. �
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Lemma 6.7. For any sheaf U which is an extension of copies of OX(F −L) and

OX(−F ), we have Ext1X(E0,5
∞ ,U) = 0.

Proof. Clearly, it suffices to check that Ext1X(E0,5
∞ ,N) = 0, with N = OX(−F )

and N = OX(F −L). According to Lemma 6.5, we need to check Ext1X(G,N) = 0
and Ext2X(Ωπ(L),N) = 0. The first vanishing comes from the previous lemma
and the second one is straightforward. �

Now comes the key point. Indeed, the sheaf F1 taken from the filtration (25) is
an Ulrich sheaf of the form U as in the previous lemma. Therefore, F is the direct

sum of E0,5
∞ and F1. But F is indecomposable, hence either F1 = 0 and F ≃ E0,5

∞ ,
or F ≃ U. In the latter case Theorem 6.3 is proved, so it remains to analyze the
former one. So we assume from now on F ≃ E0,5

∞ .

Lemma 6.8. The sheaf F ≃ E0,5
∞ is isomorphic to OX(−L) or OX(−1).

Proof. Since F ≃ E0,5
∞ we have a3,3 = a4,4 = 0 so the cohomology table (bi,j) looks

as in the proof of Lemma 6.5. We argue now on whether H0(F(L)) is zero or not.
If H0(F(L)) 6= 0, looking at the cohomology table of F we see that H1(F(−L)) =

H2(F(−F −2L)) = 0, and because we are assuming H0(F) = 0, we have that item
i) of Lemma 6.2 applies to give F ≃ OX(−L).

If H0(F(L)) = 0, we use once more the vertical Euler sequence, in the form:

0→ Ωπ(−F )→ OX(−1)⊕3 → OX(−F )→ 0.

We tensor this sequence with F and take cohomology. From the cohomology table
of F we extract H2(F ⊗ Ωπ(−F )) = 0, which combined with the fact that F is
ACM gives H1(F(−F )) = 0. Also, of course H2(F(−1)) = 0, while H0(F(1)) 6= 0
by assumption. Therefore, item ii) of Lemma 6.2 applies and shows F ≃ OX(−1).

�

This completes the proof of Theorem 6.3.

6.3.1. Proof of Corollaries C and D. The proof of Corollary C goes as follows.
Set u(t) = 1

2
(t + 2)(t + 1)t and note that u is the reduced Hilbert polynomial of

an Ulrich sheaf on X initialized by t = 1.
Let F be a semistable ACM bundle on X. According to Theorem B, for each

indecomposable direct summand G of the graded bundle gr(F) provided by a
Jordan-Hölder filtration of F, there is some s ∈ Z such that H0(G(s)) = 0 and
H0(G(s+1)) 6= 0, so G(s) is one of the sheaves appearing in the next table, where
the reduced Hilbert polynomial is also shown:

G OX(−F ) OX(F − L) Ωπ(L) OX OX(−L)
p(G(s)) u(t) u(t) u(t) 1

2
(t+ 2)(t+ 1)2 1

2
(t+ 1)2t

Note that these polynomials are pairwise distinct, even upon replacing t by t+s
for any s ∈ Z. Therefore, there is a fixed s ∈ Z such that either all the summands
G(s+ 1) are Ulrich bundles (in which case the summands G(s) are isomorphic to
OX(−F ) or OX(F − L) or Ωπ(L)), either all summands G(s) are isomorphic to
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OX , or finally they are isomorphic to OX(−L). In the last two cases G(s) is itself
a trivial bundle or a direct sum of copies of OX(−L). In the first case the graded
bundle gr(F(−s)) is of the form:

OX(−F )⊕a ⊕ OX(F − L)⊕b ⊕ Ωπ(L)
⊕c,

for some integers (a, b, c). Note that there are finitely many ways to choose a, b, c
in the above display while keeping the Hilbert polynomial unchanged. This shows
that the moduli space of semistable ACM bundles with fixed Hilbert polynomial
is a finite set. Corollary C is proved.

For the proof of Corollary D, we construct the bundles Uk by mutation. Put:

U−1 = OX(−F ),

U0 = OX(F − L),

U1 = LU0
U−1[1], Uk+1 = LUk

Uk−1, for k ≥ 1,

U−2 = RU
−1
U0[−1], U−k−2 = RU

−k−1
U−k for k ≥ 1.

The fact that the objects Uk are exceptional sheaves having a resolution of the
desired form follows as in [FM17, Theorem B].

By Theorem B, any indecomposable rigid ACM bundle on X must be, up to
a twist, isomorphic to OX(−1), OX(−L) or Ωπ(L) or a rigid Ulrich bundle of the
form (1). In turn, again as in [FM17, Theorem B] we have that a rigid sheaf
appearing as the middle term of (1) must be isomorphic to Uk for some k ∈ Z,
with (a, b) = (ck−1, ck). Moreover the equality (a, b) = (ck−1, ck) determines the
rigid bundle Uk uniquely.

Finally, given k ∈ Z, since U∨
k ⊗ ωX(2) is a rigid Ulrich bundle which fits as

middle term of an extension of the form (1) with the same values of a and b as
U1−k, by the uniqueness argument for the rigid bundles Uk (cf. again [FM17, §2])
we must have U1−k ≃ U∨

k ⊗ ωX(2). This concludes the proof of Corollary D.
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[MR13] Rosa Maria Miró-Roig, The representation type of rational normal scrolls, Rend.
Circ. Mat. Palermo (2) 62 (2013), no. 1, 153–164.
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Université de Bourgogne et Franche-Comté,
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