M. Heun, R. Schäfer-pregl, D. Klawan, R. Castagna, M. Accerbi et al., Site of einkorn wheat domestication identified by DNA fingerprinting, Science, vol.278, pp.1312-1314, 1997.

F. Salamini, H. Ozkan, A. Brandolini, R. Schäfer-pregl, and W. Martin, Genetics and geography of wild cereal domestication in the Near East, Nat. Rev. Genet, vol.3, pp.429-441, 2002.

A. P. Bonjean and W. J. Angus, The World Wheat Book: A History of Wheat Breeding, 2001.

P. S. Baenziger, W. K. Russell, G. L. Graef, and B. T. Campbell, Improving lives, Crop. Sci, vol.46, pp.2230-2244, 2006.

F. Balfourier, V. Roussel, P. Strelchenko, F. Exbrayat-vinson, P. Sourdille et al., A worldwide bread wheat core collection arrayed in a 384-well plate, Theor. Appl. Genet, vol.114, pp.1265-1275, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00964182

H. Rimbert, B. Darrier, J. Navarro, J. Kitt, F. Choulet et al.,

A. The-breedwheat-consortium, F. Davassi, M. C. Balfourier, A. Le-paslier, D. Berard et al., High throughput SNP discovery and genotyping in hexaploid wheat, PLOS ONE, vol.13, p.186329, 2018.

R. Appels, K. Eversole, N. Stein, C. Feuillet, B. Keller et al., Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence, vol.361, p.7191, 2018.

K. Jordan, S. Wang, Y. Lun, L. Gardiner, R. Maclachlan et al., A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes, Genome Biol, vol.16, p.48, 2015.

S. Wang, D. Wong, K. Forrest, A. Allen, S. Chao et al., Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array, vol.12, pp.787-796, 2014.

J. Lachance and S. A. Tishkoff, SNP ascertainment bias in population genetic analyses: Why it is important, and how to correct it, Bioessays, vol.35, pp.780-786, 2013.

Z. H. He, S. Rajaram, Z. Y. Xin, and G. Z. Huang, A History of Wheat Breeding in China, 2001.

S. Salvi, O. Porfiri, and S. Ceccarelli, Nazareno Strampelli, the 'Prophet' of the green revolution, J. Agric. Sci, vol.151, pp.1-5, 2013.

C. Hao, Y. Wang, S. Chao, T. Li, H. Liu et al., The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat, Sci. Rep, vol.7, p.41247, 2017.

A. Betts, P. W. Jia, and J. Dodson, The origins of wheat in China and potential pathways for its introduction: A review, Quat. Int, vol.348, pp.158-168, 2014.

H. Tsujimoto, T. Yamada, and T. Sasakuma, Pedigree of common wheat in East Asia deduced from distribution of the gametocidal inhibitor gene (Igc1) and ?-amylase isozymes, Jpn. J. of Breed, vol.48, pp.287-291, 1998.

Y. Zhou, Z. Chen, M. Cheng, J. Chen, T. Zhu et al., Uncovering the dispersion history, adaptive evolution and selection of wheat in China, Plant Biotechnol. J, vol.16, pp.280-291, 2018.

A. L. Olmstead and P. W. Rhode, Adapting North American wheat production to climatic challenges, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.480-485, 2011.

Q. M. Paulsen and J. P. Shroyer, The early history of wheat improvement in the Great Plains, Agron. J, vol.100, p.70, 2008.

R. Joukhadar, H. D. Daetwyler, U. K. Bansal, A. R. Gendall, and M. J. Hayden, Genetic diversity, population structure and ancestral origin of Australian wheat, Front. Plant Sci, vol.8, p.2115, 2017.

J. P. Didion, H. Yang, K. Sheppard, C. Fu, L. Mcmillan et al., Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias, BMC Genomics, vol.13, p.34, 2012.

R. Hajjar and T. Hodgkin, The use of wild relatives in crop improvement: A survey of developments over the last 20 years, Euphytica, vol.156, pp.1-13, 2007.

X. Cai and D. Liu, Identification of a 1B/1R wheat-rye chromosome translocation, Theor. Appl. Genet, vol.77, pp.81-83, 1989.

M. Helguera, I. A. Khan, J. Kolmer, D. Lijavetzky, L. Zhong-qi et al., PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines, Crop. Sci, vol.43, pp.1839-1847, 2003.

V. Kuraparthy, P. Chhuneja, H. S. Dhaliwal, S. Kaur, R. L. Bowden et al., Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat, Theor. Appl. Genet, vol.114, pp.1379-1389, 2007.

B. B. Wulff and M. J. Moscou, Strategies for transferring resistance into wheat: From wide crosses to GM cassettes, Front. Plant Sci, vol.5, p.692, 2014.

S. D. Tanksley and S. R. Mccouch, Seed banks and molecular maps: Unlocking genetic potential from the wild, Science, vol.277, pp.1063-1066, 1997.

P. Hedden, The genes of the Green Revolution, Trends Genet, vol.19, pp.5-9, 2003.

N. Rawat, M. O. Pumphrey, S. Liu, X. Zhang, V. K. Tiwari et al., Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight, Nat. Genet, vol.48, pp.1576-1580, 2016.

A. A. Golicz, J. Batley, and D. Edwards, Towards plant pangenomics, Plant Biotechnol. J, vol.14, pp.1099-1105, 2016.

R. K. Saxena, D. Edwards, and R. K. Varshney, Structural variations in plant genomes, Brief. Funct. Genomics, vol.13, pp.296-307, 2014.

H. Tettelin, D. Riley, C. Cattuto, and D. Medini, Comparative genomics: The bacterial pan-genome, Curr. Opin. Microbiol, vol.11, pp.472-477, 2008.

J. D. Montenegro, A. A. Golicz, P. E. Bayer, B. Hurgobin, H. Lee et al., The pangenome of hexaploid bread wheat, Plant J, vol.90, pp.1007-1013, 2017.

J. C. Barrett, B. Fry, J. Maller, and M. J. Daly, Haploview: Analysis and visualization of LD and haplotype maps, Bioinformatics, vol.21, pp.263-265, 2005.

S. Purcell, B. Neale, K. Todd-brown, L. Thomas, M. A. Ferreira et al., PLINK: A tool set for whole-genome association and population-based linkage analyses, Am. J. Hum. Genet, vol.81, pp.559-575, 2007.

J. K. Pritchard, M. Stephens, and P. Donnelly, Inference of population structure using multilocus genotype data, Genetics, vol.155, pp.945-459, 2000.

D. Falush, M. Stephens, and J. K. Pritchard, Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies, Genetics, vol.164, pp.1567-1587, 2003.

B. S. Weir and C. C. Cockerham, Estimating F-statistics for the analysis of population structure, Evolution, vol.38, pp.1358-1370, 1984.

J. Goudet, hierfstat, a package for r to compute and test hierarchical F-statistics, Mol. Ecol. Notes, vol.5, p.184, 2005.

N. Cressie, Statistics for Spatial Data, 1993.

K. Caye, F. Jay, O. Michel, and O. Francois, Fast inference of individual admixture coefficients using geographic data, Ann. Appl. Stat, vol.12, pp.586-608, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01676712

U. Bethesda, . Urgi, . Inra, . Versailles, ). France et al., Funding: The research leading to these results have received funding from the French Government managed by the Research National Agency (ANR) under the Investment for the Future program (BreedWheat project ANR-10-BTBR-03), from FranceAgriMer, French funds to support plant breeding (FSOV) from Région Auvergne, and from INRA. R.D.O. was funded by a grant from the French Ministry for Research, France) for providing seeds and to M. Alaux and T. Letellier (URGI, INRA

, , 2019.

, Worldwide phylogeography and history of wheat genetic diversity International Wheat Genome Sequencing Consortium, BreedWheat Consortium and Etienne Paux François Balfourier, Sophie Bouchet, p.536

, Sci Adv REFERENCES

, This article cites 37 articles, 6 of which you can access for free