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Abstract
Spatial constraint systems (scs) are semantic structures for reasoning about spatial and epistemic
information in concurrent systems. We develop the theory of scs to reason about the distributed
information of potentially infinite groups. We characterize the notion of distributed information of a
group of agents as the infimum of the set of join-preserving functions that represent the spaces of
the agents in the group. We provide an alternative characterization of this notion as the greatest
family of join-preserving functions that satisfy certain basic properties. We show compositionality
results for these characterizations and conditions under which information that can be obtained
by an infinite group can also be obtained by a finite group. Finally, we provide algorithms that
compute the distributive group information of finite groups.
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1 Introduction

In current distributed systems such as social networks, actors behave more as members of a
certain group than as isolated individuals. Information, opinions, and beliefs of a particular
actor are frequently the result of an evolving process of interchanges with other actors in a
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25:2 Reasoning about Distributed Knowledge with Infinitely Many Agents

group. This suggests a reified notion of group as a single actor operating within the context
of the collective information of its members. It also conveys two notions of information, one
spatial and the other epistemic. In the former, information is localized in compartments
associated with a user or group. In the latter, it refers to something known or believed by a
single agent or collectively by a group.

In this paper we pursue the development of a principled account of a reified notion of
group by taking inspiration from the epistemic notion of distributed knowledge [12]. A group
has its information distributed among its member agents. We thus develop a theory about
what exactly is the information available to agents as a group when considering all that is
distributed among its members.

In our account a group acts itself as an agent carrying the collective information of its
members. We can interrogate, for instance, whether there is a potential contradiction or
unwanted distributed information that a group might be involved in among its members
or by integrating a certain agent. This is a fundamental question since it may predict or
prevent potentially dangerous evolutions of the system.

Furthermore, in many real life multi-agent systems, the agents are unknown in advance.
New agents can subscribe to the system in unpredictable ways. Thus, there is usually no
a-priori bound on the number of agents in the system. It is then often convenient to model
the group of agents as an infinite set. In fact, in models from economics and epistemic
logic [14, 13], groups of agents have been represented as infinite, even uncountable, sets. In
accordance with this fact, in this paper we consider that groups of agents can also be infinite.
This raises interesting issues about the distributed information of such groups. In particular,
that of group compactness: information that when obtained by an infinite group can also be
obtained by one of its finite subgroups. We will provide conditions for this to hold.

Context. Constraint systems (cs)1 are algebraic structures for the semantics of process
calculi from concurrent constraint programming (ccp) [18]. In this paper we shall study cs
as semantic structures for distributed information of a group of agents.

A cs can be formalized as a complete lattice (Con,v). The elements of Con represent
partial information and we shall think of them as being assertions. They are traditionally
referred to as constraints since they naturally express partial information (e.g., x > 42). The
order v corresponds to entailment between constraints, c v d, often written d w c, means c
can be derived from d, or that d represents as much information as c. The join t, the bottom
true, and the top false of the lattice correspond to conjunction, the empty information, and
the join of all (possibly inconsistent) information, respectively.

The notion of computational space and the epistemic notion of belief in the spatial ccp
(sccp) process calculi [15] is represented as a family of join-preserving maps si : Con→ Con
called space functions. A cs equipped with space functions is called a spatial constraint
system (scs). From a computational point of view si(c) can be interpreted as an assertion
specifying that c resides within the space of agent i. From an epistemic point of view, si(c)
specifies that i considers c to be true. An alternative epistemic view is that i interprets c as
si(c). All these interpretations convey the idea of c being local or subjective to agent i.

This work. In the spatial ccp process calculus sccp [15], scs are used to specify the
spatial distribution of information in configurations 〈P, c〉 where P is a process and c is a
constraint, called the store, representing the current partial information. E.g., a reduction
〈 P, s1(a) t s2(b) 〉 −→ 〈 Q, s1(a) t s2(b t c) 〉 means that P , with a in the space of agent 1
and b in the space of agent 2, can evolve to Q while adding c to the space of agent 2.

1 For simplicity we use cs for both constraint system and its plural form.
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Given the above reduction, assume that d is some piece of information resulting from the
combination (join) of the three constraints above, i.e., d = atbtc, but strictly above the join
of any two of them. We are then in the situation where neither agent has d in their spaces,
but as a group they could potentially have d by combining their information. Intuitively, d is
distributed in the spaces of the group I = {1, 2}. Being able to predict the information that
agents 1 and 2 may derive as group is a relevant issue in multi-agent concurrent systems,
particularly if d represents unwanted or conflicting information (e.g., d = false).

In this work we introduce the theory of group space functions ∆I : Con→ Con to reason
about information distributed among the members of a potentially infinite group I. We shall
refer to ∆I as the distributed space of group I. In our theory c w ∆I(e) holds exactly when
we can derive from c that e is distributed among the agents in I. E.g., for d above, we should
have s1(a) t s2(b t c) w ∆{1,2}(d) meaning that from the information s1(a) t s2(b t c) we
can derive that d is distributed among the group I = {1, 2}. Furthermore, ∆I(e) w ∆J(e)
holds whenever I ⊆ J since if e is distributed among a group I, it should also be distributed
in a group that includes the agents of I.

Distributed information of infinite groups can be used to reason about multi-agent
computations with unboundedly many agents. For example, a computation in sccp is a
possibly infinite reduction sequence γ of the form 〈 P0, c0 〉 −→ 〈 P1, c1 〉 −→ · · · with
c0 v c1 v · · · . The result of γ is

⊔
n≥0 cn, the join of all the stores in the computation.

In sccp all fair computations from a configuration have the same result [15]. Thus, the
observable behaviour of P with initial store c, written O(P, c), is defined as the result of
any fair computation starting from 〈P, c〉. Now consider a setting where in addition to their
sccp capabilities in [15], processes can also create new agents. Hence, unboundedly many
agents, say agents 1, 2, . . ., may be created during an infinite computation. In this case,
O(P, c) w ∆N(false), where N is the set of natural numbers, would imply that some (finite
or infinite) set of agents in any fair computation from 〈P, c〉 may reach contradictory local
information among them. Notice that from the above-mentioned properties of distributed
spaces, the existence of a finite set of agents H ⊆ N such that O(P, c) w ∆H(false) implies
O(P, c) w ∆N(false). The converse of this implication will be called group compactness and
we will provide meaningful sufficient conditions for it to hold.

Our main contributions are listed below.
1. We characterize the distributed space ∆I as a space function resulting from the infimum

of the set of join-preserving functions that represent the spaces of the agents of a possibly
infinite group I.

2. We provide an alternative characterization of a distributed space as the greatest join
preserving function that satisfies certain basic properties.

3. We show that distributed spaces have an inherent compositional nature: The information
of a group is determined by that of its subgroups.

4. We provide a group compactness result for groups: Given an infinite group I, meaningful
conditions under which c w ∆I(e) implies c w ∆J(e) for some finite group J ⊆ I.

5. For finite scs we shall provide algorithms to compute ∆I that exploit the above-mentioned
compositional nature of distributed spaces.

All in all, in this paper we put forward an algebraic theory for group reasoning in the context
of ccp. The theory and algorithms here developed can be used in the semantics of the
spatial ccp process calculus to reason about or prevent potential unwanted evolutions of ccp
processes. One could imagine the incorporation of group reasoning in a variety of process
algebraic settings and indeed we expect that such formalisms will appear in due course.
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25:4 Reasoning about Distributed Knowledge with Infinitely Many Agents

2 Background

We presuppose basic knowledge of domain and order theory [3, 1, 6] and use the following
notions. Let C be a poset (Con,v), and let S ⊆ Con. We use

⊔
S to denote the least

upper bound (or supremum or join) of the elements in S, and
d
S is the greatest lower

bound (glb) (infimum or meet) of the elements in S. An element e ∈ S is the greatest
element of S iff for every element e′ ∈ S, e′ v e. If such e exists, we denote it by max S.
As usual, if S = {c, d}, c t d and c u d represent

⊔
S and

d
S, respectively. If S = ∅, we

denote
⊔
S = true and

d
S = false. We say that C is a complete lattice iff each subset

of Con has a supremum in Con. The poset C is distributive iff for every a, b, c ∈ Con,
a t (b u c) = (a t b) u (a t c). A non-empty set S ⊆ Con is directed iff for every pair of
elements x, y ∈ S, there exists z ∈ S such that x v z and y v z, or iff every finite subset
of S has an upper bound in S. Also c ∈ Con is compact iff for any directed subset D of
Con, c v

⊔
D implies c v d for some d ∈ D. A self-map on Con is a function f from Con to

Con. Let (Con,v) be a complete lattice. The self-map f on Con preserves the join of a set
S ⊆ Con iff f(

⊔
S) =

⊔
{f(c) | c ∈ S}. A self-map that preserves the join of finite sets is

called join-homomorphism. A self-map f on Con is monotonic if a v b implies f(a) v f(b).
We say that f distributes over joins (or that f preserves joins) iff it preserves the join of
arbitrary sets. A self-map f on Con is continuous iff it preserves the join of any directed set.

3 Spatial Constraint Systems

Constraint systems [18] are semantic structures to specify partial information. They can be
formalized as complete lattices [2].

I Definition 1 (Constraint Systems [2]). A constraint system (cs) C is a complete lattice
(Con,v). The elements of Con are called constraints. The symbols t, true and false will be
used to denote the least upper bound (lub) operation, the bottom, and the top element of C.

The elements of the lattice, the constraints, represent (partial) information. A constraint
c can be viewed as an assertion. The lattice order v is meant to capture entailment of
information: c v d, alternatively written d w c, means that the assertion d represents at
least as much information as c. We think of d w c as saying that d entails c or that c can
be derived from d. The operator t represents join of information; c t d can be seen as an
assertion stating that both c and d hold. We can think of t as representing conjunction
of assertions. The top element represents the join of all, possibly inconsistent, information,
hence it is referred to as false. The bottom element true represents empty information. We
say that c is consistent if c 6= false, otherwise we say that c is inconsistent. Similarly, we say
that c is consistent/inconsistent with d if c t d is consistent/inconsistent.

Constraint Frames. One can define a general form of implication by adapting the
corresponding notion from Heyting Algebras to cs. A Heyting implication c → d in our
setting corresponds to the weakest constraint one needs to join c with to derive d.

I Definition 2 (Constraint Frames [7]). A constraint system (Con,v) is said to be a constraint
frame iff its joins distribute over arbitrary meets. More precisely, c t

d
S =

d
{c t e | e ∈ S}

for every c ∈ Con and S ⊆ Con. Define c→ d as
d
{e ∈ Con | c t e w d}.

The following properties of Heyting implication correspond to standard logical properties
(with →, t, and w interpreted as implication, conjunction, and entailment).

I Proposition 3 ([7]). Let (Con,v) be a constraint frame. For every c, d, e ∈ Con the
following holds: (1) c t (c→ d) = c t d, (2) (c→ d) v d, (3) c→ d = true iff c w d.
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Spatial Constraint Systems. The authors of [15] extended the notion of cs to account
for distributed and multi-agent scenarios with a finite number of agents, each having their
own space for local information and their computations. The extended structures are called
spatial cs (scs). Here we adapt scs to reason about possibly infinite groups of agents.

A group G is a set of agents. Each i ∈ G has a space function si : Con→ Con satisfying
some structural conditions. Recall that constraints can be viewed as assertions. Thus given
c ∈ Con, we can then think of the constraint si(c) as an assertion stating that c is a piece of
information residing within a space of agent i. Some alternative epistemic interpretations of
si(c) is that it is an assertion stating that agent i believes c, that c holds within the space of
agent i, or that agent i interprets c as si(c). All these interpretations convey the idea that c
is local or subjective to agent i.

In [15] scs are used to specify the spatial distribution of information in configurations
〈P, c〉 where P is a process and c is a constraint. E.g., a reduction 〈 P, si(c) t sj(d) 〉 −→
〈 Q, si(c) t sj(d t e) 〉 means that P with c in the space of agent i and d in the space of
agent j can evolve to Q while adding e to the space of agent j.

We now introduce the notion of space function.

I Definition 4 (Space Functions). A space function over a cs (Con,v) is a continuous self-
map f : Con→ Con s.t. for every c, d ∈ Con (S.1) f(true) = true, (S.2) f(ctd) = f(c)tf(d).
We shall use S(C) to denote the set of all space functions over C = (Con,v).

The assertion f(c) can be viewed as saying that c is in the space represented by f .
Property S.1 states that having an empty local space amounts to nothing. Property S.2
allows us to join and distribute the information in the space represented by f .

In [15] space functions were not required to be continuous. Nevertheless, we will argue
later, in Remark 17, that continuity comes naturally in the intended phenomena we wish
to capture: modelling information of possibly infinite groups. In fact, in [15] scs could only
have finitely many agents.

In this work we also extend scs to allow arbitrary, possibly infinite, sets of agents. A
spatial cs is a cs with a possibly infinite group of agents each having a space function.

I Definition 5 (Spatial Constraint Systems). A spatial cs (scs) is a cs C = (Con,v) equipped
with a possibly infinite tuple s = (si)i∈G of space functions from S(C).

We shall use (Con,v, (si)i∈G) to denote an scs with a tuple (si)i∈G. We refer to G and
s as the group of agents and space tuple of C and to each si as the space function in C of
agent i. Subsets of G are also referred to as groups of agents (or sub-groups of G).

Let us illustrate a simple scs that will be used throughout the paper.

I Example 6. The scs (Con,v, (si)i∈{1,2}) in Fig.1 is given by the complete lattice M2 and
two agents. We have Con = {p ∨ ¬p, p,¬p, p ∧ ¬p} and c v d iff c is a logical consequence of
d. The top element false is p ∧ ¬p, the bottom element true is p ∨ ¬p, and the constraints p
and ¬p are incomparable with each other. The set of agents is {1, 2} with space functions s1
and s2: For agent 1, s1(p) = ¬p, s1(¬p) = p, s1(false) = false, s1(true) = true, and for agent
2, s2(p) = false = s2 (false), s2(¬p) = ¬p, s2(true) = true. The intuition is that the agent 2
sees no difference between p and false while agent 1 interprets ¬p as p and vice versa.

More involved examples of scs include meaningful families of structures from logic and
economics such as Kripke structures and Aumann structures (see [15]). We illustrate scs
with infinite groups in the next section.

CONCUR 2019



25:6 Reasoning about Distributed Knowledge with Infinitely Many Agents

p ∨ ¬p

p ¬p

p ∧ ¬p

s1

s1

s1

s1 s2

s2

s2

s2

Figure 1 Cs given by lattice M2 ordered by implication and space functions s1 and s2.

4 Distributed Information

In this section we characterize the notion of collective information of a group of agents.
Roughly speaking, the distributed (or collective) information of a group I is the join of each
piece of information that resides in the space of some i ∈ I. The distributed information of I
w.r.t. c is the distributive information of I that can be derived from c. We wish to formalize
whether a given e can be derived from the collective information of the group I w.r.t. c.

The following examples, which we will use throughout this section, illustrate the above
intuition.

I Example 7. Consider an scs (Con,v, (si)i∈G) where G = N and (Con,v) is a constraint
frame. Let c def= s1(a) t s2(a→ b) t s3(b→ e). The constraint c specifies the situation where
a, a→ b and b→ e are in the spaces of agent 1, 2 and 3, respectively. Neither agent necessarily
holds e in their space in c. Nevertheless, the information e can be derived from the collective
information of the three agents w.r.t. c, since from Prop.3 we have at (a→ b)t (b→ e) w e.
Let us now consider an example with infinitely many agents. Let c′ def=

⊔
i∈N si(ai) for some

increasing chain a0 v a1 v . . . . Take e′ s.t. e′ v
⊔

i∈N ai. Notice that unless e′ is compact
(see Section 2), it may be the case that no agent i ∈ N holds e′ in their space; e.g., if e′ A ai

for any i ∈ N. Yet, from our assumption, e′ can be derived from the collective information
w.r.t. c′ of all the agents in N, i.e.,

⊔
i∈N ai.

The above example may suggest that the distributed information can be obtained by
joining individual local information derived from c. Individual information of an agent i can
be characterized as the i-projection of c defined thus:

I Definition 8 (Agent and Join Projections). Let C = (Con,v, (si)i∈G) be an scs. Given
i ∈ G, the i-agent projection of c ∈ Con is defined as πi(c)

def=
⊔
{e | c w si(e)}. We say that

e is i-agent derivable from c iff πi(c) w e. Given I ⊆ G the I-join projection of a group
I of c is defined as πI(c) def=

⊔
{πi(c) | i ∈ I}. We say that e is I-join derivable from c iff

πI(c) w e.

The i-projection of an agent i of c naturally represents the join of all the information of
agent i in c. The I-join projection of group I joins individual i-projections of c for i ∈ I. This
projection can be used as a sound mechanism for reasoning about distributed-information: If
e is I-join derivable from c then it follows from the distributed-information of I w.r.t. c.

I Example 9. Let c be as in Ex.7. We have π1(c) w a, π2(c) w (a → b), π3(c) w (b → e).
Indeed e is I-join derivable from c since π{1,2,3}(c) = π1(c) t π2(c) t π3(c) w e. Similarly we
conclude that e′ is I-join derivable from c′ in Ex.7 since πN(c′) =

⊔
i∈N πi(c) w

⊔
i∈N ai w e′.
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Nevertheless, I-join projections do not provide a complete mechanism for reasoning about
distributed information as illustrated below.

I Example 10. Let d def= s1(b) u s2(b). Recall that we think of t and u as conjunction and
disjunction of assertions: d specifies that b is present in the space of agent 1 or in the space of
agent 2 though not exactly in which one. Thus from d we should be able to conclude that b
belongs to the space of some agent in {1, 2}. Nevertheless, in general b is not I-join derivable
from d since from π{1,2}(d) = π1(d)tπ2(d) we cannot, in general, derive b. To see this consider
the scs in Fig.2a and take b = ¬p. We have π{1,2}(d) = π1(d)tπ2(d) = truet true = true 6w b.
One can generalize the example to infinitely many agents: Consider the scs in Ex.7. Let
d′

def=
d

i∈N si(b′). We should be able to conclude from d′ that b′ is in the space of some agent
in N but, in general, b′ is not N-join derivable from d′.

4.1 Distributed Spaces
In the previous section we illustrated that the I-join projection of c, πI(c), the join of
individual projections, may not project all distributed information of a group I. To solve
this problem we shall develop the notion of I-group projection of c, written as ΠI(c). To do
this we shall first define a space function ∆I called the distributed space of group I. The
function ∆I can be thought of as a virtual space including all the information that can be in
the space of a member of I. We shall then define an I-projection ΠI in terms of ∆I much
like πi is defined in terms of si.

Recall that S(C) denotes the set of all space functions over a cs C. For notational
convenience, we shall use (fI)I⊆G to denote the tuple (fI)I∈P(G) of elements of S(C).

Set of Space Functions. We begin by introducing a new partial order induced by C. The
set of space functions ordered point-wise.

I Definition 11 (Space Functions Order). Let C = (Con,v, (si)i∈G) be an scs. Given
f, g ∈ S(C), define f vs g iff f(c) v g(c) for every c ∈ Con. We shall use Cs to denote the
partial order (S(C),vs); the set of all space functions ordered by vs.

A very important fact for the design of our structure is that the set of space functions
S(C) can be made into a complete lattice.

I Lemma 12. Let C = (Con,v, (si)i∈G) be an scs. Then Cs is a complete lattice.

4.2 Distributed Spaces as Maximum Spaces.
Let us consider the lattice of space functions Cs = (S(C),vs). Suppose that f and g are
space functions in Cs with f vs g. Intuitively, every piece of information c in the space
represented by g is also in the space represented by f since f(c) v g(c) for every c ∈ Con.
This can be interpreted as saying that the space represented by g is included in the space
represented by f ; in other words the bigger the space, the smaller the function that represents
it in the lattice Cs.

Following the above intuition, the order relation vs of Cs represents (reverse) space
inclusion and the join and meet operations in Cs represent intersection and union of spaces.
The biggest and the smallest spaces are represented by the bottom and the top elements of
the lattice Cs, here called λ⊥ and λ> and defined as follows.

I Definition 13 (Top and Bottom Spaces). For every c ∈ Con, define λ⊥(c) def= true,
λ>(c) def= true if c = true and λ>(c) def= false if c 6= true.

CONCUR 2019
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p ∨ ¬p

p ¬p

p ∧ ¬p

s1

s1

s1

s1 s2

s2

s2

s2

π1

π1

π1

π1

π2

π2

π2

π2

(a) Projections π1 and π2 given s1 and s2.

p ∨ ¬p

p ¬p

p ∧ ¬p

s1

s1

s1

s1 s2

s2

s2

s2

∆I

∆I

∆I

∆I

(b) ∆I with I = {1, 2} given s1 and s2.

Figure 2 Projections (a) and Distributed Space function (b) over lattice M2.

The distributed space ∆I of a group I can be viewed as the function that represents the
smallest space that includes all the local information of the agents in I. From the above
intuition, ∆I should be the greatest space function below the space functions of the agents in
I. The existence of such a function follows from completeness of (S(C),vs) (Lemma 12).

I Definition 14 (Distributed Spaces). Let C be an scs (Con,v, (si)i∈G). The distributed
spaces of C is given by ∆ = (∆I)I⊆G where ∆I

def= max{f ∈ S(C) | f vs si for every i ∈ I}.
We shall say that e is distributed among I ⊆ G w.r.t. c iff c w ∆I(e). We shall refer to each
∆I as the (distributed) space of the group I.

It follows from Lemma 12 that ∆I =
d
{si | i ∈ I} (where

d
is the meet in the complete

lattice (S(C),vs)). Fig.2b illustrates an scs and its distributed space ∆{1,2}.

Compositionality. Distributed spaces have pleasant compositional properties. They
capture the intuition that the distributed information of a group I can be obtained from the
the distributive information of its subgroups.

I Theorem 15. Let (∆I)I⊆G be the distributed spaces of an scs (Con,v, (si)i∈G). Suppose
that K,J ⊆ I ⊆ G. (1) ∆I = λ> if I = ∅, (2) ∆I = si if I = {i}, (3) ∆J(a) t∆K(b) w
∆I(a t b), and (4) ∆J(a) t∆K(a→ c) w ∆I(c) if (Con,v) is a constraint frame.

Recall that λ> corresponds to the empty space (see Def.13). The first property realizes the
intuition that the empty subgroup ∅ does not have any information whatsoever distributed
w.r.t. a consistent c: for if c w ∆∅(e) and c 6= false then e = true. Intuitively, the second
property says that the function ∆I for the group of one agent must be the agent’s space
function. The third property states that a group can join the information of its subgroups.
The last property uses constraint implication, hence the constraint frame condition, to express
that by joining the information a and a→ c of their subgroups, the group I can obtain c.

Let us illustrate how to derive information of a group from smaller ones using Thm.15.

I Example 16. Let c = s1(a) t s2(a→ b) t s3(b→ e) as in Ex.7. We want to prove that e
is distributed among I = {1, 2, 3} w.r.t. c, i.e., c w ∆{1,2,3}(e). Using Properties 2 and 4
in Thm.15 we obtain c w s1(a) t s2(a→ b) = ∆{1}(a) t∆{2}(a→ b) w ∆{1,2}(b), and then
c w ∆{1,2}(b) t s3(b→ e) = ∆{1,2}(b) t∆{3}(b→ e) w ∆{1,2,3}(e) as wanted.
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I Remark 17 (Continuity). The example with infinitely many agents in Ex.7 illustrates well
why we require our spaces to be continuous in the presence of possibly infinite groups. Clearly
c′ =

⊔
i∈N si(ai) w

⊔
i∈N ∆N(ai). By continuity,

⊔
i∈N ∆N(ai) = ∆N(

⊔
i∈N ai) which indeed

captures the idea that each ai is in the distributed space ∆N.

In Thm.15 we listed some useful properties about (∆I)I⊆G. In the next section we shall
see that (∆I)I⊆G is the greatest solution of three basic properties.

We conclude this subsection with an important family of scs from mathematical economics:
Aumann structures. We illustrate that the notion of distributed knowledge in these structures
is an instance of a distributed space.

I Example 18. Aumann Constraint Systems. Aumann structures [13] are an event-based
approach to modelling knowledge. An Aumann structure is a tuple A = (S,P1, . . . ,Pn)
where S is a set of states and each Pi is a partition on S for agent i. The partitions are
called information sets. If two states t and u are in the same information set for agent
i, it means that in state t agent i considers state u possible, and vice versa. An event in
an Aumann structure is any subset of S. Event e holds at state t if t ∈ e. The set Pi(s)
denotes the information set of Pi containing s. The event of agent i knowing e is defined as
Ki(e) = {s ∈ S | Pi(s) ⊆ e}, and the distributed knowledge of an event e among the agents
in a group I is defined as DI(e) = {s ∈ S |

⋂
i∈I Pi(s) ⊆ e}.

An Aumann structure can be seen as a spatial constraint system C(A) with events as
constraints, i.e., Con = {e | e is an event in A}, and for every e1, e2 ∈ Con, e1 v e2 iff
e2 ⊆ e1. The operators join (t) and meet (u) are intersection (∩) and union (∪) of events,
respectively; true = S and false = ∅. The space functions are the knowledge operators,
i.e., si(c) = Ki(c). From these definitions and since meets are unions one can easily verify
that ∆I(c) = DI(c) which shows the correspondence between distributed information and
distributed knowledge.

4.3 Distributed Spaces as Group Distributions Candidates.
We now wish to single out a few fundamental properties on tuples of self-maps that can be
used to characterize distributed spaces.

I Definition 19 (Distribution Candidates). Let C be an scs (Con,v, (si)i∈G). A tuple
δ = (δI)I⊆G of self-maps on Con is a group distribution candidate (gdc) of C if for each
I, J ⊆ G: (D.1) δI is a space function in C, (D.2) δI = si if I = {i}, (D.3) δI ws δJ if
I ⊆ J .

Property D.1 requires each δI to be a space function. This is trivially met for δI = ∆I .

Property D.2 says that the function δI for a group of one agent must be the agent’s space
function. Clearly, δ{i} = ∆{i} satisfies D.2; indeed the distributed space of a single agent
is their own space. Finally, Property D.3 states that δI(c) w δJ(c), if I ⊆ J . This is
also trivially satisfied if we take δI = ∆I and δJ = ∆J . Indeed if a subgroup I has some
distributed information c then any subgroup J that includes I should also have c. This also
realizes our intuition above: The bigger the group, the bigger the space and thus the smaller
the space function that represents it.

Properties D1-D3, however, do not determine ∆ uniquely. In fact, there could be infinitely-
many tuples of space functions that satisfy them. For example, if we were to chose δ∅ = λ>,

δ{i} = si for every i ∈ G, and δI = λ⊥ whenever |I| > 1 then D1, D2 and D3 would
be trivially met. But these space functions would not capture our intended meaning of
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distributed spaces: E.g., we would have true w δI (e) for every e thus implying that any e
could be distributed in the empty information true amongst the agents in I 6= ∅.

Nevertheless, the following theorem states that (∆I)I⊆G could have been equivalently
defined as the greatest space functions satisfying Properties D1-D3.

I Theorem 20 (Max gdc). Let (∆I)I⊆G be the distributed spaces of C = (Con,v, (si)i∈G).
Then (∆I)I⊆G is a gdc of C and if (δI)I⊆G is a gdc of C then δI vs ∆I for each I ⊆ G.

Let us illustrate the use of Properties D1-D3 in Thm.20 with the following example.

I Example 21. Let c = s1(a)ts2(a→ b)ts3(b→ e) as in Ex.7. We want to prove c w ∆I(e)
for I = {1, 2, 3}. From D.2 we have c = ∆{1}(a) t∆{2}(a→ b) t∆{3}(b→ e). We can then
use D.3 to obtain c w ∆I(a) t∆I(a→ b) t∆I(b→ e). Finally, by D.1 and Proposition 3 we
infer c w ∆I(a t (a→ b) t (b→ e)) w ∆I(e), thus c w ∆I(e) as wanted. Now consider our
counter-example in Ex.10 with d = s1(b) u s2(b). We wish to prove d w ∆I(b) for I = {1, 2}.
I.e., that b can be derived from d as being in a space of a member of {1,2}. Using D.1 and
D.3 we obtain d w d′ = ∆{1}(b) u∆{2}(b) w ∆{1,2}(b) u∆{1,2}(b) = ∆{1,2}(b) as wanted.

The characterization of distributed spaces by Thm.20 provide us with a convenient proof
method: E.g. to prove that a tuple F = (fI)I⊆G equals (∆I)I⊆G, it suffices to show that the
tuple is a gdc and that fI ws ∆I for all I ⊆ G. We use this mechanism in Section 5.

4.4 Group Projections
As promised in Section 4.1 we now give a definition of Group Projection. The function ΠI(c)
extracts exactly all information that the group I may have distributed w.r.t. c.

I Definition 22 (Group Projection). Let (∆I)I⊆G be the distributed spaces of an scs C =
(Con,v, (si)i∈G). Given the set I ⊆ G, the I-group projection of c ∈ Con is defined as
ΠI(c) def=

⊔
{e | c w ∆I(e)}. We say that e is I-group derivable from c iff ΠI(c) w e.

Much like space functions and agent projections, group projections and distributed spaces
also form a pleasant correspondence: a Galois connection [3].

I Proposition 23. Let (∆I)I⊆G be the distributed spaces of C = (Con,v, (si)i∈G). For every
c, e ∈ Con, (1) c w ∆I(e) iff ΠI(c) w e, (2) ΠI(c) w ΠJ (c) if J ⊆ I, and (3) ΠI(c) w πI(c).

The first property in Prop.23, a Galois connection, states that we can conclude from
c that e is in the distributed space of I exactly when e is I-group derivable from c. The
second says that the bigger the group, the bigger the projection. The last property says that
whatever is I-join derivable is I-group derivable, although the opposite is not true as shown
in Ex.10.

4.5 Group Compactness.
Suppose that an infinite group of agents I can derive e from c (i.e., c w ∆I(e)). A legitimate
question is whether there exists a finite sub-group J of agents from I that can also derive e
from c. The following theorem provides a positive answer to this question provided that e is
a compact element (see Section 2) and I-join derivable from c.

I Theorem 24 (Group Compactness). Let (∆I)I⊆G be the distributed spaces of an scs
C = (Con,v, (si)i∈G). Suppose that c w ∆I(e). If e is compact and I-join derivable from c

then there exists a finite set J ⊆ I such that c w ∆J(e).
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We conclude this section with the following example of group compactness.

I Example 25. Consider the example with infinitely many agents in Ex.7. We have
c′ =

⊔
i∈N si(ai) for some increasing chain a0 v a1 v . . . and e′ s.t. e′ v

⊔
i∈N ai. Notice

that c′ w ∆N(e′) and πN(c′) w e′. Hence e′ is N-join derivable from c′. If e′ is compact, by
Thm.24 there must be a finite subset J ⊆ N such that c′ w ∆J(e′).

5 Computing Distributed Information

Let us consider a finite scs C = (Con,v, (si)i∈G) with distributed spaces (∆I)I⊆G. By finite
scs we mean that Con and G are finite sets. Let us consider the problem of computing ∆I :
Given a set {si}i∈I of space functions, we wish to find the greatest space function f such
that f v si for all i ∈ I (see Def.14).

Because of the finiteness assumption, the above problem can be rephrased in simpler
terms: Given a finite lattice L and a finite set S of join-homomorphisms on L, find the
greatest join-homomorphism below all the elements of S. Even in small lattices with four
elements and two space functions, finding such greatest function may not be immediate, e.g.,
for S = {s1, s2} and the lattice in Fig.1 the answer is given Fig.2b.

In this section we shall use the theory developed in previous sections to help us find
algorithms for this problem. Recall from Def.14 and Lemma 12 that ∆I equals the following

max{f ∈ S(C) | f v si for all i ∈ I} =
⊔
{f ∈ S(C) | f v si for all i ∈ I} =

l
{si | i ∈ I}

A naive (meet-based) approach would be to compute ∆I(c) by taking the point-wise meet
construction σI(c) def=

d
{si(c) | i ∈ I} for each c ∈ Con. But this does not work in general

since ∆I(c) =
d
{si | i ∈ I}(c) is not necessarily equal to σI(c) =

d
{si(c) | i ∈ I}. In fact

σI ws ∆I but σI may not even be a space function as shown in Fig.3a.
A brute force (join-based) solution to computing ∆I(c) can be obtained by generating the

set {f(c) | f ∈ S(C) and f v si for all i ∈ I} and taking its join. This approach works since
the join of a set of space functions S can be computed point-wise: (

⊔
S)(c) =

⊔
{f(c)|f ∈ S}.

However, the number of such functions in S(C) can be at least factorial in the size of Con.
For constraint frames, which under the finite assumption coincides with distributive lattices,
the size of S(C) can be non-polynomial in the size of Con.

I Proposition 26 (Lower Bounds on Number of Space Functions). For every n ≥ 2, there
exists a cs C = (Con,v) such that |S(C)| ≥ (n− 2)! and n = |Con |. For every n ≥ 1, there
exists a constraint frame C = (Con,v) such that |S(C)| ≥ nlog2 n and n = |Con |.

Nevertheless, in the following sections we shall be able to exploit order theoretical results
and properties of distributed spaces to compute ∆I(c) for every c ∈ Con in polynomial
time in the size of Con. The first approach uses the inherent compositional nature of ∆I in
distributed lattices. The second approach uses the above-mentioned σ as a suitable upper
bound to compute ∆I by approximating it from above.

5.1 Distributed Spaces in Distributed Lattices
Here we shall illustrate some pleasant compositionality properties of distributed spaces that
can be used for computing ∆I in distributed lattices (constraint frames). These properties
capture the intuition that just like distributed information of a group I is the collective
information from all its members, it is also the collective information of its subgroups. The
following results can be used to produce algorithms to compute ∆I(c).

We use XJ to denote the set of tuples (xj)j∈J of elements xj ∈ X for each j ∈ J.

CONCUR 2019



25:12 Reasoning about Distributed Knowledge with Infinitely Many Agents
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(a) For I = {1, 2}, σI(c) =
d

i∈I si(c) is not a
space function: σI(p t ¬p) 6= σI(p) t σI(¬p).

a
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e
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s2
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s1

s2

s1, s2

s1, s2

δ+
I
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I

δ+
I

δ+
I

δ+
I

(b) For I = {1, 2}, δ+
I (Lemma 27) is not a space

function: δ+
I (b) t δ+

I (e) = b 6= a = δ+
I (b t e).

Figure 3 Counter-examples over lattice M2 (a) and the non- distributive lattice M3 (b).

I Lemma 27. Let (∆I)I⊆G be the distributed spaces of a finite scs C = (Con,v, (si)i∈G).
Suppose that (Con,v) is a constraint frame. Let δ+

I : Con → Con, with I ⊆ G, be the
function δ+

I (c) def=
d
{
⊔

i∈I si(ai) | (ai)i∈I ∈ ConI and
⊔

i∈I ai w c}. Then ∆I = δ+
I .

The above lemma basically says that ∆I(c) is the greatest information below all possible
combinations of information in the spaces of the agents in I that derive c. The proof that
δ+

I ws ∆I uses the fact that space functions preserve joins. The proof that δ+
I vs ∆I proceeds

by showing that (δ+
I )I⊆G is a group distribution candidate (Def.19). Distributivity of the

lattice (Con,v) is crucial for this direction. In fact without it ∆I = δ+
I does not necessarily

hold as shown by the following counter-example.

I Example 28. Consider the non-distributive lattice M3 and the space functions s1 and
s2 in Fig.3b. We obtain δ+

I (b t c) = δ+
I (e) = a and δ+

I (b) t δ+
I (c) = b t a = b. Then,

δ+
I (b t c) 6= δ+

I (b) t δ+
I (c), i.e., δ+

I is not a space function.

Lemma 27 can be used to prove the following theorem which intuitively characterizes the
information of a group from that of its subgroups. Each of the following results will be used
to generate algorithms to compute ∆I(c), each an improvement on the previous one.

I Theorem 29. Let (∆I)I⊆G be the distributed spaces of a finite scs C = (Con,v, (si)i∈G).
Suppose that (Con,v) is a constraint frame. Let J,K ⊆ G be two groups such that I = J ∪K.
Then the following equalities hold:

1. ∆I(c) =
l
{∆J(a) t∆K(b) | a, b ∈ Con and a t b w c}. (1)

2. ∆I(c) =
l
{∆J(a) t∆K(a→ c) | a ∈ Con}. (2)

3. ∆I(c) =
l
{∆J(a) t∆K(a→ c) | a ∈ Con and a v c}. (3)

The above properties bear witness to the inherent compositional nature of our notion of
distributed space. This nature will be exploited by the algorithms below. The first property
in Thm.29 essentially reformulates Lemma 27 in terms of subgroups rather than agents. It
can be proven by replacing ∆J(a) and ∆K(b) by δ+

J (a) and δ+
K(b), defined in Lemma 27

and using distributivity of joins over meets. The second and third properties in Thm.29 are
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pleasant simplifications of the first using heyting implication. These properties realize the
intuition that by joining the information a and a→ c of their subgroups, the group I can
obtain c.

5.2 Algorithms for Distributed Lattices
Recall that λ> represents the empty distributed space (see Def.13). Given a finite scs C =
(Con,v, (si)i∈G) with distributed spaces (∆I)I⊆G, the recursive function DeltaPart3(I, c)
in Algorithm 1 computes ∆I(c) for any given c ∈ Con. Its correctness, assuming that (Con,v)
is a constraint frame (i.e., a distributed lattice), follows from Thm.29(3). Termination follows
from the finiteness of C and the fact the sets J and K in the recursive calls form a partition
of I. Notice that we select a partition (in halves) rather than any two sets K,J satisfying
the condition I = J ∪K to avoid significant recalculation.

Algorithm 1 Function DeltaPart3(I, c) computes ∆I(c)
1: function DeltaPart3(I, c)
2: if I = ∅ then
3: return λ>(c)
4: else if I = {i} then
5: return si(c)
6: else
7: {J,K} ← Partition(I) . returns a partition {J,K} of I s.t., |J | = b|I|/2c
8: return

d
{DeltaPart3(J, a) tDeltaPart3(K, a→ c) | a ∈ Con and a v c}.

Algorithms. DeltaPart3(I, c) computes ∆I(c) using Thm.29(3). By modifying Line 8
with the corresponding meet operations, we obtain two variants of DeltaPart3 that use,
instead of Thm.29(3), the Properties Thm.29(1) and Thm.29(2). We call them DeltaPart1
and DeltaPart2. Finally, we also obtain a non-recursive algorithm that outputs ∆I(c) by
computing δ+

I (c) in Lemma 27 in the obvious way: Computing the meet of elements of the
form

⊔
i∈I si(ai) for every tuple (ai)i∈I such that

⊔
i∈I ai w c. We call it Delta+.

Worst-case time complexity. We assume that binary distributive lattice operations u, t,
and→ are computed in O(1) time. We also assume a fixed group I of sizem = |I| and express
the time complexity for computing ∆I in terms of n = |Con |, the size of the set of constraints.
The above-mentioned algorithms compute the value ∆I(c). The worst-case time complexity
for computing the function ∆I is in (1) O(mn1+m) using Delta+, (2) O(mn1+2 log2 m) using
DeltaPart1, and (3) O(mn1+log2 m) using DeltaPart2 and DeltaPart3.

5.3 Algorithm for Arbitrary Lattices
Let (∆I)I⊆G be the distributed spaces of a finite scs C = (Con,v, (si)i∈G). The maximum
space function ∆I under a collection {si}i∈I can be computed by successive approximations,
starting with some (not necessarily space) function known to be less than all {si}i∈I . Assume
a self map σ : Con → Con such that σ w ∆I and, for all i ∈ I, σ v si. A good starting
point is σ(u) =

d
{si(u) | i ∈ I}, for all u ∈ Con. By definition of u, σ(u) is the biggest

function under all functions in {si}i∈I , hence σ w ∆I . The algorithm computes decreasing
upper bounds of ∆I by correcting σ values not conforming to the space function property
σ(u) t σ(v) = σ(u t v). The correction decreases σ and maintains the invariant σ w ∆I .

There are two ways of correcting σ values: (1) when σ(u) t σ(v) @ σ(u t v), assign
σ(u t v)← σ(u) t σ(v) and (2) when σ(u) t σ(v) 6v σ(u t v), assign σ(u)← σ(u) u σ(u t v)
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and also σ(v)← σ(v) u σ(u t v). It can be shown that the assignments in both cases should
decrease σ while preserving the σ w ∆I invariant.

The procedure (see Algorithm 2) loops through pairs u, v ∈ Con while there is some pair
satisfying cases (1) or (2) above for the current σ. When there is, it updates σ as mentioned
before. At the end of the loop all u, v ∈ Con pairs satisfy the space function property. By
the invariant mentioned above, this means σ = ∆I .

Algorithm 2 DeltaGen finds ∆I

σ(u)←
d
{si(u) | i ∈ I} . for all u ∈ Con

while u, v ∈ Con ∧ σ(u) t σ(v) 6= σ(u t v) do
if σ(u) t σ(v) @ σ(u t v) then . case (1)

σ(u t v)← σ(u) t σ(v)
else . case (2)

σ(u)← σ(u) u σ(u t v)
σ(v)← σ(v) u σ(u t v)

Assume a fixed group I of size m = |I| and that u and t are computed in O(1) time.
The complexity of the initialization of DeltaGen is O(nm) with n = |Con |. Each element
in Con can be decreased at most n times. Identifying an element to be decreased (in the test
of the loop) takes O(n2). Since there are n2 possible decreases, worst time complexity of the
loop is in O(n4).

6 Conclusions and Related Work

We developed semantic foundations and provided algorithms for reasoning about the dis-
tributed information of groups in multi-agents systems. We plan to develop similar techniques
for reasoning about other group phenomena in multi-agent systems from social sciences and
computer music such as group polarization [4] and group improvisation [17].

The closest related work is that of [15] (and its extended version [16]) which introduces
spatial constraint systems (scs) for the semantics of a spatial ccp language. Their work is
confined to a finite number of agents and to reasoning about agents individually rather than
as groups. We added the continuity requirement to the space functions of [15] to be able to
reason about possibly infinite groups. In [7, 8, 9, 10] scs are used to reason about beliefs, lies
and other epistemic utterances but also restricted to a finite number of agents and individual,
rather than group, behaviour of agents.

Our work is inspired by the epistemic concept of distributed knowledge [5]. Knowledge
in distributed systems was discussed in [11], based on interpreting distributed systems using
Hintikka’s notion of possible worlds. In this definition of distributed knowledge, the system
designer ascribes knowledge to processors (agents) in each global state (a processor’s local
state). In [12] the authors present a general framework to formalize the knowledge of a
group of agents, in particular the notion of distributed knowledge. The authors consider
distributed knowledge as knowledge that is distributed among the agents belonging to a
given group, without any individual agent necessarily having this knowledge. In [13] the
authors study knowledge and common knowledge in situations with infinitely many agents.
The authors highlight the importance of reasoning about infinitely many agents in situations
where the number of agents is not known in advance. Their work does not address distributed
knowledge but points out potential technical difficulties in their future work.
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