D. Chandler and P. G. Wolynes, Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids, J. Chem. Phys, vol.74, issue.7, pp.4078-4095, 1981.

M. Parrinello and A. Rahman, Study of an F center in molten KCl, J. Chem. Phys, vol.80, issue.2, pp.860-867, 1984.

D. M. Ceperley, Path integrals in the theory of condensed helium, Rev. Mod. Phys, vol.67, pp.279-355, 1995.

I. R. Craig and D. E. Manolopoulos, Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics, J. Chem. Phys, vol.121, issue.8, pp.3368-3373, 2004.

S. Habershon, D. E. Manolopoulos, T. E. Markland, and T. F. Miller, Ring-polymer molecular dynamics: Quantum effects in chemical dynamics from classical trajectories in an extended phase space, Annu. Rev. Phys. Chem, vol.64, pp.387-413, 2013.

J. Cao and G. A. Voth, A new perspective on quantum time correlation functions, J. Chem. Phys, vol.99, issue.12, pp.10070-10073, 1993.

J. Cao and G. A. Voth, The formulation of quantum statistical mechanics based on the Feynman path centroid density. I. Equilibrium properties, J. Chem. Phys, vol.100, issue.7, pp.5093-5105, 1994.

X. Sun, H. Wang, and W. H. Miller, Semiclassical theory of electronically nonadiabatic dynamics: Results of a linearized approximation to the initial value representation, J. Chem. Phys, vol.109, p.7064, 1998.

H. Wang, X. Sun, and W. H. Miller, Semiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems, J. Chem. Phys, vol.108, p.9726, 1998.

Q. Shi and E. Geva, Semiclassical theory of vibrational energy relaxation in the condensed phase, J. Phys. Chem. A, vol.107, p.9059, 2003.

J. A. Poulsen, G. Nyman, and P. J. Rossky, Static and dynamic quantum effects in molecular liquids: A linearized path integral description of water, vol.102, pp.6709-6714, 2005.

M. Monteferrante, S. Bonella, and G. Ciccotti, Linearized symmetrized quantum time correlation functions calculation via phase pre-averaging, Mol. Phys, vol.109, pp.3015-3027, 2011.

J. Beutier, D. Borgis, R. Vuilleumier, and S. Bonella, Computing thermal Wigner densities with the phase integration method, J. Chem. Phys, vol.141, issue.8, p.84102, 2014.

M. Ceriotti, G. Bussi, and M. Parrinello, Nuclear quantum effects in solids using a colored-noise thermostat, Phys. Rev. Lett, vol.103, p.30603, 2009.

M. Ceriotti, G. Bussi, and M. Parrinello, Colored-noise thermostatsà la carte, J. Chem. Theory Comput, vol.6, issue.4, pp.1170-1180, 2010.

H. Dammak, Y. Chalopin, M. Laroche, M. Hayoun, and J. Greffet, Quantum thermal bath for molecular dynamics simulation, Phys. Rev. Lett, vol.103, issue.19, p.190601, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00574370

M. Ceriotti, G. Miceli, A. Pietropaolo, D. Colognesi, A. Nale et al., Nuclear quantum effects in ab initio dynamics: Theory and experiments for lithium imide, Phys. Rev. B, vol.82, p.174306, 2010.

Y. Chalopin, H. Dammak, M. Laroche, M. Hayoun, and J. ,

. Greffet, Radiative heat transfer from a black body to dielectric nanoparticles, Phys. Rev. B, vol.84, p.224301, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00785300

T. Qi and E. J. Reed, Simulations of shocked methane including self-consistent semiclassical quantum nuclear effects, J. Phys. Chem. A, vol.116, issue.42, pp.10451-10459, 2012.

H. Dammak, E. Antoshchenkova, M. Hayoun, and F. Finocchi, Isotope effects in lithium hydride and lithium deuteride crystals by molecular dynamics simulations, J. Phys. Condens. Matter, vol.24, issue.43, p.435402, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00763813

Y. Bronstein, P. Depondt, and F. Finocchi, Thermal and nuclear quantum effects in the hydrogen bond dynamical symmetrization phase transition of ?-AlOOH, Eur. J. Mineral, vol.29, issue.3, pp.385-395, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01985289

K. Dru?bicki, M. Krzystyniak, D. Hollas, V. Kapil, P. Slaví?ek et al., Hydrogen dynamics in solid formic acid: insights from simulations with quantum colored-noise thermostats, J. Phys. Conf. Ser, vol.1055, issue.1, p.12003, 2018.

Y. Bronstein, P. Depondt, F. Finocchi, and A. M. Saitta, Quantum-driven phase transition in ice described via an efficient langevin approach, Phys. Rev. B, vol.89, p.214101, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01003512

Y. Bronstein, P. Depondt, L. E. Bove, R. Gaal, A. M. Saitta et al., Quantum versus classical protons in pure and salty ice under pressure, Phys. Rev. B, vol.93, p.24104, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01405481

F. Calvo, N. Van-oanh, P. Parneix, and C. Falvo, Vibrational spectra of polyatomic molecules assisted by quantum thermal baths, Phys. Chem. Chem. Phys, vol.14, issue.30, pp.10503-10506, 2012.

M. Rossi, V. Kapil, and M. Ceriotti, Fine tuning classical and quantum molecular dynamics using a generalized Langevin equation, J. Chem. Phys, vol.148, issue.10, p.102301, 2018.

J. M. Bowman, B. Gazdy, and Q. Sun, A method to constrain vibrational energy in quasiclassical trajectory calculations, J. Chem. Phys, vol.91, issue.5, pp.2859-2862, 1989.

W. H. Miller, W. L. Hase, and C. L. Darling, A simple model for correcting the zero point energy problem in classical trajectory simulations of polyatomic molecules, J. Chem. Phys, vol.91, issue.5, pp.2863-2868, 1989.

S. Habershon and D. E. Manolopoulos, Zero point energy leakage in condensed phase dynamics: An assessment of quantum simulation methods for liquid water, J. Chem. Phys, vol.131, issue.24, p.244518, 2009.

O. N. Bedoya-martínez, J. Barrat, and D. Rodney, Computation of the thermal conductivity using methods based on classical and quantum molecular dynamics, Phys. Rev. B, vol.89, p.14303, 2014.

F. Brieuc, Y. Bronstein, H. Dammak, P. Depondt, F. Finocchi et al., Zero-point energy leakage in quantum thermal bath molecular dynamics simulations, J. Chem. Theory Comput, vol.12, pp.5688-5697, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01401689

J. Hernández-rojas, F. Calvo, and E. Noya, Applicability of quantum thermal baths to complex many-body systems with various degrees of anharmonicity, J. Chem. Theory Comput, vol.11, issue.3, pp.861-870, 2015.

M. Ceriotti, D. E. Manolopoulos, and M. Parrinello, Accelerating the convergence of path integral dynamics with a generalized Langevin equation, J. Chem. Phys, vol.134, issue.8, p.84104, 2011.

F. Brieuc, H. Dammak, and M. Hayoun, Quantum thermal bath for path integral molecular dynamics simulation, J. Chem. Theory Comput, vol.12, issue.3, p.26799437, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01273149

C. Schran, F. Brieuc, and D. Marx, Converged colored noise path integral molecular dynamics study of the Zundel cation down to ultralow temperatures at coupled cluster accuracy, J. Chem. Theory Comput, vol.14, issue.10, pp.5068-5078, 2018.

M. Buchholz, E. Fallacara, F. Gottwald, M. Ceotto, F. Grossmann et al., Herman-Kluk propagator is free from zero-point energy leakage, Chem. Phys, vol.515, pp.231-235, 2018.

J. Barrat and D. Rodney, Portable implementation of a quantum thermal bath for molecular dynamics simulations, J. Stat. Phys, vol.144, issue.3, pp.679-689, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00581549

M. Basire, D. Borgis, and R. Vuilleumier, Computing Wigner distributions and time correlation functions using the quantum thermal bath method: application to proton transfer spectroscopy, Phys. Chem. Chem. Phys, vol.15, pp.12591-12601, 2013.

R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys, vol.29, issue.1, p.255, 1966.

R. S. Berry, T. L. Beck, H. L. Davis, and J. Jellinek, Solid-Liquid Phase Behavior in Microclusters, pp.75-138, 2007.

J. Liu and W. H. Miller, Using the thermal Gaussian approximation for the Boltzmann operator in semiclassical initial value time correlation functions, J.Chem. Phys, vol.125, issue.22, p.224104, 2006.

B. Leimkuhler and C. Matthews, Rational construction of stochastic numerical methods for molecular sampling, Appl. Math. Res. eXpress, 2012.

B. Leimkuhler and C. Matthews, Robust and efficient configurational molecular sampling via Langevin dynamics, J. Chem. Phys, vol.138, issue.17, p.174102, 2013.

L. Kantorovich, Generalized langevin equation for solids

I. , Rigorous derivation and main properties, Phys. Rev. B, vol.78, issue.9, p.94304, 2008.

A. D. Baczewski and S. D. Bond, Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel, J. Chem. Phys, vol.139, issue.4, p.44107, 2013.