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Abstract—The next generation of IMA platforms should in-
clude reconfiguration capabilities in order to limit the effect of
some hardware failures on aircraft operational reliability. The
contribution of this paper is to describe the safety assessment
process from the safety assessment on the preliminary design
of a reconfigurable IMA architecture to the execution of the
failure scenarios on the SCARLETT demonstrator. The research
leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7 / 2007-2013)
under Grant Agreement n° ACP7-GA-2008-211439.

I. INTRODUCTION

The Integrated Modular Avionics (IMA) architectures have
been defined to design avionics platforms that share commu-
nication and computation resources. The behaviour of such
platforms is imposed by two standards. On the one hand, Arinc
653 [ARI97] specifies the management of computing resources
(named modules): the scheduling of partitions on each module
is defined off-line by a periodic sequence of slots. On the other
hand, Arinc 664 [ARI09] describes the management of the
communication resources (switches and end-systems): com-
munication flows are statically organised into Virtual Links
(VL) which correspond to multicast channels characterised by
a minimal time interval separating two successive messages in
a same VL.

A. Reconfigurable IMA platforms

These two standards globally define the IMA concept which
has been implemented in the Airbus A380 and the Boeing
B787 for instance. The partners of the SCARLETT' project
are preparing the next generation of avionic platforms which
will integrate reconfiguration capabilities. Reconfigurable IMA
should be able to change the configuration of the platform
by moving applications hosted on a faulty computing module
to spare computing modules. The main objective of such an
extension is to reduce the cost of unscheduled maintenance
and to improve the operational reliability of the aircraft while
preserving current safety levels.

Let us illustrate the notion of reconfigurable IMA through
a simple example: the platform is composed of five modules
(My, ..., Ms) and two communication switches (51, S2). The
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(a) Initial configuration

(b) Configuration after M7 loss

Fig. 1. Example of a reconfiguration

initial configuration is drawn in Figure 1(a): module M5 is a
spare initially shut down and free of application (grey in the
picture). If some failure occurs on module M, the applications
initially hosted on this module can be reconfigured on the spare
M5 and all communications from and to M; (VL{,VLy,VL3)
must also be rerouted according to this new allocation. The
reached configuration is shown in Figure 1(b).

B. Purpose of the paper

In [BNPT09], we introduced the preliminary design of re-
configurable IMA-2G platforms. We discussed different recon-
figuration policies that describe the set of rules and parameters
that govern the deterministic procedure of reconfiguration.
According to these policies, we enumerated the number of
reachable configurations. In [BBN'10], we assessed the safety
of the reconfigurable platform: we first performed a Functional
Hazard Analysis (FHA) [SAE] in order to define the Safety
Requirements that should be satisfied by the reconfiguration
mechanisms, and then we performed a preliminary assessment
of the proposed reconfiguration mechanisms to prove that the
addition of these mechanisms does not degrade the safety of
the aircraft.

For that purpose, we formally modelled the functional
and dysfunctional behaviours of reconfigurable IMA-2G using
the ALTARICA language [APGR99]. From this model, tools
automatically generated failure scenarios leading to potentially
unsafe situations. These scenarios were analysed in order to
check that the proposed mechanisms satisfied qualitative safety
requirements.

The contribution of this paper is to describe safety assess-
ment activities related to the verification of reconfiguration
mechanisms implementation. We explain how failure scenarios
generated during preliminary safety assessment can guide a



part of the tests performed on the SCARLETT reconfiguration
demonstrator.
To perform these activities, we need:

1) arepresentative safety model of the system implemented
in the demonstrator,

2) a demonstrator including several tools to perform fault
injection and a set of instrumentation tools to observe
the behaviour of the equipments, partitions and VLs;

3) a manner to correlate failure scenarios generated from
the safety model and the tests executed on the demon-
strator.

The outline of the paper is the following. Section II recalls
the general reconfiguration principles which include the oft-
line reconfiguration graph definition and the on-line safe steps
of reconfiguration. Section III describes the ALTARICA model
of reconfigurable IMA. The model was extended to take into
account the network which was out of the scope of the
previous papers. The model has also been tuned to closely
represent the demonstrator. Section IV presents the SCARLETT
reconfiguration demonstrator led by AIRBUS. We show how
failure scenarios generated by the ALTARICA model can be
run on the demonstrator.

II. RECONFIGURATION PRINCIPLES

In this section, we recall the principles of the reconfiguration
mechanisms.

A. Reconfiguration choices

The objective of incorporating reconfigurable capabilities
in IMA is to increase the operational reliability. When a
computing module fails, a reconfiguration can be launched
if this failure has an operational reliability impact, meaning
that the aircraft becomes NOGO. In SCARLETT, only module
failures can trigger a reconfiguration. Several reconfiguration
scenarios have been considered which are characterised by:

o Granularity level: reconfiguration is either performed at
module or at partition level. For module level reconfig-
uration, a spare computing module is allocated to all
applications running on the faulty computing module. For
partition level reconfiguration, spare partitions running
on non-faulty modules are allocated to the applications
running on the faulty computing module.

o Location: reconfiguration can be performed either locally
on modules belonging to the same cluster than the faulty
module or distantly on any module of the platform.

o Time: reconfiguration can be performed during the flight
or on ground when the aircraft is stopped.

B. Reconfiguration graph

When building a reconfigurable platform, the designer
computes off-line a certified reconfiguration graph. Such a
graph contains all the admissible configurations (including the
initial one) that can be reached after failures, and the allowed
transitions between these configurations.

Definition 1 (Configuration). A configuration {alloc,path)
simply describes the allocation of the partitions on the com-
puting modules and the allocation of the VLs on the physical
network elements (switches and modules):

alloc : Partitions —> Modules
path - VL N 2M0dulesUSwitches

Definition 2 (Graph of reconfiguration). A graph of reconfig-
uration G = (V, E) describes the various states that could be
reached during reconfiguration on an IMA platform. V is a
finite set of nodes, where each node is a configuration, and
E CV XN XV is the set of transitions. Each transition is
labelled by an integer corresponding to the failure of a module.

Each node (or configuration) is encoded by a unique
identifier named configuration index (CI).

Example 1. Let us describe the reconfiguration graph cor-
responding to Figure 1 given in introduction. There are
two states: the initial configuration (with configuration index
CI=0) and the one reached after the loss of module M,
(with CI=1). We assume that there are exactly 4 applications
{B1, Ba, B3, By}, one per module.

alloc(B1)=M; alloc(B1)=Ms5
alloc(B2)=M> alloc(B2)=M>
allOC(B3)=M3 CI=0 allOC(B3)=M3 Cl=1
alloc(By)=M4 alloc(By)=My
path(V L1)= 1 | path(VLy)=

My, S1, 52, M3, My} {Ms,S2, M3, My}
path(V La)= path(V La)=

{M>, S1, M1} {M>, S1, 82, Ms}
path(V L3)= path(V L3 )=

{M27‘917S27M3} {M27S1>S21M3}

In the configuration reached after the loss of module M,
application By is allocated on module Ms and the paths for
communications sent and received by My (VL,,VLs,VL3) are
changed. The allocation of other applications and communi-
cations remains unchanged.

The number of modules and spares and the reconfiguration
policy determines the shape and the size of the reconfiguration
graph. Let’s consider a very simple policy where a unique
spare can be used to host the applications of any module.
In that case the reconfiguration graph is very shallow. There
is exactly one transition per module that links the initial
configuration with a new configuration where the spare module
hosts the application from the faulty module. There is no
transition going out from these new configurations because
as the spare is occupied no other reconfiguration is possible.
More complex reconfiguration graphs have to be taken into
account when dealing with multiple spares and with policies
that restrict the usage of spares.

C. Actors

Reconfiguration capabilities are handled by 4 applications
represented in Figure 2. The Reconfiguration Supervisor (RS)
is the central entity that controls all reconfiguration activities
including selection of the spare module that replaces the faulty
module. The Centralized Maintenance System (CMS) hosts
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Fig. 2. Functional architecture

the fault detection and diagnosis function which periodically
checks all computing modules (CPMs) for their health and
elaborates a consolidated diagnostic. The Cabinet Manager
(CM) monitors the reconfiguration activities, shuts down the
failed module and powers up a spare (SPR). A CM is associ-
ated with every cabinet (or cluster) where a cabinet consists
of a switch and all the modules connected to the switch. The
Data Loading and Configuration System (DLCS) comes into
play at the end of the reconfiguration. Its main function is to
load the spare with the application, to collect and control the
loaded configuration.

An alternative architecture for Reconfigurable IMA platform
was proposed in the DIANA project [EJST10]. This archi-
tecture shares the goals and assumptions of the SCARLETT
architecture. The goal is also to improve aircraft operational
reliability and it is assumed that the set of authorized con-
figurations is computed off-line. The DIANA architecture
is different because Fault detection, Fault diagnosis, Recon-
figuration Supervision and Data Loading are implemented
in a distributed way whereas they are implemented in a
centralized way in the SCARLETT architecture. In the DIANA
architecture, each module hosts a component that is able to
test the health status of its module and to exchange it with
other modules until a consensus is reached on the identity of
faulty modules. Then, based on the result of the consensus
protocol, the non-faulty modules select the new configuration
and they load the new applications. The authors claim that
the distributed implementation improves the availability and
integrity of reconfiguration mechanisms. In the SCARLETT
architecture, the loss of Centralized maintenance, Reconfigu-
ration Supervisor or Data Loading leads to the loss of recon-
figuration. This is not the case in the DIANA architecture. But
to achieve this improvement this architecture relies on a com-
plex and resource-consuming protocol between the modules
in order to reach a consensus. The SCARLETT architecture
brings a significant operational reliability improvement with
a simpler architecture that inter-operates with existing system
architectures for Maintenance and Data Loading.

III. SAFETY MODEL

The objective of this activity is to formally analyse the
behaviour of the reconfiguration system when some of its
functions fail. We are looking for combinations of function
faults that lead to the loss of the reconfiguration system (re-
configuration is not performed when needed leading to the loss
of some functions supported by the platform) or an erroneous
reconfiguration (reconfiguration is performed incorrectly lead-
ing to the erroneous behaviour of some functions supported by
the platform). We have considered that loss of reconfiguration
has no safety effect but erroneous reconfiguration should be
classified at least Hazardous.

A. ALTARICA models

The ALTARICA language [APGR99] was defined in the 90’s
in order to help the dependability analysis of systems. It is
based on extended finite automata which can exchange values
of specific variable (named flow variable) and which can be
synchronised (synchronised product or broadcast). The idea
is to describe the failure modes of a component as different
states of an automaton.

We modelled in ALTARICA using the tool Cecilia OCAS
[Sys07] developed by Dassault. The framework allows to
define component libraries: this is particularly interesting when
we construct several platforms since we can reuse compo-
nents. For the safety assessment of the preliminary design
of reconfigurable IMA, we built several ALTARICA models:
a functional view of a cabinet and of a multi-cabinet. In
this paper, we describe a model equivalent to the SCARLETT
demonstrator architecture. We have reused several components
and have specified the network components. The model is
shown in Figure 3.

The model is compliant with the demonstrator design: it is
composed of two cabinets. Two modules and CM; are con-
nected to switch S;. Three modules and CM5 are connected
to switch S3. One of the modules in the second cabinet is
a spare. Both switches are connected to a gateway separating
critical avionics and maintenance systems. Behind the gateway
are located the RS, DL and the CMS.



Fig. 3.

ALTARICA model

The safety model describes the nominal behaviour of these
components. Figure 4 shows the dialogue between a Module
and reconfiguration functions in order to establish whether
a module is faulty. The Module first sends its health status
to the CMS, that informs the RS that module 5 is faulty. In
that case the RS sends a request for fault confirmation to the
function”Module Test” of the Cabinet Manager. If the fault is
confirmed then the Cabinet Manager will switch off the faulty
module and inform the RS that module 5 is faulty and that
reconfiguration should be performed otherwise the Cabinet
Manager informs the RS that no reconfiguration is needed.
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Fig. 4. Module Fault Detection

The safety model also describes the faulty behaviour of
the components participating to the reconfiguration. Each
component has two failure modes: lost and erroneous. During
the Functional Hazard Analysis, that can be seen as equivalent
to a function based FMEA (Failure Mode Effect Analysis),
we have established the dysfunctional behaviour of each
reconfiguration function. For example, when the CMS is lost
the component is blocked and no fault is detected. In the
dialogue shown in figure 4 the CMS would not inform RS that
a module is faulty. Consequently the remaining steps of the
fault detection dialogue are not performed and reconfiguration
is not performed. When it behaves erroneously it detects a

non failed module as failed. In that case, in figure 4 scenario,
the CMS would inform RS that a module different from 5
is faulty, and the Module Test function would not confirm
that this module is faulty. So, in that case, the reconfiguration
would be stopped.

B. Failure scenarios

Cecilia OCAS generates automatically failure scenarios that
lead to a given situation. We looked for combinations of
function faults that lead to the loss of reconfiguration (e.g.
the platform configuration is not changed when a module has
failed). For the ALTARICA model corresponding to the demon-
strator, we obtained scenarios of the form : M;. fault; R. fault
where M;.fault indicates that module M; is faulty, and
R. fault indicates that reconfiguration function R (one of the
functions that appear in figure 2 as Fault Detection, Module
Test, deactivate CPM, ... ) is faulty. The sequence means that
after the module has failed (so reconfiguration is needed) if
function R fails then reconfiguration is not performed. For
instance, when module M; fails if function “Configuration
Selector” is lost, then a new configuration is not selected and
reconfiguration is not be performed. In that case applications
hosted by M; will be lost.

We also looked for combinations of function faults that
lead to an incorrect reconfiguration. We obtained scenarios
of the form : M;.fault; R.fault; R'.fault where R’ is a
reconfiguration function that acts as a mitigation means for
R faults. For instance, when module M; fails if function
”Configuration Selector” performs erroneously, it could select
a new configuration that is inconsistent with the configuration
that should be selected according to the reconfiguration graph.
If the reconfiguration proceeds with this inconsistent new
configuration it could be the case that some applications
behave erroneously. But the fault of "Configuration Selector”
is mitigated by function “Reconf Monitor” that checks that
the configuration index of the configuration chosen by the
selector is correct. If the configuration index is not correct
then reconfiguration is not performed.

These scenarios were used to show that the preliminary de-
sign of reconfiguration mechanisms enforced their qualitative
safety requirements. We showed that no single failure could
lead to the loss of reconfiguration and that no double failures
could lead to an erroneous reconfiguration.

The scenarios can also be used to test the implementation
of reconfiguration mechanisms. For each function R of the
reconfiguration architecture, it should be checked that the
fault of the implementation of R actually leads to the loss
of reconfiguration where the configuration of the platform
is unchanged. For functions that need a mitigation function
R’, then the test should also allow for the observation of the
mitigation function behaviour.

IV. SCARLETT DEMONSTRATOR

A demonstrator is developed within the SCARLETT project
in order to test the reconfiguration system. The main objectives
are:
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Fig. 5. Demonstrator architecture

1) to verify the feasibility of the reconfiguration principles. .
The mechanisms are implemented and evaluated. For
instance Onboard Maintenance Tools such as failure
confirmation or data-loading are automated in order to
be invoked by the reconfiguration function. Also new
core functions of the AFDX switches -transparent rout-
ing change- and CPM -transparent scheduling change- .
are under test.

2) to evaluate the performances. This includes the time
required for each step of a reconfiguration, the CPU and
network loads, the CPU schedule and network behaviour
in term of jitter;

3) to test the failure scenarios depicted in the safety assess-
ment.

The purpose of this section is to describe the failure scenarios
on the demonstrator.

A. Demonstrator overview

The demonstrator is described in the Figure 5. The platform
is composed of:

e a representative avionics bay: the avionic hardware is
shown on the left side within the dashed rectangle.
Partners of the project have developed 5 SCARLETT
processing modules and 2 SCARLETT communication
switch modules. The organisation of the connectors is
flexible enough to allow several platform architectures.
For instance the 5 modules can be linked to the same
switch or arranged in any manner on the 2 switches like
presented on the drawing. I/O modules are present on
the avionics platform with one actuator (REU), 2 multi-
purpose I/O modules (RDC).

a representative airborne server: on the right of the
gateway (G), in the open world area, this server hosts
the 2 cabinet managers (CM1 and CM2) the reconfigura-
tion supervisor (RS), the configuration checker (CC) as
well as the aircraft diagnostic agent (ADA) which is an
implementation of the CMS;

several software simulated components, drawn on the
right side, connected to the avionics bay via a gateway
(G). They are composed of a data loader (DLCS), a BITE
interactive mode manager (IM), a power controller (RPC)
and the test supervisor that is part of the test bed. The test
supervisor contains a traffic analyser (TA) to observe the
traffic in the switches as well as the network behaviour
during a reconfiguration, a set of debug tools (DT) to
observe the modules and a fault injection (FI) unit that
will generate a behaviour simulating a failure. The test
bed also simulates functions that are not available on the
avionic or open world modules : the flight warning system
(FWS) is simulated through the capability to forward the
alerts raised by the faulty system to the CMS, the e-
logbook is able to present in an HMI the CMS diagnostics
along with the report of reconfiguration built by the RS,
an electrical interface to power up/down the processing
modules, and various environmental condition generation
(discrete and analogue I/O, Temperature, flight phase,
time)

the avionics applications can be classified in 2 categories.
In the first category we can find the applications which are
part of the health monitoring chain, the RDA and the FSA
which report to the ADA and which are instrumented to
inject faults (FI) under the control of the test supervisor.



Under such a command chain, RDA and FSA can raise
system failures which are the conditions to trigger a
reconfiguration. In the second category we have the
avionics partitions which behaviour is studied when a
reconfiguration occurs : the background application (BA)
and the migrant applications (MA). The BA consists in
a time critical application made of 2 partitions and a
remote actuator. The MA is a set of 8 dummy applications
distributed on several modules. When a module fails, the
migrant applications initially hosted on the module are
moved to a spare module or on spare on several module.
During reconfiguration any side effect perturbing the BA
such as loss of network frames, CPU schedule jitter, will
be surveyed.

The objective of demonstration are played on the above
platform using several scenarios which cover the different
use cases: reconfiguration on ground as an alternative to a
maintenance operation, reconfiguration in flight to preserve a
good level of function, reconfiguration on a single CPM spare
or reconfiguration on distributed spare, reconfiguration local
to the cabinet or reconfiguration platform wide. The nominal
test plan involves the health monitoring chain from detection to
diagnostic, the management of failure effects and confirmation
by the maintenance system, the reconfiguration decision and
configuration selection, the application of a new configuration
through the mean of data-loading and power management of
the modules, configuration change and monitoring of opera-
tions, and finally the closure of reconfiguration with the report
into the e-logbook.

B. Testing of failure scenarios

Tests are derived from the failure scenarios described in
section III-A. The demonstrator designers have proposed a
way to simulate each of the faults found in the scenarios.
Several options are possible to simulate the faults. For in-
stance, to simulate a function loss it is possible to physically
or logically disconnect the link that is used to communicate the
function output. It is also possible to implement in the software
applications special modes to force the computation and
communication of incorrect results. Demonstrator designers
have also defined the way to observe the test scenario output
in order to decide whether the test was successful or not.

Testing failure scenarios is an on-going work and prelimi-
nary results will be described during the presentation.

V. LESSONS LEARNT

Several lessons were learnt during the design and safety
assessment of SCARLETT reconfigurable IMA platform. The
general lesson is that formal models can be used to support
the numerous interactions between design activities and safety
assessment activities.

At early steps of the system design when the Hazard
analysis is performed, it is very important that the safety team
can deliver safety requirements that will drive the architecture
design: mitigation means, required segregation between func-
tions and preliminary DAL allocation. At that level, an area

Fig. 6. Demonstrator

of improvement would be to develop a library of re-usable
generic components in order to have the ability to quickly build
models for hazard assessment. Another area of improvement
would be to apply tools that would use these models in order
to generate automatically a set of safety requirements such as
segregation and DAL allocation.

At the following steps of the system design when architec-
ture is developed, a safety model was built. It both describes
the nominal and faulty behaviour of reconfiguration mecha-
nisms. The model was very helpful to understand the details
of the propagation of faults among the main components of
the reconfiguration architecture. One difficulty for the safety
team was to take into consideration the various evolutions of
the architecture proposed by the system designers. One area of
improvement at that level would be to build the safety model
as a systematic extension of a model describing the nominal
behaviour that would be built by system designers.

When the system architecture is implemented and has to
be tested, we have shown how to guide the testing of re-
configuration mechanism implementation thanks to scenarios
generated from a safety model. The proposed approach helps
to select test case that are relevant with respect to safety.
One limitation of the work performed is that these scenarios
might be difficult to test if the implementation does not include
means to simulate the failure modes considered. To overcome
this limitation it is important that the safety team provides
to the implementation team, before the implementation has
started, a description of function failure modes that should be
tested.
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