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Abstract: This report studies the construction and uniqueness of physical solutions for the time-
harmonic scalar wave equation arising in helioseismology. Intuitively speaking, physical solutions
are characterized by their L2(R3)-boundedness in the presence of absorption, while without, by
their profile at infinity approximated by outgoing spherical waves (or retarded). For brevity, we
unite these two families (with and without absorption) under the label ‘outgoing’ or ‘physical’.
The definition of outgoing solutions to the equation in consideration or their construction and
uniqueness has not been discussed before in the context of helieoseismology. In our work, we
use the Liouville transform to conjugate the original equation to a potential scattering problem
for Schrödinger operator, with the new problem containing a Coulomb-type potential. Under
assumptions (in terms of density and background sound speed) generalizing ideal atmospheric
behavior, for γ 6= 0, we obtain existence and uniqueness of variational solutions using only basic
techniques in analysis. For γ = 0, under the same assumptions, the theory of long-range scattering
with singular potentials is employed to construct the resolvent by means of Limiting Absorption
Principle (LAP). Solutions obtained in this manner are characterized uniquely by a Sommerfeld-
type radiation condition at a new wavenumber denoted by k. The appearance of this wavenumber
is only clear after applying the Liouville transform. Another advantage of the conjugated form
is that it makes appear the Whittaker functions, when ideal atmospheric behavior is extended
to the whole domain R3 or outside of a sphere. This allows for the explicit construction of the
outgoing Green kernel and the exact Dirichlet-to-Neumann map and hence reference solutions
and radiation boundary condition. In addition, the role played by k in radiation condition and
asymptotic expansion of the solution suggests that k should be the more natural choice to use as
gauge function in approximating the exact nonlocal radiation condition. This perspective gives rise
to a simpler family of radiation boundary conditions. To supplement the theoretical discussion,
some preliminary numerical tests are carried out to investigate the robustness of this new family,
compared to those already existent in literature which were obtained in terms of the original
complex frequency ω.

Key-words: Coulomb potential, long-range scattering, short-range scattering, perturbation the-
ory, spectral theory, limiting absorption principle, Whittaker functions, helioseismology, outgoing
solution, outgoing fundamental solution, outgoing Green kernel, radiation condition, Schrödinger
equation, Liouville transform, absorbing boundary condition, exact Dirichlet-to-Neumann map,
radiation impedance coefficients.



Solutions sortantes pour l’équation des ondes scalaires en
héliosismologie

Résumé : Ce rapport étudie la construction et l’unicité des solutions pour l’équation des ondes
harmoniques scalaire dans un problème d’héliosismologie. De façon intuitive, les solutions physiques sont
caractérisées par le fait qu’elles soient bornées en L2(R3) en présence d’absorption (γ 6= 0), et, en son
absence (γ = 0), par leur profil à l’infini approché par une onde sortante (ou retardée) sphérique. Nous
unissons ces deux familles sous l’appellation ‘sortante’ ou ‘physique’. La définition des solutions sortantes
pour notre équation, ou leur construction et unicité n’a jamais été abordée pour le cas de l’héliosismologie.
Dans notre travail, nous utilisons la transformée de Liouville pour conjuguer l’équation originale et obtenir
un problème de diffusion pour l’opérateur de Schrödinger, avec un potentiel de type Coulomb. Sous des
hypothèses (relatives à la densité et à la vitesse du son dans le milieu) généralisant un comportement
atmosphérique idéal, nous obtenons, pour γ 6= 0, l’existence et l’unicité pour les solutions variationnelles
en utilisant les techniques d’analyse standard. Pour γ = 0, la théorie de diffusion longue portée pour
les potentiels singuliers est utilisée pour construire le résolvant à partir du principe d’absorption limite.
Les solutions obtenues ainsi sont caractérisées de façon unique par une condition de radiation de type
Sommerfeld, associée à un nouveau nombre d’onde k. L’apparition de ce nombre d’onde n’est seulement
claire qu’après avoir appliqué la transformée de Liouville. Un autre avantage de la forme conjuguée est
qu’elle fait apparaître les fonctions Whittaker, lorsque le modèle atmosphérique idéal est étendu sur tout
R3 ou en dehors d’une sphère. Cela permet de construire explicitement le noyau de Green sortant et la
condition Dirichlet-to-Neumann exacte; et ainsi les solutions de référence et les conditions aux limites
de radiation. De plus, le rôle de k dans la condition de radiation, et le développement asymptotique de
la solution montre que k est un choix plus naturel pour la fonction de jauge dans l’approximation de la
condition de radiation non-locale exacte. Cela nous donne une famille simple pour les conditions aux
limites de radiation. Pour compléter les résultats analytiques, des exemples numériques sont mis en place
pour tester la robustesse de cette nouvelle famille, et la comparer avec celles existantes dans la littérature,
qui sont obtenues avec la fréquence original ω.

Mots-clés : Potentiel de Coulomb, théorie de la perturbation, théorie spectrale, fonction Whittaker,
héliosismologie, solutions fondamentales sortantes, noyau de Green, condition de radiation, équation de
Schrödinger, transformée de Liouville, conditions au limite absorbantes, Dirichlet vers Neumann exact.
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1 Introduction
In this report, we give a theoretical exposition to construct physical solutions of the linear scalar wave
equation arising in helioseismology with unknown uorig and source forig,

− ω2

ρ c2
uorig − ∇ · (

1

ρ
∇uorig) = forig in R3 . (1.1)

The equation models the propagation of acoustic waves in the Sun’s interior and atmosphere, where c
denotes the sound speed, and ρ the density. This is a Helmholtz equation with variable coefficients and
is obtained under simplifying assumptions from the original vectorial problem, cf. [15] and discussion in
Remark 1. Absorption is prescribed in the form of a complex frequency1 ω ∈ C,

ω =
√

1 + i γ ω0 , ω0 ∈ R+ and γ ∈ R . (1.2)

Here, γ is called the absorption and the square root branch
√· is chosen so that Im

√· ≥ 0, see definition in
(4.11b). Intuitively speaking, ‘physical’ solutions, in the presence of absorption (γ 6= 0), are characterized
by their decay to zero at infinity ; in mathematical terms, they belong to L2(R3). When absorption tends
to zero, they display oscillatory behavior; the retarded ‘physical’ solutions are chosen so that they consist
of only outgoing spherical waves, which is however a delicate theoretical task.

Under the assumption that outside of compact set, c is constant and ρ exponentially decay, called Atmo
model, in [5], the first author and collaborators constructed radiation boundary conditions for equation
(1.1) when γ > 0, in order to obtain a numerical approximation (using finite element discretization) of
the physical solution that exists in the whole R3. Our work complements and extends theoretically the
numerical experiments in [5] by, under assumptions generalizing the Atmo model, providing a theoretical
definition of the ‘outgoing’ solution for γ ≥ 0, and justifying the existence and uniqueness of such a
solution. The analysis shines light on the structure of the solution,

exp(ψ) × 1

r
× exp(± iφω) × (bounded part) . (1.3)

This consists of a real exponential part represented by eψ with ψ a real function, an oscillatory part
described by a phase function φω depending on ω, and a bounded part. The exponential real part eψ
is common to all solutions, while it is the + or − in the oscillatory part that will distinguish between
bounded and non-bounded function when γ 6= 0, and between outgoing and incoming solution when
γ = 0. Because of this, in order to establish existence and uniqueness of solution, it is more natural to
conjugate eψ out of (1.3). This is one of the intuitions of our approach. We start with the same equation
considered in [5], but however use the Liouville transformation to rewrite it as a potential scattering
problem with Schrödinger operator. In particular, if uorig solves (1.1), then u = ρ−1/2uorig solves

−∆u + q(x)u − ω2

c2
u = ρ1/2forig , (1.4)

with
q(x) := ρ1/2(x) ∆ ρ−1/2(x) , x ∈ R3. (1.5)

Instead of having a first order perturbation of −∆, we only have zero-th order one.

Thanks to the Liouville transform, one can apply the theory of potential scattering for time indepen-
dent Schrödinger equation and obtain well-posedness for the conjugated problem (1.4) when γ = 0. Even
in the simplest (but important) case in helioseismology, the Atmo model, the potential q (1.5) contains a
repulsive Coulomb-like potential, i.e. a slowly-decay potential with a singularity at the origin, and places
the problem in the more challenging type of potential scattering. However, with some assumptions on ρ
and c (while still more general than Atmo), the slow decay of the potential is dealt with by the machinery

1This can also be of the form

ω =

√
1 + i

2 i γ

ω0
ω0 , ω0 ∈ R+ and γ ∈ R .

Inria



Outgoing solutions in helieoseismology 5

of long-range potential scattering by Ikebe and Saito, cf., e.g. [39]. The results obtained are not only the
existence of solution, but also resolvent bound, asymptotic expansion of solution cf. (3.88), as well as
radiation condition (3.87). Each of the two latter properties can be used to characterize the uniqueness
of the outgoing solution. There are slight modifications in applying the theory which as stated in [39]
only deals with real potential, while in our case, the potential can be complex due to the term ω2

c2 .

The framework of potential scattering gives rise to the normalized wavenumber k, which has impli-
cation in numerical approximation, in particular radiation boundary condition. The defined ‘outgoing’
conjugated solution is shown to satisfy a Sommerfeld-type radiation condition with in terms of k (and not
the original ω/c). This gives a new perspective in approximating the transparent boundary condition,
with the right gauge function in terms of k. In [5], ω and small angle of incidence in terms of ω are used
as gauge function, and are called there ‘parameters of interest’. Due to the length of the report, we only
restrict ourselves to preliminary tests of radiation boundary condition for the case Atmo. However, we
expect that in the general case (under applicable assumption), the simplest condition ∂ru−iku = 0 should
work as well as the zeroth-order Sommerfeld radiation condition (cf. [4, Sec 4.3]) for the Helmholtz equa-
tion. In addition, at the same order of approximation (of the nonlocal impedance coefficients), working
with k gives simpler radiation impedance coefficients with better performance (in terms of error compared
to the reference coefficients which are Dirichlet-to-Neumann (D-t-N) or nonlocal transparent one).

Another important advantage of working with Schrödinger equation is the natural link with the
Whittaker functions. In the case where one extents the behavior of ‘ideal atmospheric’ to the whole
domain, i.e. ρ is exactly described by a decaying exponential and c constant, one has explicit description
of the outgoing Schwartz kernel for the resolvent in terms of Whittaker functions, and when the Atmo
hypothesis are assumed outside of a sphere, one has explicit description of the analytical solution using
the same family of special function. The role played by the Whittaker functions is not as easy to recognize
in the original form (1.1). In the second problem, once analytical solutions are obtained, one not only
has the true reference solution, and but also the exact Dirichlet-to-Neumann map. The latter acts as
the true reference radiation impedance coefficient, which was lacked in [5], and thus has implication in
numerical implementation and evaluation of RBCs.

Liouville transformation was used in [30] to study the Calderón’s inverse conductivity problem with
an inhomogeneous conductivity, see also [28, 3]. In the context of helioseismology, this is the first time to
our knowledge2 that theoretical consideration and justification of the well-posed of the outgoing solution
is done. This transformation is also mentioned in recent work, cf. e.g. [40, 15, 13], or [29] in one
form or another, however it is used either for bounded domain, or it is not used to construct radiation
boundary condition. For more discussion on some recent appearance using this transformation, we
refer to the introduction of Section 2 and Remark 1–2. The second novelty of the work is in using
Liouville transformation and exploiting the theory of potential scattering to give a rigorous justification
for the existence of the outgoing solutions, as well as the asymptotic expansion and radiation condition.
The latter is used to characterize the uniqueness of outgoing solutions. As mentioned above, with the
recognition of the presence of the Whittaker function family in the problem, if the Atmo model is imposed
on the whole domain or outside of a sphere, one has explicit description of the analytical solutions. This
provides an accurate way to evaluate the performance of an approximate radiation boundary condition,
and adds to the novelty of the current work. Lack of the true D-t-N, a numerical approximation was
employed in [5] to create a reference solution. This however is only applicable in the case of absorption.
Since absorption is a natural physical phenomenon, the numerical reference solution is sufficient. However,
numerically, this type of numerical approximation will create troubles at very small absorption.

The organization of the report is as follows. We first describe in more details the Liouville transform in
Section 2 and introduce the generalized form of the problem in (2.19). Section 3 is devoted to discussion
of well-posedness of the physical solution. In the presence of absorption (γ 6= 0), a straightforward proof
is given to obtain the existence and uniqueness of variational solution, cf. Proposition 1 and Proposition
2. At zero absorption (γ = 0), we first extract elements of the theory of scattering with long-range and

2At the update of the second version of the report, we learn of the preprint [1] which also works with the conjugated
problem and allow for a Coulomb-type potential. They consider the problem S+Atmo in the context of inverse problem of
helioseismology. Instead of using the Whittaker functions, they use the Coulomb wave functions, which are normalized
version of Whittaker functions.

RR n° 9280



6 Barucq & Faucher & Pham

singular potentials needed for our consideration, and then, in Subsection 3.3 apply them to the case of
the conjugated problem. The constructed resolvent is given in (3.69) for γ > 0 and for γ = 0 in two
approaches, cf. (3.71) and (3.84), while the asymptotic expansion and radiation condition are stated in
(3.87) and (3.88). In Section 4, having the expression of the outgoing Green kernel, cf. (4.70), we give an
explicit construction and uniqueness proof of the solution in the spirit of Colton and Kress’s scattering
theory for Helmholtz operator in [12], cf. Prop 17. In particular, when γ = 0, the uniqueness is defined in
terms of several equivalent radiation conditions, cf. Prop 18, one of which is the classic Sommerfeld-type
radiation condition. The exact Dirichlet-to-Neumann map is also obtained, as well as additional results
such as Rellich-type uniqueness theorem, cf. Lemma 20 and expansion of solution in spherical harmonics,
cf. Prop 21. Section 5 rephrases all results of the conjugated problem as those for the original one (1.1).
In Section 6, we construct new radiation boundaries using the new gauge function k and provide a few
preliminary tests to show that its is more advantageous and correct to work with the wavenumber k.
More in-depth numerical experiments will appear in a second report.

2 Reduction to time-harmonic Schrödinger equation via Liouville
transform

In this section, we first describe the Liouville transformation and then describe how the theory of long-
range scattering for Schrödinger equation can be applied to the resulting problem. Let us introduce the
transformation. Denote by Lorig the original operator

Lorig u := −∇ · (ρ−1∇u) − ω2

ρ c2
u , (2.1)

which gives rise to the original problem (1.1),

Lorig uorig = forig . (2.2)

One applies the change of variable
u := ρ−1/2 uorig . (2.3)

The new unknown u solves the conjugated problem

Lu = ρ1/2forig , (2.4)

with conjugated operator L defined as

L := ρ−1/2 Lorig ρ1/2 = −∆− ω2

c2
+ q(x) . (2.5)

This is a Schrödinger operator with potential

q(x) := ρ1/2 ∆ ρ−1/2 , x ∈ R3. (2.6)

For algebraic derivation of this, see Prop. 24 in Appendix A.

This transformation was used in [30] to study the Calderón’s inverse conductivity problem with an
inhomogeneous conductivity, see also [3, p.10] or [2, Section 7.2.2 p.100]. More recently and in the context
of helioseismology, the approach to work with the Schrödinger equation is employed in [29, Eqn 1.4] for
inversion in time-distance helioseismology, and in [40] for helioseismic holography. While our potential
decays slowly at infinity, in [29], the conjugated problem is a perturbation of −∆ by a potential of compact
support, and the scattering theory for this type of potentials can be found in e.g. [12, Chapter 8]. This
assumption is also implied in [40], since only the Green kernel of the free Laplacian is employed there. In
spherical symmetry, the Liouville transform is more or less the usual ODE technique to remove first-order
derivatives. It is in this form that is mentioned in [13], see Remark 2, however the remaining work of [13]
uses the original equation; see further discussion on this point in Section 6 and Remark 27.

Inria



Outgoing solutions in helieoseismology 7

2.1 The conjugated potential
We study in more details the potential q (2.6). Denote by ∂r the radial part of the gradient

∂r :=
x

|x| · ∇ . (2.7)

We also define the function
α(x) := − ∂rρ

ρ(x)
. (2.8)

We can write the potential q (2.6) as (cf. Proposition (25) of Appendix A).

q(x) :=
3

4

∥∥∥∥
∇ρ
ρ

∥∥∥∥
2

− 1

2

∆ρ

ρ

=
α2(x)

4
+
∂rα(x)

2
+
α(x)

|x| +
1

|x|2
(3‖∇S2ρ‖2

4ρ2(x)
− ∆S2ρ

2ρ(x)

)
,

(2.9)

where S2 denotes the unit sphere. Spherical symmetry (i.e. with all coefficients depending only on r = |x|)
is an important assumption in many applications, including helioseismology, which in this context is called
the 1D-backgroundmodel cf. [13, Sect 2.2] or 1.5D problem cf. [15, Sect 6.1]. In this case, the background
density and sound speed are radial, i.e. ρ(x) = ρ(|x|) and c(x) = c(|x|), thus so is α(x) defined in (2.8).
In helioseismology, the quantity 1

α(r) is called the density scale height denoted by H(r), cf. [13, Eqn 12],

α(x) = α(r) = −ρ
′(r)
ρ(r)

:=
1

H(r)
. (2.10)

The potential q simplifies to,

q(r) =
α2(r)

4
+

α′(r)
2

+
α(r)

r
=

1

4H2(r)

(
1 − 2H ′(r) +

4H(r)

r

)
. (2.11)

In addition, the quantity q(r) c2(r) is called the cut-off frequency,

ω2
c (r) :=

c2(r)

4H2

(
1 − 2H ′(r) +

4H(r)

r

)
. (2.12)

2.2 The long-range behavior in Model Atmo
In order to investigate the invertibility by means of potential scattering theory, two important elements
have to be kept in mind: the growth/decay of a potential at infinity and its local integrability. We restrict
ourselves to cases that are applicable in helioseismology, and use as a basis of generalization the potential
q resulting from the model S + Atmo, cf. [5], in particular its decay at infinity (in the atmosphere) and
the local integrability (in the interior of the Sun). In this model, the interior of the Sun is described by ρ
and c following the model S [10] while the atmosphere is described by an exponentially decaying density
and constant sound speed, called ideal atmospheric behavior or simply the Atmo model, cf. [13, Sec. 2.3].
Concretely, in terms of the scaled radius r = R

R�
with R� the radius of the sun,

ρ(r) :=

{
ρS(r) , r ≤ Ra
ρS(Ra) e−α∞(r−Ra) , r > Ra

and c(r) :=

{
cS(r) , r ≤ Ra
c∞ , r > Ra

, (2.13)

with
ρS > ρ0 > 0 , cS > c0 > 0 . (2.14)

The extension into the atmosphere is achieved by continuing density ρ to be exponential decay at the
same rate at end of model S, while the sound speed c is smoothly extended to a constant c∞. For C1

continuity, we require that

cS(Ra) = c∞ ,
d

dr
ρS|−r=Ra = −α∞ ρS(Ra) ⇒ α∞ = 1

H(Ra) .

RR n° 9280



8 Barucq & Faucher & Pham

In Figure 1, we plot the radial profile of the density and velocity using (2.13) with Ra = 1.000699,
c∞ = 6.867 km s−1, and α∞ = 6663.62. In Figure 2, we plot the corresponding α from (2.10). We
observe that the profile of density and velocity in the Sun decreases rapidly below the surface of the Sun
which is indicated at scaled radius r = 1. It results in a sharp increase in α, cf. Figure 2, which, in
addition, shows an oscillatory pattern when we zoom.

0 0.2 0.4 0.6 0.8 1
10−7

10−1

105

scaled radius

ρ

ρ

ρ(Ra)

1.000399 Ra rmax

10−6

10−5

scaled radius

ρ

ρ(Ra)

(a) Profile of density: global (left) and zoom near Ra (right).

0 0.2 0.4 0.6 0.8 1

104

105

scaled radius

c

ρ

c(Ra)

1 Ra rmax

103.85

103.9

scaled radius

c

c(Ra)

(b) Profile of velocity: global (left) and zoom near Ra (right).

Figure 1: Profile of density and velocity in the model S+Atmo on r ≤ rmax = 1.001. The interior of the
Sun, r < Ra = 1.000699, is described by model S [10] and extended into the atmosphere by (2.13).

0 0.5 1

0

2,000

4,000

6,000

scaled radius

α

α

α(Ra)

0. 0.002 0.004

0

0.2

0.4

0.6

scaled radius

1.0004 Ra
rmax

6,200

6,400

6,600

scaled radius

α

α(Ra)

Figure 2: Profile of the inverse of density scale-height α from (2.10) in the model S+Atmo shown on the
whole interval r ≤ rmax (on the left) and zoomed (on the right) near Ra. This plot shows that α is

positive and is constant for r ≥ Ra. In addition, near r = 0, α is strictly positive, which means that the
resulting potential q (2.11) not only has a Coulomb-type potential but also a weak-singularity at r = 0,

cf. (2.15) and (2.16).

We next consider the form of the conjugated L in each region.

• In the atmosphere i.e. r > Ra, α(r) = α∞, hence α′(r) = 0, while c = c∞. The potential q is
simplified to,

q(x) =
α2
∞
4

+
α∞
r

, |x| ≥ Ra .

We write the conjugated operator into a normalized form, which reflects that in addition to the energy

Inria



Outgoing solutions in helieoseismology 9

level (0th term), there is also a perturbation by a Coulomb potential,

ρ1/2 Lorig ρ−1/2 = −∆ −
(
ω2

c2∞
− α2

∞
4

)

energy level

+
α∞
|x|

Coulomb potential

, |x| ≥ Ra . (2.15)

• In the interior, i.e. |x| < Ra, we simply have

ρ1/2 Lorig ρ−1/2 = −∆ − ω2

c2
+

α2(r)

4
+
α′(r)

2
+

α(r)

r
. (2.16)

In this region, it is the integrability of the potential that matters. The last term potentially carries a
singularity; however under the assumption that α is continuous, this term remains integrable in R3,
i.e., it is L1(R3).

Before further discussion, we need to give the definition of long-range versus short-range potentials.

Definition 1 (long-range). A long-range potential VL is a C3-function that decays slower than |x|−1 at
infinity,

|∂mVL(x)| ≤ C(1 + |x|)−δ−|α| , δ ∈ (0, 1] , 0 ≤ m ≤ 3. 4
Definition 2 (short-range). A short-range potential VS decays strictly faster than |x|−1, in particular

|VS(x)| ≤ C(1 + |x|)−1−δ , δ ∈ (0, 1] . 4

2.3 Generalization
The results in this report are applied to a generalization of model S+Atmo under the following assumptions.

1. Background density ρ is decreasing globally3 so that the inverse density scale height (α) is non-
negative.

2. Background sound speed c and density ρ do not oscillate at infinity and have limiting scalar values,
denoted by

α∞ := lim
r→∞

α ; α′∞ := lim
r→∞

α′ ; c∞ := lim
r→∞

c . (2.17)

We define the normalized wave number k2 which gathers contributions at zero-th order and the
limiting value s of the potentials,

k2 =
ω2

c2∞
− α2

∞
4
− α′∞

2
. (2.18)

3. In the atmosphere, background density ρ and sound speed c are extended in a way so that the
conjugated operator is a perturbation of −∆ − k2 by at most a Coulomb potential and a short-
range one, as shown in (2.19). However, it suffices for the current application to assume4 that c is
equal to a constant c∞ > 0 outside of a compact set.

With these assumptions, the conjugated operator (2.5) can be put into the following normalized form,

ρ1/2 Lorig ρ−1/2 = −∆ −
(
ω2

c2∞
− α2

∞
4
− α′∞

2

)

energy level

k2

+
α(x)

|x|
Coulomb-like

potential

− ω2
( 1

c2
− 1

c2∞

)

compactly supported
perturbation p1(x)

+
(α2

4
+
∂rα

2
− α2

∞
4
− α′∞

2

)

short-range perturbation
p2(x)

+
1

|x|2
(

3 ‖∇S2ρ ‖2
4 ρ2(x)

− ∆S2ρ

2 ρ(x)

)

short-range perturbation
p3(x)

.

(2.19)

3In fact, we only need ρ to decrease outside of a compact set, see Remark 7.
4However, the same result can be obtained for the case where

1

c2
− 1

c2∞
is short-range cf. Remark 16 or even long-range,

cf. Remark 13.

RR n° 9280



10 Barucq & Faucher & Pham

In the next section we will construct the resolvent for L in the presence of and without attenuation. The
latter case is done by means of long-range scattering theory. After some preparation, the results for L
are given at the end in Subsection 3.3. The resolvent is given in (3.69) for γ > 0 and for γ = 0 in two
approaches, cf. (3.71) and (3.84), while the asymptotic expansion and radiation condition, each of which
can be used to characterize the uniqueness of the constructed solution, are stated in (3.87) and (3.88).
The corresponding results for the conjugated problem are interpreted for the original one (1.1) in Section
5.

Remark 1. In the frequency domain, the scalar wave equation is obtained from the original vectorial
equation modeling small perturbations from a background described by Euler equation, cf. [15, Eqn 2–3]
also [40, Eqn 3.1],

−(ω0 + iγ̃ + iv · ∇)2 ξ − 1

ρ
∇(ρ c2∇ · ξ) + gravity terms = f . (2.20)

Here, in addition to the sound speed c and density, there is also the effect of the background flow v, and f
is the source. If one neglects gravity terms and second-order terms in γ and v, upon taking the divergence
and under the assumption of slow variations of v, c and γ compared to the wavelength, one obtains the
simplified scalar equation, cf. [15, Section 2.2 Eqn 5–7],

−ω
2

c
ũ − 2i

ω0

c
v · ∇ũ − ∇ ·

(
1

ρ
∇
(
ρ c ũ

))
= ∇ · f , (2.21)

in terms of unknown
ũ := c∇ · ξ .

To solve (2.21) using a FEM discretization, [15] works with another unknown, [15, Eqn 63]

uorig := ρ c ũ = ρ c2∇ · ξ .

This is also the unknown used in [5] and [13]. In terms of this unknown, the equation (2.21) becomes,
cf. [15, Eqn 64]

− ω2

ρ c2
uorig − 2i

ω0

c
v · ∇

(
uorig

ρ c

)
− ∇ ·

(
1

ρ
∇uorig

)
= ∇ · f .

In absence of flow i.e. v = 0, this is our starting equation (1.1), which is also the one considered in
[5, Eqn 2.1] and [13, Eqn 1]. In [40], another type of unknown is employed (following Lamb 1909 and
Deubner and Gough 1984),

u := ρ−1/2uorig = ρ1/2c2∇ · ξ,
which solves, cf. [40, Eqn (3.3)],

−∆u− ω2

c2
u+ ρ1/2∆ρ−1/2 u − 2i

ω0

ρ1/2 c
ρv · ∇

(
u

ρ1/2 c

)
= ρ1/2∇ · f . (2.22)

This amounts to working with the Liouville change of variable (2.3). In the absence of flow, this reduces5
to the Schrödinger equation (2.4)–(2.6) studied in the current work. 4

Remark 2. In the radial case, Liouville transform reduces to the usual technique in ODE to remove the
first order derivatives. There are two equivalent approaches.

• One first applies the Liouville change of variable ρ−1/2 uorig = u, then carries out separation of vari-
ables. One next eliminates the first order derivatives in the ODE in the radial variable r, which in
this case only contains 2

r∂r (the first order term of the radial Laplacian). The final unknown is w with
u = r−1w. In relation to the original unknonwn, w = r ρ−1/2uorig. The details of the computation are
listed in Section 4.
5There is although a difference with [40, Eqn (3.3)]. We start with the same source f (in [40, Eqn 3.1] and (2.20)),

however our source in the reduced equation (2.22) is ρ1/2∇ · f , while in [40, Eqn (3.3)] is ρ1/2c2∇ · f .
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Outgoing solutions in helieoseismology 11

• Equivalently, starting from the original equation in 3D (2.2), one first does a separation of variables,
and then eliminates the first order terms in the resulting ODE (in the variable r), which in this case is
( 2
r +α∞) ddr . This amounts to doing all-at-once the change of unknown w = rρ−1/2uorig. The details of

the computation are listed in Appendix A.2. This approach is also mentioned in [13, Eq. (8)], however
was not exploited to construct radiation boundary conditions, see further discussion in Section 6 and
Remark 27. 4

3 General discussion of well-posedness
In this section, we construct the resolvent of the conjugated operator L (2.5). There are three main parts
to the discussion:

1. in the first part (Subsection 3.1), we study the existence and uniqueness of solution for problem of the
form (

−∆ +
α(x)

|x| + p(x)− k2

)
u = f (3.1)

and (
−∆ +

α(x)

|x| + p(x)− ω2

c(x)2

)
u = f . (3.2)

These arise from the normalized form (2.19) of the conjugated operator L discussed in previous section.
When Im k2 6= 0, we obtain well-posedness in H1(R3), for the variational problem (3.1) and (3.2), by
using basic analysis tools such as ellipticity and coercitivity, and Lax-Milgram theory for sesquilinear
forms. These results are stated in Theorem 1 and 2 respectively.

Although the well-posedness results for variational solutions are sufficient for applications (in particular
for consideration with finite element discretization), for problem (3.1), in Subsection 3.1.4, we will also
state stronger results given by Kato and Kato-Rellich’s perturbation theory for self-adjoint operators.
Much stronger and further-reaching, these results describe the invertibility of the problem in terms of
the spectrum of the operator. We will only cite important theorems following mostly e.g. [17]. Under
necessary assumptions, with pm = minx∈R3 p ≤ 0, we will show that [pm,+∞) and thus R+ := [0,∞)
is contained in the spectrum, see Figure 3 and 4. It is also noted that criterion of being in H1(R3)
defines the physical solutions in the presence of absorption.

2. In the second part (Subsection 3.2), we state results from short-range and long-range scattering for
−∆ + V − λ with real potential V which is either short-range or long-range, respectively. Solution as
Im k2 → 0 are obtained as limiting of solutions off the spectrum, in a process called limiting absorption
principle (LAP). In the current convention, the physical solutions, called ‘outgoing’ are obtained by
approaching the spectrum from above, i.e. Im k2 → 0+. These solutions are shown to satisfy radiation
condition, which are then used to define them uniquely. There are three important elements:

• the existence of the above limit in certain function spaces as one approaches the spectrum, which
gives the existence of ‘outgoing’ solution.

• These solutions satisfy certain radiation condition.

• Their uniqueness under the radiation condition is intimately connected to the absence of positive
eigenvalues.

To show the LAP for short-range potentials, perturbation theory with respect to −∆ (the Agmon-
Jensen-Kato approach) can be used. This however excludes long-range potentials, and theory has to be
redone, and is replaced by e.g. the long-range scattering theory by Ikebe and Saito. Since the theory
is extremely technical and elaborate, we will only state the main results, following the exposition of
[39]. For radiation conditions, we will follow the exposition of [43].

3. In the third part (Subsection 3.3), we put together the results of the first two to obtain the resolvent
of conjugated operator L. Slight adaptations have to be made due to the dependence on frequency ω

of the term
ω2

c2
and the singularity at zero of Coulomb-type potential α(x)

|x| . The construction of the
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12 Barucq & Faucher & Pham

resolvent is given in (3.69) for γ > 0 and for γ = 0 in two approaches, cf. (3.71) and (3.84), while the
asymptotic expansion and radiation condition are stated in (3.87) and (3.88).

3.1 Well-posedness of variational problem in the presence of absorption

3.1.1 Recall of basic analysis tools

This subsection serves to recall some basic notions and facts (e.g. ellipticity and coercitivity) needed for
the well-posedness of a generic variational problem (off the spectrum) in Subsection 3.1.2–3.1.3,

for ` ∈ H? , find u ∈ H so that
d(u, v) = `(v) , ∀ v ∈ H . (3.3)

With the superscript ? denoting the dual (i.e. the space of bounded linear functional on H), we have
written

H := H1(R3) , V := L2(R3) , H? := H1(R3)? .

H-ellipticity A sesquilinear form d is continuous if there exists d > 0,

d(u, v) ≤ d ‖u‖H ‖v‖H, (3.4)

and is H-ellipticity if, cf. [37, Eqn (2.43)]),

∃σ ∈ C , |σ| = 1 , c > 0 :
∣∣Re σ d(u, u)

∣∣ ≥ c ‖u‖H1(R3). (3.5)

Given H-ellipticity of a sesquilinear form c, we have

c ‖u‖2H ≤ |Re
(
σ d(u, u)

)
| ≤ |σ d(u, u)| ≤ |d(u, u)| . (3.6)

For a continuous and H-elliptic sesquilinear form, the solvability of the variational problem (3.3) follows
from Riesz representation theorem, since (3.5) and (3.6) imply that c defines an inner product on H with
a norm that is equivalent to ‖·‖H). Or, we can also apply Lax-Milgram cf. [37, Lem 2.1.51]. In addition,
if `(v) = a(u, v) for all v ∈ H, then

c ‖u‖2H ≤ |`(u)| ≤ ‖l‖H? ‖u‖H.

With c the constant from (3.5), we obtain the bound for the unique solution u ∈ H.

‖u‖H ≤ 1

c
‖`‖H? . (3.7)

H-coercitivity If a continuous sesquilinear form d : H×H → C satisfies the Gårding inequality,

Re
(
d(u, u) + 〈Tu , u〉H?,H

)
> min {|Re k2| , 1} ‖u‖2H , (3.8)

with T : H → H? a compact operator, we have Fredholm alternative, cf. [19, Thm 5.3.10]. This means

• either for each ` ∈ H?, variational problem (3.3) associated to d has a unique solution, or

• there exists a finite-dimensional kernel space N = {u ∈ H
∣∣d(u, v) = 0 , ∀ v ∈ H}, and there exists

solution to the inhomogeneous problem (3.3) with right-hand side ` ∈ H? if and only if `(u) = 0 for
u ∈ N .

Hardy inequality Due to the presence of the Coulomb potential, we will also need Hardy inequality,
cf. [43, 1.4.2]

∫

Rd

|u(x)|2
|x|2 dx ≤ 4

d− 2

∫

Rd
|∇u(x)|2 dx , u ∈ H1(Rd) , d ≥ 3 . (3.9)
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Outgoing solutions in helieoseismology 13

3.1.2 Well-posedness result version 1

For k2 ∈ C with Im k2 6= 0, we consider the variational problem on R3 corresponding to problem
(
−∆ +

α(x)

|x| + p(x)− k2

)
u = f , (3.10)

under the following assumptions.

Function α(x) and p(x) are nonnegative, bounded and measurable functions, i.e.

0 ≤ α(x) ≤ αM < ∞ , 0 ≤ p(x) ≤ pM < ∞ . (3.11)

Remark 3. Note that in the current form and with the assumption α > 0, the potential V (x) :=
α(x)
|x| + p(x) is allowed to be singular at the origin. 4

Define sesquilinear form

a : H ×H → C

a(u, v) :=

∫

R3

(∇u) · (∇v) dx +

∫

R3

(
− k2 +

α(x)

|x| + p(x)
)
u v dx .

(3.12)

The variational problem associated to (3.10) reads

For ` ∈ H? , find u ∈ H such that
a(u, v) = `(v) , ∀v ∈ H . (3.13)

Below, we will establish H-ellipticity of a when k2 ∈ C \ R+ under hypothesis (3.11).

Proposition 1. The sesquilinear form a (3.12) with assumptions (3.11) has the following properties.

• The mapping a : H×H → C is continuous.

• When k2 ∈ C \ R+, a is H-elliptic with constants in (3.5) given by

Re k2 > 0 : σ :=
β

|β| , c =
δ

|β| =
|Im k2|
|k2 + i| with β = δ + i

δRe k2 + δ

Im k2
,

Re k2 < 0 : σ := 1 , c = min {|Re k2| , 1} .
(3.14)

As a result of this, when k2 ∈ C \ R+, the variational problem (3.13) has a unique solution u ∈ H,
satisfying estimates

‖u‖H ≤ C ‖l‖H? , with C =





|k2 + i|
|Im k2| , Re k2 ≥ 0

1

min {|k2| , 1} , Re k2 < 0

. (3.15)

Remark 4. In the language of spectral and perturbation theory, a potential V = α(x)
|x| + p(x) with α and

p satisfying hypothesis (3.11) is in the Kato-Rellich class (L2(R3) + L∞(R3)). With such a potential
V , operator HV := −∆ + V (x) with domain D(H) = H2(R3) is self-adjoint, thus has real spectrum.
In addition, if V is positive (which is the case under the current assumption (3.11)), then the spectrum
σ(HV ) ⊂ [0,∞). To further determine the structure of the spectrum in [0,∞), we need more hypothesis
on the behavior of V at infinity. For example, if in addition, V → 0 as |x| → ∞ then Kato theory gives
that σ(HV ) = σess(HV ) = [0,∞). This is the case if we assume additionally in (3.11) that p → 0 as
|x| → ∞. See further discussion in subsubsection 3.1.4. 4
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14 Barucq & Faucher & Pham

Ck2

k20

k20 + i γ

k20 − i γ

Figure 3: Under hypothesis (3.11), for k2 ∈ the highlighted region in blue C \ R+, Prop 1 states that
the variational problem to (−∆ + V (x)− k2)u = f with f ∈ H? has a unique solution u ∈ H.

Proof. Continuity: Under the assumption that α(x) is bounded and using Hardy’s inequality (3.9) in
dimension 3, ∥∥∥∥

u(x)

|x|

∥∥∥∥
V
≤ 2 ‖∇u‖V ,

to bound ∫

R3

|α(x)|
|x| |u(x)||v(x)| dx ≤ αM

∥∥∥∥
u(x)

|x|

∥∥∥∥
V

∥∥v(x)
∥∥
V

≤ 2αM
∥∥∇u

∥∥
V
∥∥v(x)

∥∥
V ,

(3.16)

and thus obtain the bound defining the continuity of a in H×H,

|a(u, v)| ≤ ‖∇u‖V ‖∇v‖V + (|k2|+ ‖p‖∞) ‖u‖V ‖v‖V + 2 ‖α‖∞
∥∥∇u

∥∥
V
∥∥v
∥∥
V

≤
(

1 + |k2|+ pM + 2αM

)
‖u‖H ‖v‖H.

(3.17)

Ellipticity: The real and imaginary of a(u, u) are given by

Rea(u, u) =

∫

R3

|∇u|2 dx +

∫

R3

(
− Re k2 +

α+ |x| p(x)

|x|
)
|u|2 dx ;

Ima(u, u) = −
∫

R3

(Im k2) |u|2 dx .

Re k2 < 0 In this case, we immediately have the bound

|Rea(u, u)| ≥
∫

R3

|∇u|2 dx + |Re k2|
∫

R3

|u|2 dx ≥ min{|Re k2| , 1} ‖u‖2H . (3.18)

Re k2 ≥ 0 For δ > 0, consider a complex number β = β1 + iβ2, β2 ∈ R,

Re
(
β a(u, v)

)

= β1 Rea(u, v)− β2 Ima(u, v)

= β1

∫

R3

|∇u|2 dx +

∫

R3

(
β2 Im k2 − β1 Re k2

)
|u|2 dx +

∫

R3

β1 (α(x) + |x| p(x))

|x| |u|2 dx .

Using the fact that α(x) > 0 and p(x) > 0, we obtain the lower bound

Re
(
β a(u, v)

)
≥ β1

∫

R3

|∇u|2 dx +

∫

R3

(
β2 Im k2 − β1 Re k2

)
|u|2 dx .
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Outgoing solutions in helieoseismology 15

We will choose β1, β2 so that each integrand in the above sum is positive, e.g.

β1 = δ , β2 :=
β1 Re k2 + δ

Im k2
. (3.19)

With this choice,

Re
(
β a(u, v)

)
> δ

∫

R3

|∇u|2 dx + δ

∫

R3

|u|2 dx = δ ‖u‖2H .

For the second to last inequality we have used that α ≥ 0. In this way, combined with (3.18), we have
shown the H-ellipticity of a with constants given in (3.14).

Remark 5. We cite the result of [24, Prop. 14.1 p.47] which gives the meromorphic continuation of the
resolvent. Consider R(ω) = (−∆ +V −ω)−1. The resolvent R(ω) : H−2 → L2 is a holomorphic operator
function for ω ∈ C \ ([0,∞)∪Σ) where Σ is a discrete set in [V0, 0). In a neighborhood of every point ωj
then the resolvent admits the Laurent expansion

R(ω) = − Pj
ω − ωj

+ Rj(ω),

where Pj is an orthogonal projection in L2 with a finite-dimensional range and Rj(ω) : H−2 → L2 is
holomorphic. The range of Pj consists of eigenfunctions

(−∆ + V − ω)ψ = ωj ψ , ψ ∈ RangePj .

3.1.3 Well-posedness result version 2

We extend the result of Proposition 1 by allowing p to have a negative lower bound, and let ω2 be
perturbed by a function which is constant outside of a compact set. We consider

(
−∆ +

α(x)

|x| + p(x)− ω2

c2(x)

)
u = f . (3.20)

We impose the following assumptions:

• The function α(x) is bounded nonnegative measurable,

0 ≤ α(x) ≤ αM < ∞ . (3.21)

• The function p(x) is bounded and measurable. In addition, it is allowed to take on negative values
but on a compact set, outside of which p is positive.

p(x) = pc(x) + pl(x) ,

with pm ≤ pc(x) ≤ pM < ∞ , Supp pc ⊂ B , −∞ < pm ≤ 0 ,

and 0 < pl < pM .

(3.22)

• The function c(x) is bounded, strictly positive, and is equal to a constant c∞ > 0 outside of a
compact set B,

0 < cm < c(x) < cM <∞ , Supp (1− c∞) c(x) ⊂ B . (3.23)

The associated sesquilinear form is given by

a : H ×H → C

a(u, v) :=

∫

R3

(∇u) · (∇v) dx +

∫

R3

(
− ω2

c2(x)
+
α(x)

|x| + p(x)
)
u v dx .

(3.24)
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16 Barucq & Faucher & Pham

The associated variational problem associated to (3.20) reads

For ` ∈ H? , find u ∈ H such that
a(u, v) = `(v) , ∀v ∈ H . (3.25)

We recall the Sobolev space notations H, V and introduce H1
0 (B) for a compact subset B,

H := H1(R3) , V := L2(R3) , H1
0 (B) := {u ∈ H

∣∣ Supp u ⊂ B} . (3.26)

We will show that if ω2 ∈ C \ ([0,∞)∪ S) for a discrete subset S of (−pm, 0], the variational problem
(3.25) has unique solution. Compared with Theorem 1, for which pm = 0, the difference here is in the
interval [pm, 0] where there will be discrete eigenvalues.

Proposition 2. Under assumptions (3.21)–(3.23), sesquilinear form a (3.24) has the following prop-
erties.

• The mapping a : H×H → C is continuous.

• When ω2 ∈ C \ [pmc2
M , ∞), a is H-elliptic. When ω2 < pm c2

M , the constants H-ellipticity
constants in (3.5) are

σ := 1 and c := min

{
−Reω2

c2
M

+ pm , 1

}
, (3.27)

while for Reω2 > pm c2
M , they are

σ :=
β

|β| and c :=
δ

|β| ⇒ c =
Imω2

|ω2 + i c2
M (1− pm)| , (3.28)

where for δ > 0, β is defined as,

β := δ
ω2 + i c2

M (1− pm)

Imω2
.

As a result of this, when ω2 ∈ C\[pm c2
M , ∞), the variational problem (3.25) has a unique solution

u ∈ H with estimate

‖u‖H ≤ C ‖l‖H? , with C =





|ω2 + i c2
M (1− pm)|
|Imω2| , Reω2 ≥ pmc2

M

1

min {−Reω2

c2M
+ pm , 1}

, Reω2 < pm c2
M

. (3.29)

• For ω2 ∈ [pmc2
M , 0], the Fredholm alternative holds for variational problem (3.25).

In fact, one can make a more precise statement: apart from a discrete set (possibly infinite)
S ⊂ [pmc2

M , 0], A(ω2) is invertible. In addition,

ω2 ∈ S , N (ω2) := {u ∈ V | A(ω2)u = 0 } is finite-dimensional .

Remark 6. In the case of constant wavespeed c, the perturbation theory provides more precise results. In
particular, with HV := −∆+ α(x)

|x| +p(x), if we impose in addition that p→ 0 as |x| → 0 (which means that
pl → 0 in (3.22)), then S is the discrete spectrum σdis(HV ) and [0,∞) is the essential spectrum σess(HV ).
This means that in the case S is infinite, its only limiting point is 0. In this case, V = α(x)

|x| + p(x) is
called a Kato-potential (B.2) (i.e. of type L2(Rn) + L2(Rn)ε). 4
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Outgoing solutions in helieoseismology 17

Ck2

...[
−pm

S

Figure 4: Illustration of results of Prop 2. Under hypothesis (3.21)–(3.23), for k2 ∈ C \ (S t [0,∞)), the
variational problem to

(
−∆ + α(x)

|x| + p(x)− ω2

c2(x)

)
u = f for f ∈ H? has a unique solution u ∈ H .

Here pm := minx∈R p(x), cM := maxx∈R c(x), and the set S represents a discrete (possibly infinite) set
in the interval [−pm, 0).

Proof. Continuity statement: As before, with α(x) bounded, we bound the term involving α
|x| of

a(u, v) using (3.16), and thus obtain the bound defining the continuity of a in H×H,

|a(u, v)| ≤ ‖∇u‖V ‖∇v‖V +

( |ω2|
c2
m

+ pM

)
‖u‖V ‖v‖V + 2αM

∥∥∇u
∥∥
V
∥∥v
∥∥
V

≤
(

1 +
|ω2|
c2
m

+ p‖M + 2αM

)
‖u‖H ‖v‖H.

(3.30)

Ellipticity statement: We develop the real and imaginary parts of a(u, u)

Rea(u, u) =

∫

R3

|∇u|2 dx +

∫

R3

(
− Reω2

c2(x)
+ p(x)

)
|u|2 dx +

∫

R3

α

|x| |u|
2 dx ;

Ima(u, u) = −
∫

R3

Imω2

c2(x)
|u|2 dx .

Reω2 < pm c2
M Since c2

M > 0, this condition can be written as

−Reω2 + pm c2
M > 0 ⇔ −Reω2

c2
M

+ pm > 0 ⇔ pm c2
M > Reω2 . (3.31)

Since pm ≤ 0 and c2 > 0, this also implies that

Reω2 < 0 ⇔ −Reω2 > 0 .

In addition, since
0 < c2(x) < c2

M , p(x) > pm ,

we have
−Reω2

c2(x)
+ p(x) >

−Reω2

c2
M

+ pm(x) > 0 .

Under the current hypothesis (3.31), the lower bound is strictly positive. Together with the fact that
α > 0, we obtain the H-ellipticity for a,

|Rea(u, u)| ≥
∫

R3

|∇u|2 dx +

∫

R3

(−Reω2

c2
M

+ pm
)
|u|2 dx

≥ min

{
−Reω2

c2
M

+ pm , 1

}
‖u‖2H .

(3.32)
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Re ω2 ≥ pm cM and Imω2 6= 0 Consider a complex number β = β1 + iβ2, β1 > 0, β2 ∈ R,

Re
(
β a(u, v)

)

= β1 Rea(u, v)− β2 Ima(u, v)

= β1

∫

R3

|∇u|2 dx +

∫

R3

(β2 Imω2 − β1 Reω2

c2(x)
+ β1p(x)

)
|u|2 dx +

∫

R3

β1
α

|x| |u|
2 dx .

Using that α ≥ 0, p(x) > pm, and β1 > 0.

Re
(
β a(u, v)

)
≥ β1

∫

R3

|∇u|2 dx +

∫

R3

(
β2 Imω2 − β1 Reω2

c2(x)
+ β1 pm

)
|u|2 dx . (3.33)

For δ > 0, we define β2 as

β2 Imω2 − β1 Reω2

c2
M

+ β1 pm = δ ⇔ β2 =
β1(Reω2 − c2

Mpm) + c2
Mδ

Imω2
. (3.34)

This also means that
β2 Imω2 − β1 Reω2 = c2

M δ − c2
M β1 pm .

Since c2
M > 0, δ > 0, β1 > 0 and pm < 0, with β2 as defined by (3.34), we have

β2 Imω2 − β1 Reω2 > c2
Mδ.

This means that

β2 Imω2 − β1 Reω2 > 0 and
β2 Imω2 − β1 Reω2

c2
M

> δ .

As a result of this,
β2 Imω2 − β1 Reω2

c2(x)
>

β2 Imω2 − β1 Reω2

c2
M

> δ.

We use this to further bound the right-hand-side of inequality (3.33),

Re
(
β a(u, v)

)
≥ β1

∫

R3

|∇u|2 dx +

∫

R3

(
β2 Imω2 − β1 Reω2

c2
M (x)

+ β1 pm

)
|u|2 dx

(3.34)
= β1

∫

R3

|∇u|2 dx + δ

∫

R3

|u|2 dx .

Upon choosing β1 = δ, we have

Re
(
β a(u, v)

)
> δ

∫

R3

|∇u|2 dx + δ

∫

R3

|u|2 dx = δ ‖u‖2H . (3.35)

With this choice and (3.34) for β2,

β = δ

(
1 + i

Reω2 − c2
Mpm + c2

M

Imω2

)
= δ

ω2 + i c2
M (1− pm)

Imω2
. (3.36)

The above results, combined with (3.32) have shown the H-ellipticity, Re
(
σ a(u, u)

)
≥ c ‖u‖H with

constants given by (3.27)–(3.28).

Coercitivity statement For the proof, we consider ω2 with

Imω2 = 0 , pmc2
M < Reω2 < 0 . (3.37)

We decompose a as
a(u, v) := ã(u, v) + 〈Mu, v〉H?,H
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where
ã : H ×H → C

ã(u, v) :=

∫

R3

(∇u) · (∇v) dx +

∫

R3

(
− ω2

c2(x)
+
α(x)

|x| + pl(x)
)
u v dx .

(3.38)

andM : H → H? is the multiplication operator by pc

〈Mu , v〉H?,H =

∫

R3

pc u v dx .

Denote the associated operators to a and ã by

Ã(ω2) := −∆− ω2

c2(x)
+
α(x)

|x| + pl(x) ; A(ω2) := Ã(ω2) + MH→V . (3.39)

The sesquilinear form ã (3.38) is H-elliptic in this case. In fact, for −Reω2 > 0, using the assumption
that α > 0 and pl > 0,

Re ã(u, u) >

∫

R3

|∇u|2 dx +

∫

R3

(−Re ω2)

cM
|u|2 dx > min{|Reω2| , 1} ‖u‖2H .

This also means the operator Ã(ω2) (3.39) is invertible with Ã(ω2)−1 : H? → H is bounded, which
restricts to a bounded operator Ã(ω2)−1 : V → H. In particular, for f ∈ V,

‖Ã−1f‖H ≤ C ‖f‖H? ≤ C‖f‖V .

On the other hand, under the current assumption 3.22, pc is compactly supported in B. We have the
compactness of the embedding i : H1

0 (B) ↪→ V, cf. e.g. [23, Theorem 3.7] or [24, Thm 7.2], with H1
0 (B)

defined in (3.26).
Weaker version: We haveM is a compact mapping,

MH→H? = iL2(R3) ↪→ (H1(R3))′

continuous embedding

◦ iH1
0 (B) ↪→L2(R3)

compact embedding

◦ MH1(R3)→H1
0 (B)

continuous

.

As a result, a satisfies the Gårding inequality,

Re
(
c(u, u) + 〈Mu , u〉H?,H

)
> min {|Reω2| , 1} ‖u‖2H .

From here, we obtain Fredholm alternative for variational problem (3.25) under the current assumption,
cf. subsection 3.1.1.

Stronger version: Since Ã(ω2)−1 : V → H is bounded for Reω2 < 0, this means that

Q− := {z ∈ C | Re z < 0}

is in the resolvent set ρ(Ã), and the function

Q− −→ L(V,H) is analytic

ω2 7→ Ã(ω2)−1 .
(3.40)

Decompose by the operator A(ω2) as

A(ω2)H→V = Ã(ω2)H→V + MH→V =
(
IdV→V + MH→V Ã(ω2)−1

V→H︸ ︷︷ ︸
=K(ω2) :V →V

)
Ã(ω2)H→V .

Hence, A(ω2) : H → V is invertible if (Id + K(ω2)) : V → V is. From (3.40), the mapping K(ω2)
is analytic on Q−. In addition, it is compact, being as a composition of continuous mappings with a
compact one,

K(ω2)V→V = iH1
0 (B) ↪→V

compact embedding

◦ MH→H1
0 (B)

continuous

◦ Ã(ω2)−1
V→H

continuous

.
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As a result, we can apply the analytic Fredholm theorem, cf. [34, Thm VI.14, p.201], to Id+K(ω2). The
proof is finished by recalling that, in the ellipticity statement, we have shown that when ω2 ∈ Q−\ [pm, 0],
a is H-elliptic, thus A(ω2)−1 : H → H? exists and is bounded, and restricts to a bounded map A(ω2)−1 :
H → V.

Remark 7. With minimal modifications, the condition on the global positivity of α can be relaxed to just
being positive outside of a compact set but still finitely bounded below. For example with 0 ≤ χ ≤ 1 a
cut-off function χ = 1 in |x| ≤ 1 and |χ| > 2, we can replace α in the proof with (1 − χ)α and pc by
pc + χα. The lower bound p is then pm = infx∈R3 pc + χα.

3.1.4 From the perspective of spectral theory and perturbation theory

We have shown that the operator −∆+V (x)−k2 : H → H? is invertible and with bounded inverse which
restricts to bounded map (−∆ + q(x) − k2)−1 : V → H. In the language of spectral theory, this means
the spectrum of −∆ + q(x) is contained in [0,∞). Spectral theory goes beyond this result and provide
more precise description of the spectrum. In particular, perturbation theory studies perturbations that
preserve some property of the spectrum of the unperturbed operator. In the case of Schrödinger operator,
one studies the spectrum of HV = −∆ + V (x) as a perturbation of the spectrum of σ(−∆). One precise
question is to determine the type of potential that would preserve first the self-adjointness and then the
essential spectrum of −∆. Here, we focus on potentials that vanish at infinity, i.e. V → 0 as |x| → ∞,
as opposed to potential that grows at infinity as in the case of the harmonic oscillator, e.g. V = c |x|2.
More basis facts and definitions are recalled in Appendix B, here we summarize the important results
for Schrödinger operator. Note that the potential of operator (3.1) under assumption (3.11) is Kato
potentials (i.e. of type L2(Rn) + L2(Rn)ε, see (B.2)). An important example of the Kato class is the
Coulomb potential, cf. [17, Example 14.8]. We defer further discussion for this case in Remark 23.

• As a result, cf. [17, Theorem 13.7], −∆ + V , with V a real Kato-Rellich potential, is self-adjoint on
domain D(∆) = H2(R3).

σ(HV ) ⊂ R , σ(HV ) = σdis(A)
⊔

σess(HV ) ;

σess(HV ) =
{
λ ∈ σ(A) | ∃ {un} ⊂ D(A) , ‖u‖ = 1 , un

w→ 0 , (A− λ)un
s→ 0
}
,

where t denotes the union of disjoint sets.

• More descriptions of the essential spectrum σess(HV ) are obtained if decay at infinity is imposed for
V ,

Theorem 3 ([17, Thm 13.9] ). Assume that V is real and ∆-bounded with relative ∆-bound < 1, and
that V (x)→ 0 as ‖x‖ → 0. Then HV = −∆ + V is self-adjoint on D(H + V ) = H2(Rn) and

σess(HV ) = σ(−∆) = [0,∞) .

• By Theorem 14.9 [17], all real Kato potentials are relatively ∆-compact. As a result, cf. [17, Cor.
14.10], for such a potential

σess(−∆ + V ) = σess(−∆) = [0,∞).

3.2 Construction and uniqueness of solution on the spectrum – Limiting
Absorption Principle

The following discussion will use the weighted spaces L2
σ(R3), which consist of ψ ∈ L2

loc(R3) with finite
norm, ∥∥(1 + |x|)σ/2 ψ(x)

∥∥
L2(R2)

< ∞ .

Theorem 4 (Weighted Sobolev embedding [24, Thm 2.5 p. 5]). For s1 > s2 and σ1 > σ2 then embedding
Hs1
σ1
⊂ Hs2

σ2
is a compact operator.
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3.2.1 Short-range real-valued potentials

For H := ∆ + V (x) where V (x) only contains short-range perturbations. The outgoing resolvent is
constructed based upon perturbation technique and uses the Born’s splitting

H − k2 = H0 − k2 + V = (H0 − k2)
(

Id +R0(k2)V
)
.

For the rest of the discussion of short-range, we follow the exposition in [24]. The theory is also discussed
in [39, Chapter 6 p.231].

The free resolvent The free resolvent can be constructed by using Fourier transform, cf. [24, Lemma
9.1]. Denote by R0(λ) := (−∆− λ)−1. We have

σ(−∆) = σcont(−∆) = [0,∞) .

R0(λ) : H−2 −→ L2 is holomorphic for λ \ [0,∞), cf. [24, Lemma 9.1 ii.]. By using limiting absorption
principle, one obtains the limit R0(λ0 ± i0), for λ0 > 0. Note that +i0 stands for the limit when
approaching from above the spectrum ([0,∞)) and −i0 from below. This also gives the limit R0(λ0± i0)
as a bounded map between L2

−σ → L2
σ for6 σ > 0. In particular, for ψ ∈ L2

σ with σ > 1
2 , cf. [24, p.72],

we have ∥∥R0(k2
0 ± iε)ψ − R0(k2

0 ± i0) ψ
∥∥
L2
−σ
−→ 0 , ε > 0 .

In addition, by [24, Thm 18.3], with σ > 1
2 , the function

{λ ∈ C : Imλ > 0} \ 0 −→ L (L2
σ , H

2
−σ) is continuous

λ 7→ R0(λ) .

Construction of the perturbed resolvent off the spectrum (k2 ∈ C \ [0,∞)) Given the free
resolvent at λ and the invertibility of 1 +R0(λ)V in L2(R3) for β > 0 cf. [24, Prop 10.3], then R(λ) can
be constructed as a bounded map between L2(R3) by using the Born splitting, cf. [24, Theorem 10.5 p.
33],

R(λ) =
(
1 + R0(λ)V

)−1 R0(λ) . (3.41)

The invertibility of Id +R0(λ)V is obtained by Fredholm theory, by first showing its compactness, cf. [24,
Lemma 10.2], and then by showing that for λ ∈ C\ [V0,∞), the only solution in L2 to (H−λ)ψ = 0 is the
trivial one, cf. [24, Prop 10.3]. Note that, for the compactness, we only need some decay. In particular,
we require for λ ∈ C \ [0,∞), if V satisfies

V (x) ∈ C(R3) , sup
x∈R3

(1 + |x|2)β/2 |V (x)| < ∞ , β > 0 , (3.42)

then R0(k2)V and VR0(k2) are compact in L2(R3), cf. [24, Lemma 10.2]. By definition, a short-range
decay requires β > 1. The resolvent is then extended as a meromorphic7 function to [V0, 0), cf. [24, Prop
14.1].

Construction of the perturbed resolvent on the spectrum k2 > 0 : We will take limit as λ
approaches the spectrum of the Born splitting (3.41), the result of which is given in [24, Theorem 19.2].
Here more decay requirement has to be imposed on the potential, i.e.

V (x) ∈ C(R3) , sup
x∈R3

(1 + |x|2)β/2|V (x)| <∞ , β > 1 . (3.43)

Since one will need to show [Id +R0(λ0 + ±iε)V )−1 → [Id +R0(λ0 + ±i0)V )−1. This requires the
following ingredients.

6Note that σ cannot be zero since [0,∞) is continuous spectrum (thus lack of the existence of bounded inverse in L2).
7In fact, the function C \ ((0,∞)∪Σ) −→ L(H−2, L2) , λ 7→ R(λ) given by (3.41) is holomorphic. Here Σ ⊂ [V0, 0) is

a discrete set.
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1. Limiting absorbing principle for the free resolvent, see discussion above.

2. The invertibility of Id +R(λ± i0)V is obtained by Fredholm theory as follows.

• One first shows the compactness of R(λ± i0)V . By [24, Lemm 19.1], for β > 1 and k0 > 0, we have8

R0(k2
0 ± i0)V : L2

−σ −→ L2
−σ is compact for σ ∈ ( 1

2 , β − 1
2 ) .

• Injectivity, if (1 +R0(λ± i0)V : L2
σ → L2

−σ for k0 > 0. We can apply Fredholm since R0(λ± i0)V
is compact. This means for invertibility we need injectivitiy, i.e. that for k > 0, the problem

(−∆− k2
0 + V (x))ψ = 0 , ψ ∈ L2(R3) ,

only has trivial solution ψ = 0. This is given by applying Agmon’s theorem which gives the decay
of eigenfuntion, cf. [24, Theorem 20.2] and then Kato’s theorem giving the absence of the positive
eigenvalues, cf. e.g. [24, Thm 15.1] or [39, Thm 1.1].
Theorem 5 (Kato). If the operator H = −∆ + V is defined with V satisfying

|v(x)| ≤ C (1 + |x|)−ρ , ρ > 1 ,

or V continuous real function satisfying

lim
|x|→∞

|x|V (x) = 0 ,

then H does not have positive eigenvalues. That is if Hψ = λψ with λ > 0 and ψ ∈ L2 then ψ = 0.

As a result, one obtains the convergence of

(1 +R0(λ± iε)V )−1 → (1 +R0(λ± i0)V )−1 , ε > 0 , ε→ 0 ,

in the norm L(L2
−σ, L

2
−σ) and that, for σ > 1/2, cf. [24, Thm 19.2], the mapping

{λ ∈ C | Imλ ≥ 0} \ (Σ ∪ {0}) −→ L(L2
σ, L

2
−σ) is continuous

λ 7→ R(λ) .

Uniqueness and asymptotics of solutions They follow from the properties of those given by the
free resolvent. In particular, the solution given by R(λ0 ± i0) is determined uniquely by the radiation
condition cf. [39, Eqn 6.1.9 p. 233]

lim
r→∞

∫

|x|=r
|∂ru(x) ∓ iλ1/2u(x)| dSr = 0 . (3.44)

The uniqueness statement can be found in [39, Theorem 6.1.7 or Theorem 6.1.4 p 233]. That the
limiting solution satisfies the radiation condition is shown in [39, Theorem 4.4 and Cor 4.5], by using the
asymptotics property of the free resolvent.

Remark 8. One has another definition of outgoing solution. For u ∈ L2
loc(R3), u is k0-outgoing solution

if
u = −R0(k2

0 + i0)f

outside of some compact set for f ∈ L2
σ(R3) with σ > 1/2, cf., e.g., [31, Definition 3.1].

8 This can be seen as follows. We first decompose the mapping from L2
−σ → L2

−σ as

L2
−σ

V→ L2
σ′

R0(λ+i0)→ H2
−σ′

i−→ L2
σ .

Requirements have to be imposed on σ, σ′ and β, for the first two mappings to be continuous and the last one to be
compact.
– The first mapping, under assumption (3.42), the multiplication operator by potential V is continuous if σ′ + σ < β.
– The free resolvent on the spectrum R0(λ+ i0) is continuous σ′ > 1

2
, cf. [24, Thm 18.3 i]

– The embedding i is continuous if σ′ < σ.
This means

1
2
< σ′ < σ , σ′ + σ < β ⇒ β > 1 .

This explains why we need β > 1, equivalently that V is a continuous short-range potential.
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3.2.2 Long-range real-valued potentials

We have seen in the previous discussion that in order to use perturbation theory with respect to −∆ to
obtain the limit on the spectrum of the resolvent of the HV := −∆ +V , one has to require that V decays
faster than |x|−1 at infinity. This requirement is needed to obtain the compactness of the R0(λ+±iV ),
which is a key ingredient in perturbation theory. The machinery has to be redone for slower decaying
potentials, e.g. the work of Ikebe and Saito, or by Mourre’s commutator method, cf. [39, p. 428] for the
review of literature of LAP. We consider the equation of the form,

(−∆ + V (x) − λ)u = f . (3.45)

Define the resolvent at λ when it exists

R(λ) := (−∆ + V (x)− λ)−1.

Assumptions: Real potential V is a bounded function, and for sufficient large |x|, admits a repre-
sentation as a sum

V = VS + VL , V = V , (3.46)

where VS is a short-range potential with

VS = O(|x|−ρs) , ρs > 1 , |x| → ∞ , (3.47)

and VL a long-range one differential in |x|,

VL = O(|x|−ρl) , ∂rVL = O(|x|−1−ρl) , ρl > 0 , |x| → ∞ . (3.48)

Using commutator estimates, it is shown, cf. [39] that the same radiation conditions as that for the
short-range case, cf. (3.44), can be used to define uniquely a solution to (3.45),

lim
r→∞

∫

|x|=r
|∂ru(x) ∓ iλ1/2u(x)| dSr = 0 . (3.49)

Theorem 6 (Uniqueness - [39, Thm 11.3.7]). Assume that potential V satisfies (3.46)–(3.48). If u ∈ H2
loc

is a solution of −∆ + V (x) − λ)u = 0 and u satisfies one of the radiation condition (3.49), then
u = 0.

Note that also by commutator estimate technique and the notion of H-smooth of Kato9, the absence of
positive eigenvalue is shown, in another word, the positive spectrum of −∆ +V is absolutely continuous,
cf. [39, Thm 11.1.1 and Cor 11.1.2].

Theorem 7 (Existence by LAP - [39, Thm 11.3.6 – 11.3.7]). Assume that potential V satisfies (3.46)–
(3.48), f ∈ L2

σ, and σ satisfies

1
2 < σ < 3

2 , σ < ρs − 1
2 , σ <

1 + ρl

2
. (3.50)

Define the set
Q := {λ = (k + iε)2 ∈ C | 0 < c1 ≤ k ≤ c2 , 0 < ε ≤ 1} .

9For V admitting a long-range potential, we cite [39, Corollary 11.1.2]. It uses Kato’s ‘smoothness’, cf. [39, Eq. 0.5.2 p.
30]. For a K-bounded operator G : H → C

sup
λ∈X , ε>0

∥∥G (R(λ+ iε) − R(λ− iε)
)
G?
∥∥ < ∞ .

The main result is [39, Prop 0.5.3 p.30] which gives that if there exists an operator G that is K-smooth on Borel set X ⊂ R
with KerG = {0}, then the spectrum of K is absolutely continuous on X .

To apply to the case of Shrödinger equation: it is shown in [39, Thm 1.1] if Q is the operator of multiplication by
(1 + r2)−σ/2 with

1
2
< σ < 1

2
min{ρs, 1 + ρl}

then Q is H-smooth, and if Ker G is trivial then H is absolutely continuous on X.
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Then the function

u : Q −→ L2
−σ(Rn) is continuous .

z 7→ u(z) := R(z)

Thus u(z) has boundary value along the cut [0,∞), denoted by u(λ0 ± i0), λ0 > 0. This is a solution of

(−∆ + V − λ0)u = f .

In addition, it satisfies the following estimates

‖u(z)‖−σ ≤ C ‖f‖σ ;

‖ur(z) − iλ1/2u(z)‖σ−1 + ‖∇⊥u(z)‖σ−1 ≤ C ‖f‖σ ,
(3.51)

where C does not depend10 on z ∈ Q. In particular, the limiting solution satisfies

ur(λ0 ± i0) ∓ iλ
1/2
0 u(λ0 ± i0) ∈ L2

σ−1 , λ0 > 0 .

As a result of this, it satisfies the outgoing (incoming) radiation condition (3.49).

For other discussion of resolvent estimate in weighted L2
σ spaces for LAP, we refer to the introduction

of [42, p. 859–862].

Theorem 8 ([14, Theorem 3.4]). Assume that potential V satisfies (3.46)–(3.48). In addition, the long-
range part VL is C3 with

|∂m VL| ≤ c (1 + |x|)−δ−|β| , δ ∈ (0, 1] , 0 ≤ |β| ≤ 3 .

With λ0 > 0, for f ∈ L2
σ, σ >

1
2 , then

11, with R(λ) = (−∆− λ+ V )−1,

(
R(λ0 + i0)f

)
(x) = π1/2λ

−1/4
0

eiφ(x,λ0)

|x| a+(
x

|x| ) + o(|x|−1) ,

(
∂rR(λ0 + i0)f

)
(x) = iπ1/2λ

1/4
0

eiφ(x,λ)

|x| a + (
x

|x| ) + o(|x|−1) ,

(3.52)

for some a+, a− ∈ L2(S2) as |x| → ∞. Here, the phase φ(x, λ) is an exact or approximated solution to
the eikonal equation

‖∇xφ(x, λ)‖2 + V (x) = λ . (3.53)

Remark 9 (Sharp LAP). We first note that in sharper form of LAP, the weighted L2
σ spaces are replaced

by the Agmon-Hörmander space B and B? its dual (with respect to L2(R3)). The space B consists of
functions f such that

‖f‖B :=

(∫

|x|≤1

|f(x)| dx
)1/2

+

∞∑

k=0

(
2n
∫

2n≤|x|≤2n+1

|f(x)|2 dx
)1/2

<∞. (3.54)

Denote by B′ its dual space with respect to L2. Its norm is given by [39, Eqn. 6.3.2], with an equivalent
form,

‖g‖B? := sup
r≥1

(
1

r

∫

|x|≤r
|g(x)|2 ds

)1/2

. (3.55)

10In fact, the constant C does not depend on λ from compact subset of (C \ {0}) ∩ (C \ [0,∞)).
11We also have similar for the incoming solutions(

R(λ− i0)f
)
(x) = π1/2λ−1/4 e−iφ(x,λ)

|x| a−(
x

|x| ) + o(|x|−1);

(
∂rR(λ− i0)f

)
(x) = iπ1/2λ1/4 e−iφ(x,λ)

|x| a−(
x

|x| ) + o(|x|−1) .
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Note that, cf. [39, p. 235],

L2
σ ⊂ B ⊂ L2

1/2 ⊂ L2 ⊂ L2
−1/2 ⊂ B? ⊂ L2

−σ , σ > 1/2 . (3.56)

Under the same assumption in cited Theorem 7, the resolvent estimate (3.51) can be replaced with

‖R(λ)‖B,B? ≤ C , Imλ 6= 0. 4

In the above cited theory, the potential V is assumed bounded. However, it can be allowed to develop
some singularity. We comment on this extension in the following remark.

Remark 10 (Scattering with long-range singular potential). Due the existence of a Coulomb-like potential
α(x)
|x| , where α is a continuous bounded function, we need to allow for singularity in V . However, we only
need results for mild singularity. For this purpose, we will cite results of [42] which is for a more general
problem: the magnetic potential. We will only need what is called the electric potential there, and set
the magnetic potential to zero in the assumptions and results of [42]. We first use [42, Assumptions
1.5,1.20–1.22], the real potential is decomposed into a short and bounded long-range one,

V = VL + VS , (3.57)

with assumptions,

VS , VL ∈ L1
loc(R3) ,

∫
(VS + VL) |u|2 dx ≤ β

∫
|∇u|2 dx , 0 < ν < 1 , (3.58)

and for some c > 0, r0 > 0 and µ > 0

|VL|
|x| + (∂rVL)+ + |VS| ≤

c

|x|1+µ
, for x ≥ r0;

VL = (∂rVL(x))+ = 0 , if |x| ≤ r0;

|VS| ≤
c

|x|2−β , for |x| ≤ r0 , β > 0 .

(3.59)

Here (·)+ is the positive part. Note that there is a switch in sign convention compared to [42]. Setting the
magnetic potential to be zero, for a fixed λ > 0, and all λ0 > λ, theorem [42, Thm 1.7] gives that there
exists a unique solution u ∈ H1

loc(R3) of the equation

(−∆ + V + λ0)u = 0 ,

satisfying estimate

λ0 ‖u‖2B? + ‖∇u‖2B? +

∫ |∇⊥u|2
|x| dx + sup

R>0

1

R2

∫

|x|=R
|u|2 dσR ≤ C(λ) ‖f‖B , (3.60)

and radiation condition with 0 < δ < 1 with δ < µ (here µ is in (3.58))

∫

|x|≥1

∣∣∣∣∇u − i
√
λ0

x

|x| u
∣∣∣∣
2

dx

(1 + |x|)1−δ ≤ C(λ) ‖f‖L2
2+2δ

. (3.61)

The solution is given as a limit of the sequence R(λ0 + i0)f as ε→ 0+ in H1
loc. Here B and its dual B?

are the Agmon-Hörmander spaces defined in (3.54)–(3.55). Note that ‖·‖B and ‖·‖B? are denoted in [42]
respectively by N1(·) and � · �1. 4

Remark 11 (L2-type radiation condition). The solution obtained by limiting absorption principle can be
shown to satisfy a Sommerfeld-type radiation, which in turns defines its uniqueness. For more discussion
of other forms of radiation condition see the introduction of [33, p.5]. We cite a result by Saito [36]. For

V = plong(x) + pshort ,
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where pshort is a short-range potential, and plong a bounded real function in C2(R3 \ {0})

|∂σxp(x)| ≤ c|x|−σ|x| , |σ| ≤ 2 ,

the solution given by limiting absorption principle satisfies radiation condition of the form,
∫

R3

∣∣∣∇u − i (∇φ)u
∣∣∣
2 dx

(1 + |x|)1−δ < +∞, (3.62)

where 0 < δ < 1 is a fixed constant. Here, the phase φ(x, λ) is an exact or approximate solution to the
eikonal equation

‖∇xφ(x, λ)‖2 + plong(x) = λ .

In more recent results by [33, 43], the radiation condition is given in the form,
∫

R3

∣∣∣∇u − iV∞ u
x

|x|
∣∣∣
2 dx

|x| < +∞ , (3.63)

where
V (x)→ V∞ , x→∞ .

For more discussion of other forms of radiation conditions, see the introduction of [36, 41, 33]. 4

3.3 Application to the conjugated operator
The goal of this section is to obtain the resolvent of the conjugated operator L := ρ1/2 Lorig ρ−1/2, cf.
(2.5). At the complex wave number ω2 introduced in (1.2),

ω = g2(1 + i γ) ω0 , where ω0 ∈ R+ and γ ∈ R,

where g2 is the branch of square root, cf. (4.11b). The normalized form (2.19) of L is

L = −∆ − k2 +
α(x)

|x| + p2(x) + p3(x) + ω2 p1 . (3.64)

The involved potentials are

p1 = − 1

c2(x)
+

1

c2∞
; α =

∂rρ

ρ
;

p2 =
α2

4
+

∂rα

2
− α2

∞
4
− α′∞

2
;

p3 =
1

|x|2
(

3 ‖∇S2ρ ‖2
4 ρ2(x)

− ∆S2ρ

2 ρ(x)

)
.

Here, we work under the assumption that the potentials do not oscillate and have constant limits at
infinity defined in (2.17),

α∞ := lim
r→∞

α ; α′∞ := lim
r→∞

∂rα ; c∞ := lim
r→∞

c .

In addition, p1 is smooth and compactly supported, while p2 and p3 are short-range potentials. α is
positive and bounded in L2(R3). The normalized wavenumber of the conjugated operator is defined in
(2.18)

k2 =
ω2

c2∞
− α2

∞
4
− α′∞

2
, (3.65)

from the complex frequency ω. When there is no attenuation, i.e. when γ = 0, the normalized wavenum-
ber reduces to

k2
0 =

ω2
0

c2∞
− α2

∞
4
− α′∞

2
. (3.66)
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We introduce the following family of potentials,

V0 :=
α(x)

|x| + p2(x) + p3(x) ;

Vβ := V0 + β p1 .

(3.67)

We also consider the following family of operators parametrized by complex numbers β and λ,

Lβ,λ := −∆ − λ + Vβ . (3.68)

We denote its resolvent by
Rβ(λ) := (Lβ,λ)−1 when it exists .

Note that the conjugated operator (3.64) is

L = Lω2,k2 , where k is defined by (3.65) .

Our goal is to consider
L−1 = Rω2(k2) .

Construction of solution for k2 ∈ C \ [0,∞) Recall that when Imω 6= 0, Prop 2 gives that

Rω2(k2) ∈ L2(R3) , ω2 ∈ C \ [0,∞) ∪ Σ , (3.69)

where Σ is a discrete set in [ac , 0), with

a := inf
x∈R3

V0 , c := sup
x∈R3

c .

Construction of solution for k2 ∈ (0,∞) It remains to define the resolvent at real parameters, i.e.

Rω2
0
(k2

0) .

We first make a remark regarding the real potentials V0 and Vω2
0
for fixed ω2

0 .

Remark 12. Potential V0 (3.67) contains both short-range and long-range contribution. The presence of
the Coulomb-like potential is dealt with by using the results of [42] discussed in Remark 10. We discuss
briefly how potential (3.67) satisfies the required assumptions of this theory. Using a cut-off function12
χ ∈ C∞c (R), we first rewrite the Coulomb-like potential as

α(x)

|x| = (1 − χ(x))
α(x)

|x| + χ(x)
α

|x| ,

to separate out the singularity behavior at the origin and the slow decay at infinity. The compactly
supported part χ(x) α(x)

|x| , which contains the Coulomb singularity, will be absorbed into the short range
one, and leaves the slow decay at infinity to the long-range part of the potential. In particular,

V0 = V S
0 + V L

0 , V L
0 = (1− χ(x))

α(x)

|x| . (3.70)

It can be verified that potential V L
0 and V S

0 satisfy assumptions (3.58) with µ in (3.58) equal to 1. On
the other hand, the real potential Vω2 is only different from V0 by a compactly supported term which is
smooth, we can use the same decompositions:

Vω2
0

= V L
ω2

0
+ V S

ω2
0

, V L
ω2

0
= V L

0 = (1− χ(x))
α(x)

|x| .

with V L
ω2

0
and V S

ω2
0
also satisfying (3.58). 4

12An example of χ is χ = 1 for |x| ≤ 1 and χ = 0 for |x| ≥ 2, and smoothly continued in between 1 and 2.
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Approach 1 For each fixed ω2
0 , Remark 12 allows us to apply Theorem 1.7 of [42] to operator

−∆ + Vω2
0
,

which gives that the mapping

Q −→ L(B , B?)

λ 7→
(
−∆ + Vω2

0
− λ

)−1 is uniformly continuous .

Here
Q := {λ ∈ C | 0 < c1 < Reλ < c2 , 0 ≤ Imλ ≤ 1} .

In particular, the boundary limit as Imλ→ 0 exits which gives a definition at λ = k2
0 for

Rω2
0
(k2

0) :=
(
−∆ + Vω2

0
− (k2

0 + i0)
)−1

. (3.71)

In addition, for f ∈ B, Rω2
0
(k2

0)f defines the unique solution u ∈ H1
loc(R3) to

(−∆ + Vω2
0
− λ)u = f , with λ = k2

0 , (3.72)

satisfying radiation condition (3.61) at λ = k2
0,

∫

|x|≥1

∣∣∣∣∇u − i k0
x

|x| u
∣∣∣∣
2

dx

(1 + |x|)1−δ < ∞ , 0 < δ < 1 . (3.73)

and asymptotic expansion (3.88) listed below.

Remark 13. In this approach, p1 does not have to be compactly supported, it only needs to decay no
slower than a long-range potential.

Approach 2 The difference here is to work solely with operator −∆ − V0 and its resolvent R0(λ)

and use perturbation theory. The result is achieved in two steps.

Step 1 By Remark 12, we can apply Theorem 1.7 of [42], cited in Remark 10, which gives that

Q −→ L(B , B?)

λ 7→ (−∆ + V0 − λ)−1
is uniformly continuous , (3.74)

and thus has boundary value as Imλ→ 0+. It defines a bounded inverse at λ = k2
0,

R0(k2
0) :=

(
−∆ + V0 − (k2

0 + i0)

)−1

∈ L(B , B?) , σ > 1/2 . (3.75)

In fact, with Σ′ denoting a discrete set in [a, 0), we have the definition of

R0(λ) ∈ L(L2(R3)) , for λ ∈ C \ ([0,∞) ∪ Σ′) with Reλ ≥ 0 ;

R0(λ) ∈ L(B , B?) , for λ ∈ (0,∞) .
(3.76)

In addition, for λ > 0, R0(λ)f defines the unique solution to (−∆ + V0 − λ)u = f satisfying radiation
condition (3.61).

Remark 14. Note that the results in 10 gives the sharp form of LAP in the Agmon-Hörmander spaces B
and its dual B? (3.55). The current (weaker) result in weighed L2 space is obtained by using the inclusion
of spaces (3.56). 4
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Step 2 It remains to take care of the compact supported perturbation ω2p1. We write −∆ − Vβ − λ
as a perturbation of −∆ − V0 − λ,

−∆ − Vβ − λ =

(
Id + β p1 R0(λ)

)(
−∆ − V0 − λ

)

=
(
−∆ − V0 − λ

)(
Id + βR0(λ) p1

)
.

(3.77)

This leads to the Born splitting

Rβ(λ) =

(
Id + βR0(λ) p1

)−1

R0(λ) . (3.78)

Remark 15. Note that when ω ∈ λC \ ([0,∞)∪Σ′) with β = ω2 and λ = k2 defined in (3.65), using the
Born splitting (3.78), we reobtain Rω2(k2) in (3.69). 4

We focus on the case when β = ω2
0 ,

Rω2
0
(λ) =

(
Id + ω2 R0(λ) p1

)−1

R0(λ) .

Given the existence of R0(λ) in Step 1, cf. (3.76), it remains to justify the existence of the inverse of

Id + ω2
0 R0(k2

0) p1 .

We proceed as follows.

• Using the same argument for (−∆−k2
0) in Subsubsection 3.2.1, in particular Ingredient 2 and Footnote

8, we obtain that, for ϑ > 2 and σ ∈ ( 1
2 , ϑ− 1

2 ), the mapping

ω2 R0(k2) p1 : L2
−σ −→ L2

−σ is compact .

Note that we have used Remark 14 which translates the fact that R0(k2
0) ∈ L(B,B?) into R0(k2

0) ∈
L(L2

σ′ , L
2
−σ′) for σ′ > 1

2 . Elliptic regularity gives that R0(k2
0) ∈ L(L2

σ′ , H
2−σ′) for σ′ > 1

2 , which is
one of the ingredients needed, cf. Footnote 8.

• We now have a Fredholm operator, and we next verify for injectivity. We show that the homogeneous
problem (

Id + ω2
0 R0(ω2

0 + i0) p1

)
ψ = 0 , (3.79)

only has trivial solution in L2
−σ for σ ∈ ( 1

2 , ϑ − 1
2 ). With the current σ, solution ψ has the following

properties.

– We can rearrange (3.79) to rewrite ψ as an outgoing solution with right-hand-side g := p1 ψ,

ψ = −ω2
0 R0(ω2

0 + i0) g ∈ L2
−σ .

Since p1 is of compact support, g ∈ L2
σ′ for all σ

′ ∈ R. As a result of this, ψ satisfies a priori estimate
(3.60) and radiation condition (3.61) with 0 < δ < 1 (here µ in (3.58) is chosen to be 1)

∫

|x|≥1

∣∣∣∣∇ψ − i
√
λ0

x

|x| ψ
∣∣∣∣
2

dx

(1 + |x|)1−δ ≤ Cω4
0

∫
(1 + |x|)1+δ |g|2 dx . (3.80)

Since g ∈ L2
σ′ for all σ

′ ∈ R, this means ψ satisfies condition (1.28) of [42] for some δ > 0,
∫

|x|≥1

∣∣∣∣∇ψ − ik0
x

|x| ψ
∣∣∣∣
2

dx

(1 + |x|)1−δ < ∞ . (3.81)

By the second result of [42, Theorem 1.6], solution ψ satisfies condition (1.27) there,

lim inf

∫

|x|=r

(
|∇ψ|2 + k2

0 |ψ|2
)
dσ(x) −→ 0 , as |x| → ∞. (3.82)
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– Solution ψ of (3.79) also satisfies

(−∆ + V0 − k2
0)

(
Id + ω2

0 R0(ω2
0 + i0) p1

)
ψ = 0 .

After rearrangement, this means ψ is a solution of the homogeneous equation
(
−∆ + Vω2

0
− k2

0

)
ψ = 0 . (3.83)

By Remark 12, we can then apply the first result of Theorem 1.6 of [42] which gives that ψ ≡ 0 since
ψ is solution of (3.83) and satisfies the radiation condition (3.82).

With these ingredients, for ω0 > 0, we have the convergence
(

Id + ω2 R0(k2) p1

)−1

−→
(

Id + ω2
0 R0(k2

0) p1

)−1

in the norm L(L2
−σ , L

2
−σ) ,

and we use the Born splitting to define

Rω2
0
(k2

0) :=

(
Id + ω2

0 R0(k2
0) p1

)−1

R0(k2
0) , (3.84)

as a bounded map in L(L2
σ , L

2
−σ) for σ > 1/2.

Properties of outgoing solution Using the same argument as above, we can use the left Born splitting
to obtain

Rω2
0
(k2

0) := R0(k2
0)

(
Id + ω2

0 p1 R0(k2
0)

)−1

. (3.85)

Note that Id + ω2
0 p1 R0(k2

0) is compact and bounded in L2
σ. This allows us to write

Rω2
0
(k2

0) f = R0(k2
0) g ,

where

g =

(
Id + ω2

0 p1 R0(k2
0)

)−1

f ,

with f ∈ L2
σ, g ∈ L2

σ. From the property of R0(k2
0), the solution R0(k2

0) g satisfies radiation condition
(3.82), which is of the form of (3.73). As a result, the defined resolvent also defines a solution to (3.72)
and satisfies the radiation condition (3.73). The uniqueness of such a solution is guaranteed by [42,
Theorem 1.6], employed in Approach 1. In another word, we arrive at the same solution given by (3.71),
which is defined uniquely by the radiation condition (3.61) at λ = k2

0,
∫

|x|≥1

∣∣∣∣∇u − i k0
x

|x| u
∣∣∣∣
2

dx

(1 + |x|)1−δ < ∞ , 0 < δ < 1 . (3.86)

In addition, it has the asymptotic expansion, for f ∈ B,

(
Rω2

0
(k2

0)f
)
(x) = π1/2k

−1/4
0

eiφ(x,k0)

|x| a+(
x

|x| ) + o(|x|−1);

(
∂rRω2

0
(k2

0)f
)
(x) = iπ1/2λ

1/4
0

eiφ(x,λ)

|x| a + (
x

|x| ) + o(|x|−1) ,

(3.87)

for some a+, a− ∈ L2(S2) as |x| → ∞. and the phase φ(x, λ) is an exact or approximate solution to the
the eikonal equation

‖∇x φ(x, λ)‖2 + Vω2
0
(x) = k2

0 . (3.88)

Remark 16. In the second approach, the same reasoning still applies if p1 is a short-range potential. In
particular, the compactness of R0(k2)p1 : L2

−σ → L2
−σ for σ ∈ ( 1

2 , ϑ − 1
2 ) with ϑ > 2 still holds true for

p1 short-range.
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4 The reduced problem in radial symmetry with constant α and
constant c

In this section, we extend the Atmo model to the whole domain and consider Equation (1.1) with the
wavespeed c constant, and density ρ exponentially decreasing, i.e.

ρ(x) = c e−α∞ |x| with constant α∞ > 0 . (4.1)

This means α (2.8) is now constant thus ∂rα = 0 and α′∞ = 0. In this case, as shown in Section 2, cf.
(2.15), the potential q (1.5) of the reduced operator simplifies to

q(r) =
α2
∞
4

+
α∞
r
.

The conjugated equation (1.4) simplifies to

Lu = g where L = −∆ +
α2
∞
4
− ω2

c2︸ ︷︷ ︸
−k2

+
α∞
r

, g = ρ1/2f . (4.2)

See also Remark 2. The constant ω2

c2 −
α2
∞
4 is called an energy level. Here k is a choice of square root of

this value. The choice of square root is discussed in subsection 4.1.

We carry out the following tasks.

1. We introduce the fundamental kernel Φk(x, y) given by [18] in (4.70) and (4.74) and show that it is
indeed a fundamental solution to (4.2), i.e. a distributional solution of

(
−∆x − k2 +

α∞
|x|
)

Φk(x, y) = δ(x− y) .

This is carried out in the proof of Prop 15. We also obtain the asymptotic expansion and radiating
property for Φk and y

|y| · ∇yΦk(x, y) when y stays in a bounded set and |x| → ∞, cf. Prop 11, Prop
12 and Prop 13.

2. The kernel of the resolvent

R(k2) :=

(
−∆− k2 +

α∞
|x|

)−1

is given by Φk(x, y). This defines outgoing solutions in the presence and absence of absorption, cf.
Prop 17. We show that the constructed resolvent and solution satisfy a Sommerfeld-type radiation
condition associated with wavenumber k, cf. Prop 18. This radiation condition and other equivalent
variants are shown to characterize the solution uniquely, cf. Prop 19.

3. Additional results are obtained such as a Rellich-type uniqueness theorem, cf. Lemma 20, the expansion
of general solutions to the homogeneous equation in spherical harmonics, cf. Prop 21, and the exact
outer Dirichlet-to-Neumann map, cf. Prop 22. The last result is used in Section 6 as a reference
radiation boundary condition.

Separation of variables Decompose the solution u and right-hand side g of (4.2) in basis of spherical
harmonics,

u(r, θ, φ) =

∞∑

`=0

∑̀

m=−`
um
` (r) Ym

` (θ, φ),

g(r, θ, φ) =

∞∑

`=0

∑̀

m=−`
gm
` (r) Ym

` (θ, φ),
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with

gm` =

∫ π

0

∫ 2π

0

g(r, θ, φ) Ym
` (θ, φ) sin θ dφ dθ.

Then um
` solves (

− d2

dr2
− 2

r

d

dr
− k2 +

α∞
r

+
`(`+ 1)

r2

)
um` = gm` . (4.3)

Define unknown w by
um
` := r−1 w. (4.4)

Then w solves (
− d2

dr2
− k2 +

α∞
r

+
`(`+ 1)

r2

)
w = r gm` . (4.5)

We next introduce the change of variable

z = 2 ei
π
2 k r . (4.6)

The function W defined by
w(r) = W (z := 2 i k r) , (4.7)

satisfies13

( d2

dz2
− 1

4
+

iα∞2k
z

+
1
4 − (`+ 1

2 )2

z2

)
W =

z

2 i k

1

4k2
gm`

( z

2ik

)
, ` ∈ Z. (4.8)

When the right-hand-side is zero, equation (4.20) is a special case of the Whittaker equation,

∂2
z W +

(
− 1

4
+
κ

z
+

1
4 − µ2

z2

)
W = 0 , χ ∈ C , µ ∈ C , (4.9)

studied by Whittaker and Watson, cf. [20, (1.4)]. In our case, the index µ is of the form µ = `+ 1
2 and

κ = iα∞
2k . We first give a brief description of the solutions to (4.9).

4.1 Notations

Choice of square root branch We consider the following Argument branches,

Arg1 : C −→ (−π, π] ; Arg2 : C −→ [0, 2π) . (4.10a)

The first one is the usual Principal square root branch, cf. [27]. Denote by g1 and g2 the two branches
of square root corresponding to the above arguments,

g1(z) = |z|1/2e
1
2 i Arg1(z) ;

g2(z) = |z|1/2e
1
2 i Arg2(z) .

(4.11a)

(4.11b)

They have the following properties in terms of the sign of the real and imaginary part,

Re g1(z) ≥ 0 while Im g2(z) ≥ 0 . (4.12)
13This can be seen as follows. Under the current assumption, c and α∞ are constant, hence

∂rw = 2i k ∂zW , −∂2
rw = 4 k2 ∂2

zW .

We divide by 4k2 the last three terms in (4.5). This gives −1/4 in (4.20). On the other hand, 1
4k2
× the last two terms in

(4.5) gives the corresponding last two terms in (4.20) since

α∞
r

1

4 k2
=

iα∞
z

1

2k
,

`(`+ 1)

r2

1

4k2
= − `(`+ 1)

z2
=

1
4
− (`+ 1

2
)2

z2
.
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The complex frequency With ω0 > 0, using the square root branch g2, we define

ω = g2(1 + i γ)ω0 , ω0 ∈ R+, γ ∈ R . (4.13)

With the above convention, we have (see also Remark 17),

Imω ≥ 0 . (4.14)

The complex wavenumbers and parameters Using the square root branch g2, we define k as the
square root,

k := g2

(
ω2

c2∞
− α2

∞
4

)
= g2

(
ω2

0

c2∞
− α2

∞
4

+ i
γ∞
c2∞

ω2
0

)
;

η :=
α∞
2k

; χ := i η .

(4.15)

Under the square root branch (4.11b),
Im k ≥ 0 . (4.16)

To denote the dependency on γ, we will also write

kγ , ηγ , χγ .

Remark 17. We have defined in (4.13) and (4.15) ω and k respectively by using the square root branch
g2 (4.11b). However, if γ ≥ 0, which is the case in our application, Imω2 ≥ 0, and Im k2 ≥ 0. As a
result, from the discussion in Appendix J.1,

Arg1(k2) = Arg2(k2) , Arg1(ω2) = Arg2(ω2) , γ ≥ 0

⇒ g1(
ω2

c2∞
) = g2(

ω2

c2∞
) , g1(k2) = g2(k2) , γ ≥ 0 .

(4.17)

4

The real wavenumber and parameters We will reserve the subscript 0 for the corresponding
wavenumber and parameters above at γ = 0,

k0 = g2

(
ω2

0

c2∞
− α2

∞
4

)
; η0 =

α∞
2 k0

; χ0 = i η0 . (4.18)

However, one has to pay attention to signs when taking the limit of k and as γ → 0, under the current
choice of square root branch. We have the following one-sided limits, when

ω0

c∞
>
α∞
2

,

kγ → k0 , ηγ → η0 , χγ → χ0 , as γ → 0+;

kγ → −k0 , ηγ → −η0 , χγ → −χ0 , as γ → 0− .
(4.19)

However, for
ω0

c∞
<
α∞
2

, these one-sided limits coincide, i.e. limγ→0+ kγ = limγ→0− .

4.2 Whittaker functions
Here, we introduce the Whittaker functions which are solutions to the Whittaker equation introduced in
(4.9),

d2

dz2
W +

(
− 1

4
+
κ

z
+

1
4 − µ2

z2

)
W = 0 . (4.20)

Solutions to (4.9) are obtained from those of the Kummer’s equation

z
d2

dz2
u + (b− z) d

dz
u − au = 0 . (4.21)
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In particular, if Y (a, b; z) is a solution to (4.21), then Xκ,µ, defined as

Xκ,µ(z) := e−
1
2 z z

1
2µ Y ( 1

2 + µ− κ , 1 + 2µ ; z) , (4.22)

satisfies (4.9). Below we will give self-contained definitions for the Whittaker functions. However, for
completeness of discussion, we also include the full definitions of the Kummer functions in Appendix D.

4.2.1 Definition of Whittaker functions

We will need the following functions.

• Gamma function Γ

Γ(z) :=

∫ ∞

0

e−s sz−1 ds , Re z > 0 .

For Re z ≤ 0, Γ(z) is defined by analytic continuation. It is meromorphic, with no zero, and simple
poles of residue (−1)n

n! at z = −n. We note the special values

Γ(1) = 1 , n! = Γ(n+ 1) ,

and recurrence relation
Γ(z + 1) = zΓ(z) .

• The diagamma function ψ is defined as, cf. [32, (13.14.8) p.334],

ψ :=
Γ′(z)
Γ(z)

, z 6= 0,−1,−2, . . .

• The Pochhammer’s symbol, cf. [32, 5.2(iii)], is

(a)0 = 1 ;

(a)k := a(a+ 1)(a+ 2) . . . (a+ k − 1);

(a)k = Γ(a+k)
Γ(a) , a 6= 0,−1,−2, . . .

(−a)k = (−1)k(a− k + 1)k .

(4.23)

To obtain the expression of the Whittaker functions, we use relation (4.22).

• The first Whittaker M
κ,`+

1
2

(z), cf. [32, Eqn 13.14.6] is obtained from the Kummer function (also

confluent hypergeometric function) M(a, b; z) or 1F1(a, b; z) defined in (D.1) as

Mκ,µ(z) = e−
1
2 z z

1
2 +µ M( 1

2 + µ− κ , 1 + 2µ ; z)

= e−
1
2 z z

1
2 +µ

∞∑

k=0

( 1
2 + µ− κ)k

(1 + 2µ)k

zk

k!
, 2µ 6= −1,−2,−3, . . . .

(4.24)

Mκ,µ(z) is analytic in κ, and meromorphic in µ such that 2µ 6= −1,−2,−3, . . . Due to the factor z
1
2 +µ,

it is a multi-valued function, the principal branch of which uses that for log, −π < Arg z ≤ π, i.e.

z
1+µ

2 := e
1+µ

2 (ln|z|+i Arg(z)) .

• For µ = ` + 1
2 , ` ∈ Z, we have to use limiting value (D.5), which gives rise to the (Buchholtz)

WhittakerM−κ,µ(z). It is defined from the Kummer function M (D.4),

Mκ,µ(z) := e−
1
2 z z

1
2 +µ M( 1

2 + µ− κ , 1 + 2µ ; z) =
Mκ,µ(z)

Γ(1 + 2µ)
. (4.25)
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It is defined in particular for all κ and µ, in particular, for µ = ` + 1
2 with ` ∈ Z. When ` ∈ Z and

` ≥ −1 then 2`+ 2 ≥ 0 thus 2`+ 2 /∈ Z−,

M
κ,`+

1
2

(z) = z`+1e−
z
2
M(`+ 1− κ , 2 + 2` ; z)

Γ(2 + 2`)
, ` = −1, 0, 1, 2, . . . (4.26)

On the other hand, for ` ∈ Z and ` ≤ −2, then 2`+ 2 ∈ Z−, we have to use the limiting value given by
(D.5) with n = −2`− 2 and a = `+ 1− κ in this formula. With some simplification, we obtain14

M
κ,`+

1
2

(z) = M
κ,−`− 1

2
(z)

= z−`e−
z
2 M(−`− κ,−2`; z) , ` = −2,−3, . . .

= z−`e−
z
2

∞∑

k=0

(`+ 1− κ)k−2`−1

(k − 2`− 1)!

zk

k!
=

∞∑

k=−2`−1

(`+ 1− κ)k
(k + 2`+ 1)!

zk

k!
.

(4.29)

• The second Whittaker function W is obtained from the Tricomi confluent hypergeometric function
U , cf. (D.7)–(D.10),

Wκ,µ(z) = e−
1
2 z z

1
2 +µ U( 1

2 + µ− κ , 1 + 2µ ; z) . (4.30)

For 1 + 2µ /∈ Z, we can use (D.8) to define W,

Wκ,µ(z) =
Γ(2µ)

Γ(µ+ 1
2 − κ)

Mκ,−µ(z) +
Γ(−2`)

Γ(−µ+ 1
2 − κ)

Mκ,µ(z) ,

, −π < Arg z ≤ π , 1 + 2µ /∈ Z .
(4.31)

Otherwise, we have to take the limiting value of the above expression15. We restrict ourselves to the
case where µ = ` + 1

2 , ` ∈ Z. For ` = 0, 1, 2 then 1 + 2µ = 2` + 2 ≥ 1, W is defined from the limiting
value of U in(D.9), c.f. [32, 13.14.8],

W
κ,`+

1
2

(z) = − e−
1
2 z z`+1

(2`+ 1)! Γ(−`− κ)

(
2`+1∑

k=1

(2`+ 1)! (k − 1)!

(2`+ 1− k)! (κ− `)k
z−k

−
∞∑

k=0

(`+ 1− κ)k
(2`+ 2)k k!

zk
[

ln z + ψ(`+ 1− κ+ k) − ψ(1 + k) − ψ(2`+ 2 + k)
])
,

` ∈ Z , κ− `− 1 6= 0, 1, 2, . . .

(4.32)

14From (D.5), we obtain the limiting value in terms of n and a,

M
κ,`+

1
2

(z) = z`+1e−
z
2 lim
b→2+2`

M(`+ 1− κ , b ; z)

Γ(b)
= z`+1e−

z
2 zn+1M(a+ n+ 1, n+ 2; z) (4.27)

= z`+1e−
z
2 zn+1

∞∑
k=0

(a)n+1+k

(n+ 1 + k)!

zk

k!
=

∞∑
k=n+1

(a)k

(k − n− 1)!

zk

k!
. (4.28)

We then express a and n in terms of `, κ with

n+ 1 = −2`− 1 ; n+ 2 = −2`;

`+ 1 + n+ 1 = `+ 1− 2`− 1 = −` ; k + n+ 1 = k − 2`− 1 ;

a = `+ 1− κ = − 1
2
n− κ ; a+ n+ 1 = `+ 1− κ− 2`− 1 = −`− κ .

On the other hand,

M
κ,−`− 1

2

(z) = e−
1
2
z z

1
2
−`− 1

2 M( 1
2
− `− 1

2
− κ , 1 + 2(−`− 1

2
) ; z) = e−

1
2
z z−`M(−`− κ , −2` ; z).

15In fact, in [8], instead of introducing the value of U and the limiting value of U(a, b; z) at b ∈ Z, the Whittaker Wκ,µ(z)
and W−κ,µ(e±iπ z) are defined by relation (4.31) and (4.35) respectively, cf. [8, Eqn 18a–18b]. The value of W at µ such
that 1 + 2µ ∈ Z is assigned the limiting value of (4.31), which is calculated (by the Bernoulli-de l’Hospital’s rule, cf. [8,
Section 2.5 p.20].
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For l = −1,−3, . . ., then 2`+ 2 ≤ 0, then using (D.10) with n = −2`− 2, and simplification16

W
κ,`+

1
2

(z) = e−
1
2 zz−`U(−`− κ,−2`; z) = W

κ,−`− 1
2

(z) . (4.33)

Remark 18 (Analytic continuation). In the above discussion, we have defined Whittaker functions W
and M for z with Arg z ∈ (−π, π]. We call this the principal branch of the Whittaker functions. To
extend to z with argument outside of the principal branch, analytic continuation is used in conjunction
with the semi-circuital relations [27, p.297]

Mκ,µ(ze±iπ) = e±i
π
2 (1+2µ) M−κ,µ(z) ;

M−κ,µ(ze±iπ) = e±i
π
2 (1+2µ) Mκ,µ(z) .

(4.34)

Using (D.8), this gives extension for W,

Wκ,µ(ze±iπ) =
Γ(2µ)

Γ(µ+ 1
2 − κ)

e±i
π
2 (1−2µ)M−κ,−µ(z) +

Γ(−2µ)

Γ(−µ+ 1
2 − κ)

e±i
π
2 (1+2µ)M−κ,µ(z) . (4.35)

4

Remark 19 (Limiting behavior at α = 0). When α = 0 thus κ = 0, we obtain the Bessel equation, and
in this case, the Whittaker functions become the spherical Bessel functions17. Following cf. [27, p.20],
we have

W0,µ(i z̃) =

√
π

2
z̃

1
2 e−i

π
4 (1+2µ) H(2)

µ

(
z̃

2

)
;

W0,µ(−i z̃) =

√
π

2
z̃

1
2 ei

π
4 (1+2µ) H(1)

µ

(
z̃

2

)
.

(4.36)

When z̃ := 2 k r, cf. (4.6), and µ = `+ 1
2 , then e

± i
π
4 (1+2µ) = e± i

π
2 (`+1)

W0,µ(i 2 k r) =

√
π

2
(2 k r)

1
2 i−`−1 H

(2)

`+
1
2

(k r) =
i−`−1

2
h

(2)
` (k r) ;

W0,µ(−i 2 k r) =

√
π

2
(2 k r)

1
2 i`+1 H

(1)

`+
1
2

(k r) =
i`+1

2
h

(1)
` (k r) .

(4.37)

4
16This is seen as

W
κ,`+

1
2

(z) = e−
1
2
z z1+` U(`− κ+ 1 , 2`+ 2 ; z)

= e−
1
2
z z1+`z−2`−2+1U(`− κ+ 1− 2`− 2 + 1,−2`− 2 + 2; z) = e−

1
2
zz−`U(−`− κ,−2`; z).

On the other hand,

W
κ,−`−1+

1
2

(z) = e−
1
2
zz1−`−1U(−`− 1− κ+ 1, 2(−`− 1) + 2; z) = e−

1
2
zz−`U(−`− κ,−2`; z).

17 The spherical Bessel functions y` are solutions to (− d2

dz2
− 2

z
d
dz
− 1 +

`(`+1)

z2

)
y` = 0, while general Bessel functions

are Yν are solutions to (− d2

dz2
− 1
z

d

dz
− 1 + ν

z2

)
Yν = 0. The spherical Bessel functions of the first kind are denoted by j`,

second y` and third h
(1)
` and h

(2)
` , cf. [32, 10.47.3–10.47.6]

j`(z) =

√
1

2

π

z
J
n+

1
2

(z) = (−1)`
√

1

2

π

z
Y−`− 1

2

(z) ; h
(1)
` (z) =

√
1

2

π

z
H

(1)

`+
1
2

(z) .

They can be defined explicitly, cf. [32, 10.49.1–10.49.7]. In particular, for a specifically defined series ak(` + 1
2

) cf. [32,
10.49.1],

h
(1)
` = eiz

∑̀
k=0

ik−`−1
ak(`+ 1

2
)

zk+1
.
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4.2.2 Properties of Whittaker functions near zero

These limiting forms can be found in [32, 13.14.16–13.14-19]

W
κ,

1
2

(z) =
1

Γ(1− κ)
+ O(z ln z);

Wκ,0(z) = −
√
z

Γ( 1
2 − κ)

(
ln z + ψ( 1

2 − κ) + 2γ
)

+ O(z3/2 ln z) ,

(4.38)

where γ is Euler constant. In general,

Wκ,µ(z) =
Γ(2µ)

Γ( 1
2 + µ− κ)

z
1
2−µ + O(z

3
2−Reµ) , Reµ ≥ 1

2 , µ 6= 1
2 . (4.39)

For µ = `+ 1
2 , ` = 1, 2, . . ., then

W
κ,

1
2 +`

(z) =
Γ(2`+ 1)

Γ(`+ 1− κ)
z−` + O(z1−`) , Reµ ≥ 1

2 , µ 6= 1
2 . (4.40)

The expansion for the derivative is given in Prop. 30 in Appendix C,

W′κ,1/2(z) =
ln z

Γ(−κ)
+
ψ(−κ) + 2γ

Γ(−κ)
+

1

Γ(1− κ)
+ O(z ln z) , z → 0. (4.41)

As for the Buchholtz function, we have, as z → 0

Mκ,1/2(0) = 0 ; lim
z→0

M′κ,1/2(z) = 1 . (4.42)

4.2.3 Asymptotic properties of Whittaker functions at infinity

Asymptotic expansion at infinity, [32, 13.19.3] for the Whittaker function W is given as

Wκ,µ(z) ∼ e−
1
2 zzκ

∞∑

k=0

( 1
2 + µ− κ)k ( 1

2 − µ− κ)k

s!
(−z)−k , |Argz| ≤ 3

2π − δ. (4.43)

Its derivative has the asymptotic expansion,

W′
κ,

1
2

(z) = e−
1
2 zzκ

(
− 1

2 + O(|z|−1
)
, |Arg z| ≤ 3

2π − δ , z →∞ . (4.44)

The radiating property satisfied by W
κ,

1
2
is given as,

e
1
2 z z−κ

(
W′
κ,

1
2

(z) + 1
2 W

κ,
1
2

(z)
)

= O(|z|−1) . (4.45)

The proof for these statements is given in Prop. 30 in Appendix C. See also Figure 5–8 for numerical
illustrations.

For the Buchholtz Whittaker, cf. Proposition 29, we have,

Mκ,1/2(z) ∼ e
1
2 z z−κ

(
1

Γ(1− κ)
+ O(z−1)

)
+ e−

1
2 z zκ

(
e(1−κ)πi

Γ(1 + κ)
+ O((−z)−1)

)
,

Arg z ∈ (− 1
2π,

3
2π)

(4.46)

and

M′
κ,

1
2

(z) ∼ e
1
2 z z−κ

(
1

2 Γ(1− κ)
+ O(z−1)

)
+ e−

1
2 z zκ

(
− 1

2

e(1−κ)πi

Γ(1 + κ)
+ O((−z)−1)

)

Arg z ∈ (− 1
2π,

3
2π) .

(4.47)
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We write out explicitly the dominant factor describing the oscillatory behavior of W for the case
where z = 2 i k0 r and κ = ±iη. More details on the following statements are in Appendix C.2. Define

ϕk(t) := k t − η log(2 k t) + iπ2 η , t ∈ R+ , η = α∞
2k . (4.48)

Here log uses the Principal Log branch. We also note that e−πi2ei
π
2 kr = 2e−

π
2 ikr has argument

[−π/2, π/2].

• For γ = 0 and ω0

c∞
> α∞

2 . This gives k2
0 > 0 : By Convention 1, cf. Appendix G, Wiη0,µ(2 i k0 r) is

incoming, while W−iη0,µ(e−iπ2 i k0 r) is outgoing. The highest order term in their asymptotic expansion
at infinity is given by,

Wiη0,µ(2 i k0 r)

Incoming

∼ exp
(
− iϕk0(t)

)
e−π η0 ,

W−iη0,µ(e−iπ2 i k0 r)

Outgoing

∼ exp
(

iϕk0(t)
)
.

(4.49)

On the other hand, M−iη0,µ(−2i k0r) has both the incoming and outgoing part,

M−iη0,µ(−2i k0r) ∼ exp(−iϕk0(r))

(
1

Γ(1− κ)
+ O((k0r)

−1)

)

+ exp(iϕk0(r))

(
e(1−κ)πi

Γ(1 + κ)
+ O((k0r)

−1)

)
.

(4.50)

Note that the argument of the variable is −π/2, and thus satisfies the argument requirement of (4.46).

• For γ > 0,
Wiηγ ,µ(2 i kγ r))

/∈ L2([1,∞))

∼ exp
(
− iϕkγ (t)

)
e−π ηγ ,

W−iηγ ,µ(e−iπ2 i kγ r)

∈ L2([1,∞))

∼ exp
(

iϕkγ (t)
)
.

(4.51)

When ω0

c∞
> α∞

2 , we have limits,

lim
γ→0+

W−iηγ ,µ(e−iπ2 i kγ r) = W−iη0,µ(e−iπ2 i k0 r)

Outgoing

.
(4.52)

The Buchholtz function M−iη0,µ(−2i k0r) has both an L2 bounded and non bounded part,

M−iη,µ(−2i kr) ∼ exp(−iϕk(r))

(
1

Γ(1− κ)
+ O((kr)−1)

)

+ exp(iϕk(r))

(
e(1−κ)πi

Γ(1 + κ)
+ O((kr)−1)

)
.

(4.53)

• For γ < 0

Wiηγ ,µ(2 i kγ r)

/∈ L2([1,∞))

∼ exp
(
− iϕkγ (t)

)
e−2π ηγ ,

W−iηγ ,µ(e−iπ2 i kγ r)

∈ L2([1,∞))

∼ exp
(

iϕkγ (t)
)
.
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When ω0

c∞
> α∞

2 , we have limits,

lim
γ→0−

W−iηγ ,µ(e−iπ2 i kγ r) = Wiη0,µ(2 i k0 r)

Incoming

.
(4.54)

• When γ = 0 and ω0

c∞
< α∞

2 then k0 is purely imaginary with positive imaginary part, k0 = ik0. Then
W−iη0,µ(−2ik0r) is exponentially decay, and while Wiη0,µ(2ik0r) is exponentially growing. In this case,
the limits from the upper hand plane and lower half, are equal

lim
γ→0−

W−iηγ ,µ(e−iπ2 i kγ r) = lim
γ→0+

W−iηγ ,µ(e−iπ2 i kγ r) (4.55)

and give the W−iη0,µ(−2ik0r) ∈ L2([1, r).

Remark 20. We look at the leading term18 in the phase function, this suffices to select the L2 function.
With r > 0, we have

ei kγ r = e−2r Im kγ e i 2r Re kγ , e−i kγ r = e2r Im kγ e−i2rRe kγ .

With the current choice of square root branch, Im kγ > 0, which means ei kγ r ∈ L2 (and not e−i kγ r). 4

Numerical illustrations In Figures 5–8, we illustrate numerically the asymptotic and radiation be-
havior of the Whittaker functions W−iη,

1
2

(−2ikr), without and with attenuation (i.e. for γ = 0 and

γ 6= 0). We use the following parameters

c∞ = 3 , α∞ = 50 , ` = 0 , (4.56)

and we recall from the notation Subsection 4.1 that,

µ = `+ 1/2 = 1/2 ; k2 =
ω2

0

c2∞

(
1 +

2iγ

ω0

)
− α2

∞
4

; k = g2(k2) ; η =
α∞
2k

. (4.57)

In the first group, Figures 5 and 6, we superpose the plots of the Whittaker function W−iη,
1
2

(−2ikr)

with those of the function,

exp(iϕk(r)) := exp(ikr − iη log(2kr)− π
2 η) . (4.58)

We do the same for its derivative which is compared with − 1
2 exp(iϕk(r)). The radiating property is

illustrated via the function
W′
−iη,

1
2

(−2ikr) + 1
2W−iη,

1
2

(−2ikr) .

There is no attenuation (γ = 0) in Figure 5, while in Figure 6, γ = 1. We have the following observations.

• One expects that the functions portray pure oscillation in absence of attenuation, while with attenu-
ation, the oscillatory behavior is coupled with a decay in magnitude, since they are L2 in the latter
case. In another word, they are oscillating curves with decreasing envelopes. At frequency, ω0 = 2π20,
these behaviors are confirmed by Figures 5(a), for γ = 0 and 6 for γ = 1, for W and its derivative, in
which there are the oscillations in all figures, but only attenuation of the signal for those with γ = 1
(i.e. in Figure 6).

18 If we expand out the full phase, we obtain the same result,

|e−ikγr+iηγ log(2kγr)| = e
2 Im kγ

(
r− α

4|kγ |2 ln r

)
/∈ L2([1,∞))

∣∣∣e− Im kγ
α ln|2kγ |

2|kγ |2 −ηγ Arg(kγ)∣∣∣ ;

|eikγr−iηγ log(2kγr)| = e
−2 Im kγ

(
r− α

4|kγ |2 ln r

)
∈ L2([1,∞))

∣∣∣eIm kγ
α ln|2kγ |

2|kγ |2 +ηγ Arg(kγ)∣∣∣ .
The derivation for this is given in Appendix I.
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• On the other hand, at very low frequencies, in particular ω0 = 2π5 shown in Figure 5(b) for ω0 = 2π5,
even without attenuation i.e. γ = 0, the function simply shows a rapid decay without any oscillation.
In fact, it is simply a monotone and rapidly decreasing function to zero. Its derivative also ceases to
exhibit oscillatory behavior, and is negative monotone, also with magnitude rapidly decreasing to zero.
This is expected for exp(iϕk(r)). When γ = 0, with the current values of parameters, k = i24.9, and
the leading term of exp(iϕk(r)) is e−24.9r, is thus exponentially decaying. In fact, the whole function
in this case is

exp(iϕk(r)) = e−24.9 r × (50 r)−1.01 × (a complex constant) .

This strong decay will be amplified when γ = 1, making the difference between with and without
attenuation indiscernible. For this reason when γ = 1, only the case with higher frequency ω0 = 2π20
is plotted.

• The oscillatory phase function (4.58) is expected to give the first term in the asympotic expansion at
infinity for W−iη,

1
2

(−2ikr), and − 1
2 × exp(iϕk(r)) for W−iη,

1
2

(−2ikr)′. The left and middle subfigures

of Figure 5– 6 show that the two plots, for W−iη,
1
2

(−2ikr) and exp(iϕk(r)), coincide completely even

on the finite interval [1, 3]. This means that the oscillatory exponential (4.58) gives an excellent
representation of the function W−iη,

1
2

(−2ikr). What is surprising is that one does not need r to be

very large for this agreement to occur. This is confirmed both for a low frequency ω0 = 2π5 and higher
one ω0 = 2π20, with and without attenuation. This means that the function exp(iϕk(r)) also captures
the case when W−iη,

1
2

(−2ikr) ceases to exhibit any oscillatory behavior and only a rapid decay for very

small frequencies, cf. Figure 5(b) for ω0 = 2π5. The same conclusion is drawn for − 1
2 × exp(iϕk(r))

and W′.

• In addition to its oscillatory behavior, for higher frequency ω0 = 2π20, we further note that the function
(1/2W−iη,1/2 + W′−iη,1/2) is also attenuating, even when γ = 0. This can be explained by the fact that
this term is supposed to be an oscillatory term times one decaying like r−1, i.e. exp(iϕk(r))×O(r−1).
This is explored in more details in the next group of figures.

To further investigate the asymptotics and radiation behavior of W, we now explore the symbol
structure of W−iη,1/2(−2ikr), by first factoring out the oscillatory part, and we investigate the decay rate
of the remainder term. In particular, we consider the following ratios, which are plotted in Figure 7 and
8.

r1(r) =
W−iη,1/2(−2ikr)

exp(iϕk(r))
; r2(r) =

W′−iη,1/2(−2ikr)

exp(iϕk(r))
;

r3(r) =
W′−iη,1/2(−2ikr) + 1

2W−iη,1/2(−2ikr)

exp(iϕk(r))
.

(4.59)

We have the following observations.

• It is expected that ratio r1 is 1+o(1), and ratio r2 is − 1
2 +o(1). This is confirmed in the left subfigures

of Figure 7(a) for γ = 0 and Figure 7(b) for γ = 1. For second ratio r2, these are the middle subfigures
of Figure 7(a) and 7(b). With or without attenuation, the curves of ratio r1 decay and level out to the
constant 1, i.e. having horizontal asymptotes at 1. For ratio r2, we have similar observations with the
horizontal asymptotes at − 1

2 .

• The right subfigures of Figure 7(a) for γ = 0 and Figure 7(b) for γ = 1, show that Ratio r3 is 0 + o(1),
with similar observations as above. The horizontal asymptotes for r3 is thus at 0. We will explore
further the decay rate of this term in the next figure.

• We expect r3 is 0(r−1). In Figure 8, we explore its rate of decay, by testing against powers of x = 2|k|r.
This means, when multiplied r3 by x, the resulting function is expected to stay bounded, which is
confirmed by the left subfigures of Figure 8(a) for γ = 0 and Figure 8(b) for γ 6= 1, in which the curves
not only stay bounded but also decrease to a constant and with a horizontal asymptotes close to zero
(well below 0.75). In another word, it behaves like a small constant + a o(1) term. On the other hand,
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(a) using ω0 = 2π20, γ = 0.
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(b) using ω0 = 2π5, γ = 0. In this case, the first parameter of the Whittaker function is large. The function
no longer exhibits oscillatory behavior and is strictly montone, with a rapid decay towards zero.

Figure 5: Outgoing Whittaker function W−iη,1/2(−2ikr) in the case without attenuation (γ = 0). The
leading part in the asymptotic is given by eiϕk(r) where ϕk(r) := kr − η log(2kr) + iπ2 η, and η = α

2k with
c∞ = 3 and α∞ = 50, see (4.49) at two frequencies. The figures show that exp(iϕk(r)) provides an

excellent approximation of W−iη,1/2(−2ikr) and one does not have to wait for r to be very big. We have
similar conclusions for − 1

2 exp(iϕk(r)) and W′.
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Figure 6: Outgoing Whittaker function W−iη,1/2(−2ikr) in the case with attenuation (γ = 1) at
frequency ω0 = 2π20. The leading part in the asymptotic is given by eiϕk(r) where

ϕk(r) := kr − η log(2kr) + iπ2 η, and η = α
2k with c∞ = 3 and α∞ = 50, see (4.49). Here, the oscillatory

behavior is now coupled with attenuation which translates to a decrease in magnitude of the oscillating
curve. The function exp(iϕk(r)) still represents an excellent approximation as in the case without

attenuation.
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when multiplied by x2, the ratio grows, which is confirmed in the right subfigures of Figure 8(a) for
γ = 0 and Figure 8(b) for γ 6= 1. In these subfigures, the ratio r3 increases drastically, resulting in a
drastic increase in the scale of the value of its function, it increases to order 104.
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(a) Using ω0 = 2π20, γ = 0.
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(b) Using ω0 = 2π20, γ = 1.

Figure 7: Plots of ratios (4.59) which represent the symbol part of W−iη,1/2(−2ikr), its derivative and
the radiating property. These are the remainder after the oscillatory part exp(iϕk(r)) defined in (4.58)
is factored out from the functions. The curves show that they all have the profile of a constant + o(1),
thus have horizontal asymptotes given by the leading constants. The horizontal asymptote for r1 is 1,
while that for its derivative is −1/2. As a result, that for W−iη,1/2(−2ikr)′ + 1

2W−iη,1/2(−2ikr) is 0.
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(a) Using ω0 = 2π20, γ = 0.
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(b) Using ω0 = 2π20, γ = 1.

Figure 8: This figure illustrates the radiating asymptotics of W−iη,1/2(−2ikr) by exploring the decay
rate of the symbol part r3 of W−iη,1/2(−2ikr)′ + 1

2W−iη,1/2(−2ikr). This is the remainder after the
oscillatory part exp(iϕk(r)) defined in (4.58) is factored out from the function. The growth/decay rate
of r3 is probed by multiplication by powers of x = 2|k|r. The curves of (xr3) stay bounded, and in fact
decreases rapidly to zero, while the curves of (x2r3) increase and explode to 104. This shows that r3

decreases as fast as r−1 but not faster than r−2.
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4.2.4 Basis of solutions for Whittaker equation

We restrict to the case where µ = `+ 1
2 , ` ∈ Z. For reference, cf. e.g. [8, Section 2.5 p.23].

• A fundamental pair of solutions to (4.20) in an unbounded domain is given by

W
κ,`+

1
2

(z) , W−κ,`+ 1
2

(e−πiz) , − π
2 ≤ Arg(z) < 3π

2 ,

W
κ,`+

1
2

(z) , W−κ,`+ 1
2

(eπiz) , − 3
2π ≤ Arg(z) < 1

2π ,
(4.60)

with asymptotics
W
κ,`+

1
2

(z) ∼ e−
z
2 zκ , |Arg z| < 3

2π. (4.61)

• On the other hand, a fundamental pair of solutions near origin19 is given by,

M
κ,`+

1
2

(z) , W
κ,`+

1
2

(z) , |Arg z| ≤ π . (4.62)

Remark 21. Recall that the principal branch of the Whittaker functions is defined for z with Arg z ∈
(−π, π], cf. Remark 18. Consider complex wavenumber k defined in (4.15). Write k = |k| ei Arg(k) then
2 ei

π
2 r k = 2 |k| r ei Arg(k) + i

π
2 . By the choice of square root (4.11b) and with γ > 0,

0 ≤ Arg(k) ≤ π
2 ⇒ π

2 ≤ Arg(2 ei
π
2 k r) ≤ π.

This is in the range (−π, π) of the principal branch of the pair of linearly independent solutions around
the origin given in (4.62),

M
κ,`+

1
2

(z) , W
κ,`+

1
2

(z) , |Arg z| ≤ π .

Similarly,
π
2 ≤ Arg(2 ei

π
2 k r) ≤ π , −π2 < Arg(e−iπ 2 ei

π
2 k r) < 0 . (4.63)

This is in the definition range (−π2 , 3π
2 ) for the first pair of fundamental solution in (4.60), i.e.

Wκ,µ(z) ,W−κ,µ(e−πiz) , −π2 < Arg(z) < 3π
2 .

In fact, when γ > 0, for z := 2 ei
π
2 k r, cf. (4.6), both z and e−πiz are in the range (−π, π] of the principal

branch of the Whittaker function. In another word, we do not have to use analytic extension by formula
(4.35) in Remark 18. 4

4.3 Outgoing fundamental solutions
We look for the Green’s function Φk(x, y), x, y ∈ R3, solution to

(
−∆x − k2 +

α∞
|x|
)

Φk(x, y) = δ(x− y) , (4.64)

such that
when k2 ∈ C \ [0,∞) , for y in compact subset , Φk(x, y) ∈ L2(R3

x) . (4.65)

Note that Im k 6= 0 is equivalent to γ 6= 0, this is from their definition in (4.15),

k :=

√
ω2

c2
− α2

∞
4

=

√
ω2

0

c2
− α2

∞
4

+ i
γ

c2
ω2

0 .

We also recall the definition of χ:
χ = i

α∞
2 k

.

19Note that when 2µ+ 1 /∈ Z⇔ 2µ /∈ Z, a fundamental pair of solutions near origin to (4.20) is given by,

Mκ,µ(z) , Mκ,−µ(z) , 2µ /∈ Z , |Arg z| ≤ π ,
cf. [8, Eqn (3a),(4),(7)]. However, they fail to be linearly independent when 2µ+ 1 ∈ Z.
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4.3.1 Definitions

Case 1a : y = 0 and k2 ∈ C \ [0,∞) In this case, (4.64) reduces to
(
−∆x − k2 +

α∞
|x|
)

Φk(x, y) = δ(x) . (4.66)

We look for a solution that is radially symmetric in x, i.e.

Φk(x, 0) = g(|x|) .

On x 6= 0, g(r) solves (
− d2

dr2
− 2

r

d

dr
− k2 +

α∞
r

)
g = 0 in R \ {0}.

With the change of variable (4.6) z = 2 ei
π
2 k r, and consider the function g(z) defined by h(r) = r−1g(z)

solves (
d2

dz2
− 1

4
+
χ

z

)
g = 0 in R \ {0} . (4.67)

This equation is a special case of the Whittaker equation (4.20) with µ = 1
2 . In subsubsection 4.2.4, the

two linearly independent solutions in the neigborhood of infinity are given by W
χ,

1
2

(z) and W−χ, 12
(e−iπ z).

We recall the definition of the Whittaker function with the current parameters from (4.32),

W
χ,

1
2

(z) =− e−
1
2 z

Γ(−χ)

+
e−

1
2 z z

Γ(−χ)

∞∑

k=0

(1− χ)k
(2)k k!

zk
[

ln z + ψ(1− χ+ k) − ψ(1 + k) − ψ(2 + k)
]
.

(4.68)

Only the latter solution given by W−χ, 12
(e−iπ z) satisfies condition (4.65), cf. Remark 20. As a result,

when the source is at the origin, the fundamental solution is given as,

Φk(x, 0) := c
W−χ,1/2(e−iπ ei

π
2 2 k |x|)

|x| , for some constant c.

The constant c can be determined in the process of showing that the candidate is indeed a fundamental
solution. This is done specifically for the case y = 0 in Appendix H, or for general y 6= 0 in Prop. 15 and
gives,

Φk(x, 0) :=
Γ(1 + χ)

4π

W−χ,1/2(e−iπ ei
π
2 2 k |x|)

|x| . (4.69)

Case 1b : y 6= 0 and k2 ∈ C \ [0,∞) We will start with the kernel obtained from [18] by Hostler and
Pratt, cf. [18, Eqn 8] in the closed form (see also Remark 22),

Φk(x, y) :=
Γ(1 + χ)

4π |x− y|
1

i k

(
∂

∂s
− ∂

∂t

)(
W−χ,1/2(−i k s) M−χ,1/2(−i k t)

)

:=
Γ(1 + χ)

4π |x− y|

∣∣∣∣∣∣

W−χ,1/2(−i k s) M−χ,1/2(−i k t)

W′−χ,1/2(−i k s) M′−χ,1/2(−i k t)

∣∣∣∣∣∣
.

(4.70)

Here, the auxiliary variable is defined as,

s := |x| + |y| + |x− y| ; t := |x| + |y| − |x− y| . (4.71)
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We recall

M
χ,

1
2

(z) = e−
1
2 z z M(1− χ , 2 ; z) = e−

1
2 z z

∞∑

k=0

(1− χ)k
(2)k

zk

k!
. (4.72)

Note that (2)k = Γ(2+k)
Γ(2) = (k + 1)! since Γ(2) = 1. We will assume the fact that

(
−∆x − k2 +

α∞
|x|
)

Φk(x, y) = 0 , x ∈ R3 \ {y} . (4.73)

Remark 22. In [18], the definition is given in terms of the Whittaker function defined by Buchholtz [8,
Eqn. 7 p.12], cf. (4.26)

M
χ,

1
2

(z) = z e−
z
2
M(1− χ , 2 ; z)

Γ(2)
.

However, when µ = 1
2 , Γ(2) = (2− 1)! = 1, thus these two functions are the same,

M−χ, 12
(z) = M−χ, 12

(z) . 4

Case 2 : k = k0 > 0 Using the limits (4.19),

kγ → k0 , ηγ → η0 , χγ → χ0 , as γ → 0+;

kγ → −k0 , ηγ → −η0 , χγ → −χ0 , as γ → 0− ,

we define limiting fundamental kernel as limits of the fundamental kernel,

outgoing Φ+
k0

(x, y) := lim
γ→0+

Φk(x, y) , k0 > 0 ;

incoming Φ−k0(x, y) := lim
γ→0−

Φk(x, y) , k0 > 0 .
(4.74)

Here the incoming and outgoing labeling follows Convention 1 discussed in Appendix, see also subsub-
section 4.2.3. In particular, the k0-outgoing kernel is defined as,

Φ+
k0

(x, y) :=
Γ(1 + χ0)

4π |x− y|
1

i k0

(
∂

∂s
− ∂

∂t

)(
W−χ0,1/2(−i k0 s) M−χ,1/2(−i k0 t)

)
, (4.75)

while the incoming one,

Φ−k0(x, y) :=
Γ(1− χ0)

4π |x− y|
1

i k0

(
∂

∂t
− ∂

∂s

)(
Wχ0,1/2(i k0 s) Mχ,1/2(i k0 t)

)
. (4.76)

4.3.2 Basic properties of the fundamental kernels

Here, we work with an equivalent form of Φk(x, y)

Φk(x, y) = c
G(x, y)

|x− y| ; c :=
Γ(1 + χ)

4π
. (4.77)

We have introduced the reduced Green function G(x, y).

G(x, y) := H(s, t) :=
1

i k

(
∂

∂s
− ∂

∂t

)(
W−χ,1/2(−i k s) M−χ,1/2(−i k t)

)

= −W′−χ,1/2(−i k s) M−χ,1/2(−i k t) + W−χ,1/2(−i k s) M′−χ,1/2(−i k t)

=

∣∣∣∣∣∣

W−χ,1/2(−i k s) M−χ,1/2(−i k t)

W′−χ,1/2(−i k s) M′−χ,1/2(−i k t)

∣∣∣∣∣∣
.

(4.78)
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Property 1 – (symmetry) While Φk(x, y) are not functions of |x − y| as in the case of the Helmholtz
equation, these fundamental solutions are still symmetric in x and y, i.e. Φk(x, y) = Φk(y, x).

Property 2 – (Limiting form when y = 0) In this case, s = 2|x|, and t = 0. To find the limiting form,
we need the limit of M−χ,1/2(z) and its derivative M′−χ,1/2(z) when z → 0. By Prop 29 in Appendix C.1,
we have

M−χ,1/2(0) = 0 , lim
z→0

M′−χ,1/2(z) = 1 . (4.79)

As a result of this, we obtain the value of the reduced Green kernel Φk(x, y) defined in (4.70) for y = 0,

Φk(x, 0) =
Γ(1 + χ)

4π|x| W−χ,1/2(−2 i k |x|) . (4.80)

This is confirmed in [18, Eqn. 9]. This current form of the fundamental solution when the source position
y = 0 is also obtained by Meixner, see further discussion of literature and history in [18].

By (C.11) in Prop 30 in Appendix C.1,

W
κ,

1
2

(0) =
1

Γ(1− κ)
.

The reduced kernel thus satisfies,

lim
x→0

G(x, 0) = lim
x→0

W−χ,1/2(−2 i k |x|) =
1

Γ(1 + χ)
. (4.81)

Property 3 – (Behavior at x = y) These properties will be needed for the consideration of local
integrability of the fundamental kernel. In the current investigation, we keep y fixed and vary x.

Proposition 9. 1. For each fixed y ∈ R3, we have

lim
x→y

G(x, y) =
1

Γ(1 + χ)
, ∀y ∈ R3 . (4.82)

As a result of this,

lim
x→y

|x− y| Φk(x, y) =
1

4π
, ∀y ∈ R3 ;

lim
x→y

|x− y|2 Φk(x, y) = 0 , ∀y ∈ R3 .

(4.83a)

(4.83b)

2. For each fixed y ∈ R3, we have

lim
x→y

|x− y|2 x− y
|x− y| · ∇x Φk(x, y) = − 1

4π
, ∀y ∈ R3 . (4.84)

Proof. Statement 1 We first obtain the limiting form of the reduced kernel G at x = y with y 6= 0.
When x = y, we have

s = t = 2|x| = 2|y|. (4.85)

Thus straight from the definition (4.70) of the reduced fundamental solution G, and using the value (4.79)
of M−χ,1/2 and its derivative at z = 0, we obtain

lim
x→y,
y 6=0.

G(x, y) = W
{

W−χ,1/2(−2 i k |y|} , M−χ,1/2(−2 i k |y|)
}

=
Γ(2)

Γ(1 + χ)
=

1

Γ(1 + χ)
.

(4.86)
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Here, W{·, ·} is the Wronskian, cf. [32, (13.14.26) p.335]. Note Γ(n) = (n− 1)! hence Γ(2) = 1. Together
with (4.81) (which gives the result for y = 0), we obtain (4.82).

Statement 2 We next obtain the result for ∇xΦk(x, y). For the normal gradient we consider sepa-
rately the case when y = 0 and y 6= 0.

y = 0 Using identity (F.31), we have

x

|x| · ∇x
1

c
Φk(x, 0) = G(x, 0)

x

|x| · ∇x|x|
−1 +

1

|x|
x

|x| · ∇xG(x, 0) ;

= −G(x, 0)
1

|x|2 − 2 i kW′−χ,1/2(−2 i k |x|) 1

|x| .

From here we obtain

|x|2 x|x| · ∇x Φk(x, 0) = −cG(x, 0) − 2 i k cW′−χ,1/2(−2 i k |x|) |x|.

Next, to obtain the limit of the second term as |x| → 0, we use Prop 30 in Appendix C.1 which gives,

W′
χ,

1
2

(z) =
2 ln z

Γ(−χ)
+ 2

ψ(−χ) + 2γ

Γ(−χ)
+

1

Γ(1− χ)
+ O(z ln z) , z → 0.

At the end, we arrive at (4.84) for y = 0,

lim
x→0
|x|2 x

|x| · ∇x Φk(x, 0) = −c lim
x→0

G(x, 0)
(4.82)

= −Γ(1 + χ)

4π

1

Γ(1 + χ)
= − 1

4π
.

y 6= 0 Using identity (F.32), we have

x− y
|x− y| · ∇xΦk(x, y)

= −cG(x, y)
x− y
|x− y| ·

(x− y)

|x− y|3 +
c

|x− y|

(
x− y
|x− y| ·

x

|x| (∂s + ∂t)H + |x− y| (∂s − ∂t)H

)
.

This gives

|x− y|2 x− y|x− y| · ∇x
1

c
Φk(x, y) = −G(x, y) +

(x− y) · x
|x| (∂s + ∂t)H + |x− y|2 (∂s − ∂t)H

︸ ︷︷ ︸
:=I

.

We next consider the limit of the right-hand side (RHS) as x → y for fixed y 6= 0. By Remark 33 in
Appendix F.5, we have

lim
x→y,
y 6=0

∂sH and lim
x→y,
y 6=0

∂sH are finite and continuous functions of y .

As a result of this,
lim
x→y,
y 6=0

I = 0 ,

and we obtain (4.84) for y 6= 0. In particular,

lim
x→y,
y 6=0

|x− y|2 x− y
|x− y| · ∇xΦk(x, y) = −c lim

x→y,
y 6=0

G(x, y)
(4.82)

= −Γ(1 + χ)

4π

1

Γ(1 + χ)
= − 1

4π
.
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Property 4 – (Asymptotic expansion when one variable goes to infinity and the other stays in a
compact set) For t ∈ R, define the phase function

ϕk(t) := 1
2 i k t − i η log( k t) − π

2 η . (4.87)

This gives 20

exp(ϕk(t)) = e
1
2 i k t (e−iπi k t)−iη = exp

(1

2
i k t − i η log(k t) − π

2 η
)
.

Also define the phase ϕ̃k,y(x) by

ϕ̃k,y(x) := −π2 η + i k |x|+ 1
2 i k |y|

(
1− y

|y| · x|x|
)

− i η log
(

2k|x| + k|y|
(

1− y
|y| · x|x|

))
.

(4.88)

This in turn gives,

exp(ϕ̃k,y(x)) := e−
π
2 η exp

[
i k |x|+ 1

2 i k |y|
(

1− y
|y| · x|x|

)]

× exp
[
−i η log

(
2k|x| + k|y|

(
1− y

|y| · x|x|
))]

.

(4.89)

With auxiliary variable s defined in (4.71), the leading factor in the asymptotic of Φk, cf. (C.17) is
given by eϕk(s). Here, we investigate the approximation of eφ(s) by eϕk(2 |x|) or eϕ̃k,y(x) for y belonging in
compact set and |x| → ∞. See below in Figure 9 and 10 for its numerical illustration.

Proposition 10. The leading factor in the asymptotic of Φk, cf. (C.17)

exp(ϕk(s)) = e
1
2 i k s (e−iπi k s)−iη = exp

(
1
2 i k s − i η log( k s) − π

2 η
)

can be approximated by

exp(ϕk(s)) = exp
(

i k |x| − iη log(2k|x|) − π
2 η
)

︸ ︷︷ ︸
exp(ϕk(2|x|))

exp
(

i k× O(1)
)
, (4.90)

or
exp(ϕk(s)) = exp(ϕ̃k,y(x)) exp

(
i k× O(|x|−1)

)
. (4.91)

Proof. Zero-th order approximation, we first write the auxiliary variable s defined in (4.71) as,

s = 2|x| + ε , ε = O(1) .

We have

e
1
2 i k s (e−iπi k s)−iη = exp

(
i k (|x|+ ε) − i η log(2 k |x|+ 2 k ε) − π

2 η
)

= exp
(

i k |x| − iη log(2k|x|) − π
2 η
)
× exp

(
1
2 i k ε − iη ε′

)
,

(4.92)

20This is verified as follows. With γ > 0, 0 ≤ Arg(kγ) ≤ π
2
, then −π

2
≤ Arg(e−i

π
2 k) ≤ 0. With log denoting the principal

branch for the log, i.e. −π < Im(log z) ≤ π, we have

log(e−iπ iks) = log(e−i
π
2 ks) = log(ks)− iπ

2
.

Use this to rewrite,

e
1
2

i k s (e−iπ i k s)−iη = exp
(1

2
i k s − iη log(e−iπ i k s)

)
= exp

(1

2
i k s − iη log( k s) − iηi(−π

2
)
)

= exp
(1

2
i k s − i η log( k s) − π

2
η
)
.
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where

ε′ := log (ks) − log (2 k |x|) = log (|k|s) − log (2|k||x|) = log (s) − log (2|x|) .

The second equality is due to the two terms having the same argument. We next bound this by using,
for w > 0 and w + δ > 0,

∣∣ log(w + δ)− logw
∣∣ =

∣∣∣∣∣

∫ w+δ

w

1

z
dz

∣∣∣∣∣ ≤
|δ|

min(w,w + δ)
. (4.93)

Since s = O(|x|), cf. (F.7a),

|ε′| ≤ |ε|
min{s , 2|x|} ⇒ ε′ = O(|x|−1) .

The last factor of the RHS of (4.92) is

exp
(

1
2 i k ε − iη ε′

)
= exp(ikO(1)) .

Second order approximation If we use a higher order expansion,

s = 2|x| + |y|
(

1− y
|y| · x|x|

) )
+ ε̃ , ε̃ = O(|x|−1) .

Using this, we obtain

exp
(

1
2 i k s − i η log( k s) − π

2 η
)

= exp
(

i k
(
|x| + 1

2 |y|
(

1− y
|y| · x|x|

)
+ 1

2 ε̃
)
− i η log(k s) − π

2 η
)
.

This thus gives

exp
(

1
2 i k s − i η log( k s) − π

2 η
)

= e−
π
2 η exp

[
i k |x|+ 1

2 i k |y|
(

1− y
|y| · x|x|

)]

× exp
[
−i η log

(
2k|x| + k|y|

(
1− y

|y| · x|x|
))]

exp
(

1
2 i k ε̃ − i η ẽ̃

)
,

(4.94)

where

ẽ̃ := log (ks) − log
(

2k|x| + k|y|
(
1− y

|y| · x|x|
) )

= log (|k|s) − log
(

2|k||x| + |k||y|
(
1− y

|y| · x|x|
) )

= log (s) − log
(

2|x| + |y|
(
1− y

|y| · x|x|
) )

.

As before, the second equality is due to the two terms having the same argument. We next bound this
remainder term by using (4.93),

|ẽ̃| ≤ |ε̃|
min{s , 2|x|+ |y|

(
1− y

|y| · x|x|
)
} ⇒ ẽ̃ = O(|x|−2) .

Since ε̃ = O(|x|−1) and ẽ̃ = O(|x|−2), the last factor of the RHS of (4.94) can be bounded as follow,

exp
(

1
2 i k ε̃ − i η ẽ̃

)
= exp

(
1
2 i k × O(|x|−1) − i η × O(|x|−2)

)
= exp

(
ik× O(|x|−1)

)
.
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Numerical illustration for Prop 10 We fix a source position at y0 = (0, 0, 1), and investigate the
oscillatory behavior of the phase functions considered in Prop 10 along different directions of approaching
infinity. The results are shown in Figure 9 and 10. We consider a source in y0 and the functions

Re exp(ϕk(s)) , s := |x| + |y0| + |x− y0|,

and the real part of the ratios between the oscillatory phases ϕk(2|x|) and ϕ̃k,y(x), labeled as,

r̃1 =
exp(ϕk(s))

exp(ϕk(2|x|))
; r̃2 =

exp(ϕk(s))

exp(ϕ̃k,y(x))
. (4.95)

We consider x in the (y, z)-plane along two directions with polar angles θx = π
6 and 3π

4 , while keeping
the azimuthal angle φx = π

2 . For each of these polar angles, the phase functions and ratios are evaluated
at y0 = (0, 0, 1) and x = (0, r sin(θx), r cos(θx)), and are thus plotted as functions of r.

We use the following parameters

c = 3 ; α∞ = 50 ; ω0 = 2π20 ; (4.96)

and experiment with attenuation in Figure 10 and without in Figure 9.

We have the following observations

• As expected, in the left of Figure 9, for γ = 0, the function exp(ϕk(s)) exhibits pure oscillation, while
in the left one of Figure 10, γ = 1, the oscillatory behavior is coupled with attenuation, i.e. with the
decreasing magnitude of the envelope of the oscillation. The same conclusion holds for both directions.

• The subfigures on the right, cf. subfigure 9(b) for γ = 0 and 10(b) for γ = 1, show that the ratios r̃i are
now polynomial decay or bounded. The computation expects that r̃2 is exp(O(r−1)), cf. (4.91), thus
its curve will level out at the constant 1. This is confirmed in the graphs of r̃1 for both directions, cf.
the upper subfigures of subfigure 9(b) and 10(b). On the other hand, it is expected that r̃1 is exp(O(1))
and is simply bounded, cf. (4.90). In the lower subfigures of subfigure 9(b) and 10(b), we still see
the pattern of the curves having horizontal asymptotes with different values for each direction, yet
this is not as clear as with ratio r̃1. This shows that while both phase functions ϕk(2|x|) and ϕ̃k,y(x)
approximate well ϕk(s), the result is more uniform in all directions with the latter (i.e. ϕ̃k,y(x)).
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(b) Asymptotic for the ratio defined in
4.95.

Figure 9: Numerical illustration for Prop 10 for γ = 0. The right subfigures 9(b) show the asymptotics
for the ratios comparing ϕk(s) with ϕ̃k,y(x) represented by r̃2, and with ϕk(2|x|) represented by r̃1.
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Figure 10: Numerical illustration for Prop 10 for γ = 1. The right subfigures 10(b) show the asymptotics
for the ratios comparing ϕk(s) with ϕ̃k,y(x) represented by r̃2, and with ϕk(2|x|) represented by r̃1.

Having analyzed the oscillatory part of Φk(x, y), which can be described either by

exp(ϕk(s)) or exp(ϕ̃k,y(x)) ,

we now describe the full structure of Φk(y, x) including its symbol part, with explicit description of the
leading constant. See Figures 9 and 10 for its numerical illustration.

Proposition 11. • With eϕ̃y(k,x) given in (4.89) and eϕk(s) in (4.87) the asymptotics at infinity of
Φk, for y in compact set, when |x| → ∞, is given by

Φk(x, y) =
exp(ϕk(s))

|x− y|
(
C(y, x̂) + O(|x|−1)

)

=
exp(ϕ̃k(y, x))

|x|
(
C(y, x̂) + O(|x|−1)

)
,

(4.97)

where for a point y ∈ R3 and direction x̂ ∈ S2, the constant C(y, x̂) is defined as,

C(y, x̂) :=
Γ(1 + χ)

4π

(
1
2 M−χ,1/2(−i k |y| dx̂,ŷ) + M′−χ,1/2(−i k |y| dx̂,ŷ)

)
. (4.98)

The remainder O(|x|−1) is uniformly bounded for all y in a bounded set and all directions of x̂.

When the attenuation γ = 0, for y in compact set, and |x| → ∞, we simply have

Φk0(x, y) = C(y, x̂)
exp(ϕ̃k0(y, x))

|x|−1
+ O(|x|−2) . (4.99)

As a result of this, when γ 6= 0, for fixed y, the function x 7→ Φ(x, y) is exponentially decaying,
and thus L2(R3).

• For y in compact set and x tending to infinity, one obtains similar results for y
|y| ·∇yΦk(x, y) with

constant D(y, x̂) defined in (4.109)

Proof. Part 1 We first recall the definition of the fundamental kernel,

Φk(x, y) =
c

|x− y| G ,
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where

G(x, y) = H(s, t) = −W′−χ,1/2(−i k s) M−χ,1/2(−i k t) + W−χ,1/2(−i k s) M′−χ,1/2(−i k t) .

For directions x̂ =
x

|x| and ŷ =
y

|y| , i.e.

x̂ = (sin θx cosφx , sin θx sinφx , cos θx) , ŷ = (sin θy cosφy , sin θy sinφy , cos θy) .

Here, (|x|, θx, φx) is the spherical coordinates of x with 0 ≤ θx ≤ π and 0 ≤ φx ≤ 2π, we have defined in
(F.2) the bounded quantity

dx̂,ŷ = cos θx cos θy + sin θx sin θy cos(φx − φy) .

From the expansion (F.7a) and (F.7b) of s and t, for a fixed y and as x goes to infinity, we have

lim
|x|→∞

s

2 |x| = 1 and
s

2|x| = 1 + O(|x|−1) , (4.100)

and for x goes to infinity along a fixed angle (θx, φx),

lim
|x|→∞

t = |y| dx̂,ŷ and t = |y|
(

1 + dx,y

)
+ O(|x|−1) . (4.101)

Using the asymptotic property of W given (4.43), for y fixed and as x goes to infinity, we have

lim
|x|→∞

W−χ,1/2(−i k s)

exp(ϕk(s))
= 1 and

W−χ,1/2(−i k s)

exp(ϕk(s))
= 1 + O(|s|−1) = 1 + O(|x|−1) . (4.102)

Similarly, for its derivative in (4.44), with y fixed and as x goes to infinity,

lim
|x|→∞

W′−χ,1/2(−i k s)

exp(ϕk(s))
= −1

2
and

W′−χ,1/2(−i k s)

exp(ϕk(s))
= −1

2
+ O(|x|−1) . (4.103)

For fixed y and for x goes to infinity along a fixed angle (θx, φx), using the limit of t,

lim
|x|→∞
x̂ fixed

G

exp(ϕk(s))
= − lim

|x|→∞

W′−χ,1/2(−i k s)

exp(ϕk(s))
× lim
|x|→∞
x̂ fixed

M−χ,1/2(−i k t)

+ lim
|x|→∞

W−χ,1/2(−i k s)

exp(ϕk(s))
× lim
|x|→∞
x̂ fixed

M′−χ,1/2(−i k t)

= 1
2 M−χ,1/2(−i k |y| dx̂,ŷ) + M′−χ,1/2(−i k |y| dx̂,ŷ) .

The stronger result is obtained by using the asymptotic expansions,

G

exp(ϕk(s))
= −( 1

2 + O(|x|−1)
(
M−χ,1/2(−i k |y| dx̂,ŷ) + O(|x|−1)

)

+
(
1 + O(|x|−1)

) (
M′−χ,1/2(−i k |y| dx̂,ŷ) + O(|x|−1)

)
.

(4.104)

Note that the constant bound for each direction x̂ and y depends on |y|, ŷ, and |x|. Since y stays in a
bounded set, and direction ŷ, x̂ are both in compact set S2 (the unit sphere), they have a uniform bound
for all y in a bounded set and all direction of x̂. The original phase ϕk(|s|) can be replaced by ϕ̃k,y(x)
without changing the asymptotes of the remainder, cf. Prop 10. In particular,

exp(ϕk(s))

exp(ϕ̃k,y(x))
= 1 + O(|x|−1) ,

|x|
|x− y| = 1 + O(|x|−1) .
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Thus

Φk(x, y) =
exp(ϕk(s))

|x− y|
(
C(y, x̂) + O(|x|−1)

)

=
exp(ϕ̃k(y, x))

|x| × exp(ϕk(s))

exp(ϕ̃k,y(x))
× |x|
|x− y| ×

(
C(y, x̂) + O(|x|−1)

)

=
exp(ϕ̃k(y, x))

|x| × (1 + O(|x|−1) × (1 + O(|x|−1) ×
(
C(y, x̂) + O(|x|−1)

)

=
exp(ϕ̃k(y, x))

|x|
(
C(y, x̂) + O(|x|−1)

)
.

Part 2 We first expand out radial derivative of Φ in the y variable. Here we introduce the notation

∂r(y) :=
y

|y| · ∇y .

We have

∂r(y)
1

c
Φk = G ∂r(y)|x− y|−1

︸ ︷︷ ︸
O(|x|−2)

+
∂r(y)s

|x− y|︸ ︷︷ ︸
O(|x|−1)

∂sH +
∂r(y)t

|x− y|︸ ︷︷ ︸
O(|x|−1)

∂tH .

The indicated orders of decay use the calculation in (F.12), (F.15b) and (F.16b),

∂r(y)s = 1 + dx,y + O(|x|−1) = O(1) ;

∂r(y)t = 1− dx,y + O(|x|−1) = O(1) .
(4.105)

We recall from (F.22) and (F.23), the partial derivatives of H,

∂sH = −ik
(

W′−χ,1/2(−i k s) M′−χ,1/2(−i k t) − 1
4W−χ,1/2(−i k s) M−χ,1/2(−i k t

)

+
χ

s
W−χ,1/2(−i k s) M−χ,1/2(−i k t) ;

∂tH = −ik
(

1
4W−χ,1/2(−i k s) M−χ,1/2(−i k t) − W′−χ,1/2(−i k s) M′−χ,1/2(−i k t)

)

− χ

t
W−χ,1/2(−i k s) M−χ,1/2(−i k t) .

(4.106)

Thus

lim
|x|→∞
x̂ fixed

∂sH

exp(ϕk(s))
= −ik lim

|x|→∞

W′−χ,1/2(−i k s)

exp(ϕk(s))
× lim
|x|→∞
x̂ fixed

M′−χ,1/2(−i k t)

− ik

4
lim
|x|→∞

W−χ,1/2(−i k s)

exp(ϕk(s))
× lim
|x|→∞
x̂ fixed

M−χ,1/2(−i k t)

=
ik

2
M′−χ,1/2(−i k |y| dx̂,ŷ) − ik

4
M−χ,1/2(−i k |y| dx̂,ŷ) .

(4.107)
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In a similar manner, we obtain

lim
|x|→∞
x̂ fixed

∂tH = − ik

4
lim
|x|→∞

W−χ,1/2(−i k s)

exp(ϕk(s))
× lim
|x|→∞
x̂ fixed

M−χ,1/2(−i k t)

+ ik lim
|x|→∞

W′−χ,1/2(−i k s)

exp(ϕk(s))
× lim
|x|→∞
x̂ fixed

M′−χ,1/2(−i k t)

− χ lim
|x|→∞

W−χ,1/2(−i k s)

exp(ϕk(s))
× lim
|x|→∞
x̂ fixed

M−χ,1/2(−i k t)

t

= − ik

4
M−χ,1/2(−i k |y| dx̂,ŷ) − ik

2
M′−χ,1/2(−i k |y| dx̂,ŷ) − χ

M−χ,1/2(−i k |y| dx̂,ŷ)

|y| dx̂,ŷ
.

(4.108)
Putting together results (4.100)–(4.103) and (4.105)–(4.108), we obtain

lim
|x|→∞
x̂ fixed

|x− y|
c

∂r(y)Φk = D(y, x̂) ,

where the value of the limit is a function depending continuously on y and direction x̂,

D(y, x̂) := (1 + dx,y)

(
ik

2
M′−χ,1/2(−i k |y| dx̂,ŷ) − ik

4
M−χ,1/2(−i k |y| dx̂,ŷ)

)

+ (dx,y)− 1)

((
ik

4
+

χ

|y| dx̂,ŷ

)
M−χ,1/2(−i k |y| dx̂,ŷ) +

ik

2
M′−χ,1/2(−i k |y| dx̂,ŷ)

)
.

(4.109)

The asymptotic expansion version is obtained in a similar manner as in Part 1, cf. (4.104), by using the
expansion version of each component (instead of just limits).

Numerical illustration for Prop 11 As in the illustration of the phase (in Figure 9 and 10), to
illustrate the uniformness of the asymptotic expansion 4.97 for Φk(x, y), we take a fixed source y0 =
(0, 0, 1), and investigate the oscillatory behavior of Φk(x, y) along different directions of approaching
infinity. To illustrate the symbol structure of Φk(x, y), it suffices to work with G. We recall the definition
of Φk(x, y), cf. (4.77),

Φk(x, y) = c
G(x, y)

|x− y| ; c :=
Γ(1 + χ)

4π
,

with the reduced Green function G(x, y) introduced in (4.78),

G(x, y) := H(s, t) :=
1

i k

(
∂

∂s
− ∂

∂t

)(
W−χ,1/2(−i k s) M−χ,1/2(−i k t)

)
.

The leading oscillatory phase of G is given by exp(ϕk(s)). We factor this out of G and plot the ratio to
investigate structure of the symbol part. We will also do with the oscillatory phase function ϕk(2|x|) and
ϕ̃k,y(x). For the leading factor, we define the following ratios:

r̂1 =
Gk0(x, y0)

exp(ϕk(s))
; r̂2 =

Gk0(x, y0)

exp(ϕk(2|x|))
; r̂3 =

Gk0(x, y0)

exp(ϕ̃k,y(x))
. (4.110)

We consider two directions of approaching infinity along polar angle of x with θx = π
6 and 3π

2 ,
keeping the azimuthal angle φx = π

2 . Thus we are working in the (y, z)-plane. This means for each
of these two polar angles, the phase functions and ratios are evaluated at fixed y0 = (0, 0, 1), and
x = (0, r sin(θx), r cos(θx)). They are thus plotted as functions of r. The results are shown in Figure 11
for no attenuation (γ = 0) and Figure 12 for constant attenuation γ = 1.

We have the following observations.
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• As exp(ϕk(s)) dominates the behavior of the fundamental kernel, we have the same observations for
the Figures 11(a) and 12(a) as those for the phase (in Figures 9 and 10). That is in the left of
Figure 11, γ = 0, thus the phase exhibits pure oscillation, while in the left of Figure 12, γ = 1, the
oscillatory behavior is coupled with attenuation, i.e. with the decreasing magnitude of the envelope of
the oscillation. Same conclusion for both directions.

• Regarding the symbol structure illustrated by the right of Figures 11(b) and 12(b), we see that ϕk(s)
and ϕ̃k,y(x) give better representation of the dominant behavior of the fundamental kernel. They
are represented by the curves for ratio r̂1 and r̂3. With and without attenuation, the convergence to
the horizontal asymptotes is much earlier than what is exhibited in the curve for r̂2 which represents
ϕk(2|x|). The plots also show the uniformity of the asymptotic expansion, with the ratio curves of
the two directions of infinity staying close together and behaving in the same manner. They are much
closer for γ = 0 than for γ = 1. These curves also have the profile of a constant + o(1).
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(b) Asymptotics of ratios.

Figure 11: Numerical illustration for Prop 11 of asymptotic expansion of Φk(x, y0) for γ = 0. Here, for
fixed source y0 = (0, 0, 1) and x = r(0, sin θ, cos θ) going to infinity along two different directions

represented by polar angle θ = π
6 and 3π

2 . In Figure (b), we factor out the oscillatory part from the
reduced Green kernel, and consider G(x, y0)e−φ with φ = φk0(s) for r̂1, φ = φk0(2|x|) for r̂2, and

φ = ϕ̃k0,y0(x) for r̂3. The plots also show the uniformity of the asymptotic expansion, it also shows that
the three expansions represent well the leading behavior of Φk(x, y) with ϕk(s) and φk,y(x) giving small

error and faster convergence. All three remainders have the profile of a constant + o(1).

Property 5 – (Radiating asymptotics) In the next two propositions, Prop 12 and 13, we will show the
radiating property of the fundamental solution Φ+

k0
(x, y), as |x| → ∞ and y in compact set. We will make

heavily use of the radiating property,

e
1
2 zz−χ

(
W′
χ,

1
2

(z) +
1

2
W
χ,

1
2

(z)
)

= O(|z|−1) .

of W
χ,

1
2
(cf. Prop 30 in App C.1), and the gradient calculation in Appendix F.
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(b) ratio with determinant only Ratio =
Φk0 (x, y0)e−φ with φ = φk0 (s), φk0 (2|x|),
and ϕ̃k0,y0 (x).

Figure 12: Numerical illustration for Prop 11 of asymptotic expansion of Φk0(x, y0) for γ = 1. Here, for
fixed source y0 = (0, 0, 1) and x = r(0, sin θ, cos θ) going to infinity along two different directions
represented by polar angle θ = π

6 and 3π
2 . The ratios are defined in (4.110). We have the same

conclusion as in the case without attenuation shown in Figure 11.

Proposition 12. For y in compact set, when |x| → ∞.
(
x

|x| · ∇x − i k0

)
Φk(x, y) = eϕk(2|x|) O(|x|−2) , (4.111)

with ϕk(·) defined in (4.87),

ϕk(2|x|) = i k |x| − i η log(2k|x|) − π
2 η .

When the attenuation γ = 0, we simply have
(
x

|x| · ∇x − i k0

)
Φ+

k0
(x, y) = O(|x|−2) , (4.112)

uniformly for y in compact set, when |x| → ∞.

Proof. We have

∂r(x)
1

c
Φk = G ∂r(x)|x− y|−1 +

∂r(x)G

|x− y| ;

= G ∂r(x)|x− y|−1 +
∂r(x)s

|x− y| ∂sH +
∂r(x)t

|x− y| ∂tH . (4.113a)

From (F.5b) and (F.11a), we have

|x− y|−1 = |x|−1(1 + O(|x|−1) ;

∂r(x) |x− y|−1 = − x

|x| ·
x− y
|x− y|3 = O(|x|−2) ;
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and from (F.14),

∂r(x) s = 1 +
x

|x| ·
x− y
|x− y| = 2 + O(|x|−1) = O(1) ;

∂r(x) t = 1− x

|x| ·
x− y
|x− y| = 1− (1 + O(|x|−1) = O(|x|−1) .

As a result, the first and the third terms in (4.113a) are already of order |x|−2. Also from the above
expansion for ∂r(x)s, we have

1

|x− y|
(
∂r(x)s − 2

)
=

1

|x− y|
x

|x| ·
x− y
|x− y| = O(|x|−2) .

This allows us to write

1

c

(
∂r(x)Φk − ikΦk

)
=

1

c
∂r(x)Φk −

2

|x− y|∂sH +
2

|x− y|∂sH − 1

c
i kΦk ;

⇒ e−φout(s)

c

(
∂r(x)Φk − ikΦk

)
=

e−φout(s)

|x− y|
(

2 ∂sH − i kH
)

+ O(|x|−2) .

Here, we have denoted by φout the oscillatory phase

φout(s) := 1
2 i k s − i η log(2 k s) − π

2 η . (4.114)

The lower order terms (of order |x|−2) on the RHS comprise of

e−φout(s)
(

i kH
∂r(x)s− 2

|x− y| + ∂r(x)|x− y|−1 +
∂r(x)s

|x− y| ∂sH +
∂r(x)t

|x− y| ∂tH
)
.

Step 2 : The proof is finished if we can show that e−φout(s) (∂sH − ikH) = O(|x|−1). To do this, we
expand this out by using (F.14),

2∂sH − ikH = −ik
(

2W′−χ,1/2(−i k s) M′−χ,1/2(−i k t) − 1
2W−χ,1/2(−i k s) M−χ,1/2(−i k t

)

− ik
(

W−χ,1/2(−i k s) M′−χ,1/2(−i k t) − W′−χ,1/2(−i k s) M−χ,1/2(−i k t
)

+ 2
χ

s
W−χ,1/2(−i k s) M−χ,1/2(−i k t) .

• From (F.7a), the last term is of order |x|−1 due to the factor s−1, since

s = 2|x|+ O(1) ⇒ s−1 = O(|x|−1) .

• On the other hand, the first two lines can be combined as

−i k
(

W′−χ,1/2(−i k s) + 1
2 W−χ,1/2(−i k s)

)(
2M′−χ,1/2(−i k t) − M−χ,1/2(−i k t)

)
.

By (F.7b), for y in compact set, t = O(|x|−1) as |x| → ∞, the factor
(

2M′−χ,1/2(−i k t) − M−χ,1/2(−i k t)
)

= O(1) ,

while from (4.45) in Prop 30 in Appendix C.1, we have

e
1
2 zz−χ

(
W′
χ,

1
2

(z) + 1
2W

χ,
1
2

(z)
)

= O(|z|−1) ;

⇒ e−φout(s)
(

W′−χ,1/2(−i k s) + 1
2W−χ,1/2(−i k s)

)
= O(|x|−1) .
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As a result, we obtain
e−φout(s)

(
∂sH − i kH

)
= O(|x|−1) . (4.115)

and thus (4.111). For the statement (4.112), when the attenuation γ = 0, we just note that

|eφout(s)| = e−
π
2 η0 .

Proposition 13. The quantity y
|y| · ∇yΦ+

k0
(x, y) satisfies radiating property, i.e.

(
x

|x| · ∇x − i k0

)
∂r(y)Φ

+
k0

(x, y) = O(|x|−2) , (4.116)

for y in compact set and as |x| → ∞.

Proof. We first expand out ∂r(y)c
−1Φk and ∂r(x)∂r(y)c

−1 Φk in terms of the partial derivatives of H with
respect to s and t, together with the order of their coefficients. We have

∂r(y)
1

c
Φk = G ∂r(y)|x− y|−1

︸ ︷︷ ︸
O(|x|−2)

+
∂r(y)s

|x− y|︸ ︷︷ ︸
O(|x|−1)

∂sH +
∂r(y)t

|x− y|︸ ︷︷ ︸
O(|x|−1)

∂tH .

And,

∂r(x) ∂r(y)
Φk

c

=
(
∂r(x)∂r(y)|x− y|−1

)

︸ ︷︷ ︸
O(|x|−3)

G +
(
∂r(y)|x− y|−1

)
∂r(x)s

︸ ︷︷ ︸
O(|x|−2)

∂sH +
(
∂r(y)|x− y|−1

)
∂r(x)t

︸ ︷︷ ︸
O(|x|−3)

∂tH

+
(
∂r(x)

∂r(y)s

|x− y|
)

︸ ︷︷ ︸
O(|x|−2)

∂sH +
( ∂r(y)s

|x− y| ∂r(x)s
)

︸ ︷︷ ︸
O(|x|−1)

∂2
sH +

( ∂r(y)s

|x− y| ∂r(x)t
)

︸ ︷︷ ︸
O(|x|−2)

∂tsH

+
(
∂r(x)

∂r(y)t

|x− y|
)

︸ ︷︷ ︸
O(|x|−2)

∂tH +
( ∂r(y)t

|x− y|∂r(x)s
)

︸ ︷︷ ︸
O(|x|−1)

∂stH +
( ∂r(y)t

|x− y| ∂r(x)t
)

︸ ︷︷ ︸
O(|x|−2)

∂2
tH .

(4.117)

The orders of the coefficients come from the calculation in Appendix F. In particular,

∂r(y)|x− y|−1 (F.12)
= O(|x− y|−2) ; ∂r(x)∂r(y)|x− y|−1 (F.12)

= O(|x− y|−3) ;

∂r(x)s
(F.15)

= 2 + O(|x|−1) = O(1) ; ∂r(y)s
(F.16)

= 1 + cos(θy − θx) + O(|x|−1) = O(1) ;

∂r(x)t
(F.15)

= O(|x|−1) ; ∂r(y)t
(F.16)

= 1− cos(θy − θx) + O(|x|−1) = O(1) .

This leads to

∂r(x)

∂r(y)s

|x− y| =
∂r(x)∂r(y)s

|x− y| +
(
∂r(y)s

)
∂r(x)|x− y|−1 = O(|x|−2) + O(|x|−2) = O(|x|−2) ;

∂r(x)

∂r(y)t

|x− y| =
∂r(x)∂r(y)t

|x− y| +
(
∂r(y)t

)
∂r(x)|x− y|−1 = O(|x|−2) + O(|x|−2) = O(|x|−2) ;

∂r(y)s

|x− y| = O(|x|−1) ;
∂r(y)t

|x− y| = O(|x|−1) .
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We will gather all terms with lower order coefficients on the RHS of (4.117) into one denoted by L.
With φout defined in (4.114), to say that a quantity A is of lower orders, we mean

e−φout(s)A = O(|x|−1) .

Using this notation, we write

(∂r(x) − ik)∂r(y)Φk

= −i k
∂r(y)s

|x− y| ∂sH − ik
∂r(y)t

|x− y| ∂tH +
( ∂r(y)s

|x− y| ∂r(x)s
)
∂2

sH +
( ∂r(y)t

|x− y| ∂r(x)s
)
∂stH + L

=
∂r(y)s

|x− y|
(
− i k ∂sH + 2 ∂2

sH
)

+
∂r(y)t

|x− y|
(
− i k ∂tH + 2 ∂stH

)
+ L

+
∂r(y)s

|x− y|
(
∂r(x)s − 2

)
︸ ︷︷ ︸

O(|x|−2)

∂2
sH +

∂r(y)t

|x− y|
(
∂r(x)s − 2

)
︸ ︷︷ ︸

O(|x|−2)

∂stH .

In the last equality, we have used the same trick as in Prop. 12 to replace ∂r(x)s by 2 modulo lower order
terms,

∂r(x)s− 2
(F.15)

= O(|x|−1) .

The resulting lower order terms can be absorbed in to L to give L̃. In short, at the end of step 1, we
have written

(∂r(x) − ik)∂r(y)Φk =
∂r(y)s

|x− y|
(
− i k ∂sH + 2 ∂2

sH
)

+
∂r(y)t

|x− y|
(
− i k ∂tH + 2 ∂2

stH
)

+ L̃ .

Step 2: The proof for the radiating property of ∂r(y)Φk is finished by showing that

e−φout(s)
(
− i k ∂sH + 2 ∂2

sH
)

︸ ︷︷ ︸
:=I1

= O(|x|−1) and e−φout(s)
(
− i k ∂tH + 2 ∂2

stH
)

︸ ︷︷ ︸
:=I2

= O(|x|−1) .

From the calculation in (F.24) and (F.25) in Appendix F,

∂2
sH = −k2

(
1

4
+

χ

iks

)
H − χ

s2
M−χ,1/2(−i k t) W′−χ,1/2(−i k s) ;

∂2
stH =

1

4
k2H + i kχ

∣∣∣∣∣
W′−χ,1/2(−i k s) M′−χ,1/2(−i k t)

s−1W−χ,1/2(−i k s) t−1M−χ,1/2(−i k t)

∣∣∣∣∣ .

We can thus rewrite these factors as,

2∂2
sH − ik∂sH = −2k2

(
1

4
+

χ

iks

)
H − χ

s2
M−χ,1/2(−i k t) W′−χ,1/2(−i k s)− ik∂sH

= −ik 1
2

(
− ikH + 2∂sH

)
+ O(|x|−1) + O(|x|−2) ,

and 2∂2
stH − ik∂tH =

1

2
k2H − k2

(
1
4W−χ,1/2(−i k s) M−χ,1/2(−i k t)

− W′−χ,1/2(−i k s) M′−χ,1/2(−i k t)
)

+ 2
ikχ

t
W′M + ik

χ

t
W−χ,1/2(−i k s) M−χ,1/2(−i k t) .

(4.118a)

(4.118b)
RR n° 9280



60 Barucq & Faucher & Pham

That I1 is O(|x|−1) is due to (4.115), which was shown in Step 2 of Part 2 of Prop. 12 (which shows the
radiation property of Φk). Each factor in I2 can be shown to be O(|x|−1) as follows.

(4.118b) =
ikχ

t
M−χ,1/2(−i k t)

(
2W′−χ,1/2(−i k s) + W−χ,1/2(−i k s)

)

︸ ︷︷ ︸
O(|x|−1) cf. (4.45)

;

(4.118a) = k2
(

1
2W−χ,1/2(−i k s) + W′−χ,1/2(−i k s)

)

︸ ︷︷ ︸
O(|x|−1) cf. (4.45)

(
M′−χ,1/2(−i k t)− 1

2M−χ,1/2(−i k t)
)

︸ ︷︷ ︸
O(1) since t=O(|x|−1) cf. (F.7b),

.

Property 6 - When k2 ∈ C\ [0,∞), we verify that the Φk(x, y) satisfies the hypothesis of Schur’s test21
which will be used to show that Φk gives rise to an L2(R3) bounded operator.

Proposition 14. When k2 ∈ C \ [0,∞), then Φk(x, y) defined in (4.71) satisfies the requirement of
Schur’s test, i.e. there exists C independent of x and y such that

sup
x∈R3

∫

R3

|Φk|
|x− y| dy < C ; sup

y∈R3

∫

R3

|Φk|
|x− y| dx < C .

Proof. Due to the symmetry in x and y of Φk, it suffices to show the first statement. For convenience,
we work with the reduced kernel Gk.

Step 1 : Choose δ > 0, such that for all r > δ, there exists c(δ) > 0 such that,

r − α∞ Im k

2k2
ln( 1

2r) > c r . (4.120)

Case 1: We consider first the case where t ≤ δ. Define C = C(δ, α∞, k) the max of the following
bounds,

C := max
{

max
t∈[0,δ]

M−χ,1/2(−ikt) , max
t∈[0,δ]

M′−χ,1/2(−ikt) , max
t∈[0,δ]

M−χ,1/2(−ikt)

t
,

max
s∈[0,δ]

W−χ,1/2(−iks) , max
s∈[0,δ]

s W′−χ,1/2(−iks)
}
.

(4.121)

Here, we have used the fact that W′−χ,1/2(·) blows up as ln z for z ∼ 0, and M−χ,1/2(·) vanishes at the
origin, given in (4.41) and (4.42). For t ≤ δ and s ≤ δ, we then have

Gk ≤ |W−χ,1/2(−iks)| |M′−χ,1/2(−ikt)| + |s W′−χ,1/2(−iks)| t

s

∣∣∣∣∣
M′−χ,1/2(−iks)

t

∣∣∣∣∣ .

With t < s, we obtain,
Gk ≤ 2C2 , t ≤ δ , s ≤ δ . (4.122)

21See eg. [25, Lemma 3.7.4 p.75]. Let (X,µ) and (Y, ν) be measurable spaces and let K : X × Y → C satisfy∫
|K(x, y)| dµ(x) ≤ C ,

∫
|K(x, y)| dν(y) ≤ C′ (4.119)

where C and C′ are independent of y and x respectively. Then

f 7→
∫
Y
K(x, y) f(y) dy

maps L2(Y, ν) to L2(X,µ).
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On the other hand, when t ≤ δ and s > δ,

|Gk| ≤ C
(
|W−χ,1/2(−iks)| + |W′−χ,1/2(−iks)|

)
≤ Č exp

(
iϕk(

1
2 s)
)
.

Here we have used
W−χ, 12

(−iks) = exp(iϕk(
1
2 s))(1 + O(s)−1) ;

W′
−iη,

1
2

(−iks) = exp(iϕk(
1
2 s))(− 1

2 + O(s)−1)
(4.123)

Note that factors in the parentheses are bounded uniformly for s > δ, thus the constant Č depends only
on δ, α∞ and k. Using the choice of δ determined by (4.120), we can bound |Gk| further by

|Gk| ≤ Č exp
(
− ic Im k s

)
≤ exp

(
− ic Im k|x− y|

)
, t ≤ δ , s > δ . (4.124)

Case 2: We next consider t > δ. Since s ≥ t, we automatically have s > δ. Using (4.53), we have

M−χ, 12
(−i kt) ∼ exp(−iϕk(

1
2 t))

(
a + O(t−1)

)
+ exp(iϕk(

1
2 t))

(
b + O(t−1)

)
;

M′
−χ, 12

(−i kt) ∼ exp(−iϕk(
1
2 t))

(
ǎ + O(t−1)

)
+ exp(iϕk(

1
2 t))

(
b̌ + O(t−1)

)
.

(4.125)

As before, the factors in the parentheses are also bounded uniformly for s > δ.
We write G = G1 −G2, with

G1 = W−χ, 12
(−iks) M′

−χ, 12
(−ikt) ; G2 = W′

−χ, 12
(−iks) M−χ, 12

(−ikt) .

To treat separate the two components in the asymptotics of M′, we further decompose G1 into G1 =
G1a +G1b, with

G1a = exp
(
iϕk(

1
2 s) − iϕk(

1
2 t)
) (

1 + O(s−1)
) (

ǎ + O(t−1)
)

;

G1b = exp
(
iϕk(

1
2 s) + iϕk(

1
2 t)
) (

1 + O(s)−1
) (

b̌ + O(t−1)
)
.

A similar decomposition is obtained for G2 = G2a + G2b, now working with the two components in the
asymptotic of M. We can define a constant D that only depends on δ, α∞ and k so that

|G2a| , |G1a| ≤ D exp
(
iϕk(

1
2 s) − iϕk(

1
2 t)
)

; |G2b| , |G1b| ≤ D exp
(
iϕk(

1
2 s) + iϕk(

1
2 t)
)
.

It remains to bound the exponentials. For this, we use Appendix I, which gives

|exp
(
− iϕk(

1
2ks
)
| =

∣∣∣exp
(
− ik 1

2 s + iη log(ks) +
π

2
η
)∣∣∣ = exp

(
Im k

(
s − α

2|k|2 ln( 1
2 s)
)) ∣∣∣e−d

∣∣∣ ;

|exp
(
iϕk(

1
2ks
)
| = exp

(
− Im k

(
s − α

2|k|2 ln( 1
2 s)
)) ∣∣∣ed

∣∣∣ .

Here the constant d depends only on k and α∞,

d = d(k, α∞) = Im k
α ln|2k|

2 |k|2 + η Arg k + i
π

2
η.

The exponential in G1a is rewritten as,

exp
(
iϕk(

1
2ks
))

exp
(
− iϕk(

1
2kt
)
) = exp

(
− Im k

(
s− t

))
exp

(
α Im k

2|k|2 ln
s

t

)

= exp (− Im k 2|x− y|)
(

1 +
2|x− y|

|x|+ |y| − |x− y|

)α Im k
2|k|2

.

And using t > δ, we have

exp
(
iϕk(

1
2ks
))

exp
(
− iϕk(

1
2kt
)
< exp

(
− 2 Im k |x− y|

) (
1 + 2

δ |x− y|
)α Im k

2|k|2 . (4.126)

RR n° 9280



62 Barucq & Faucher & Pham

For the exponential of G1b, both exponentials are decay, using the choice of δ (4.120), we can bound
them as

exp
(
iϕk(

1
2ks
))

exp
(
iϕk(

1
2ks
)
≤ exp(−ick(s + t) = exp

(
− i2ck(|x| + |y|

)

thus

exp
(
iϕk(

1
2ks
))

exp
(
iϕk(

1
2ks
)
≤ exp(−2i c k|x− y|) . (4.127)

We have used in the last inequality |x|+ |y| ≥ |x− y|. Thus combining with (4.126), we obtain

|Gk| ≤ 2 exp(−2i c k|x− y| + exp
(
− 2 Im k |x− y|

) (
1 + 2

δ |x− y|
)α Im k

2|k|2 . (4.128)

Step 2: We denote by χS(x, y) the indicator of the set S. We have

Gk = χt>δ Gk + χt≤δ χs>δ Gk + χt≤δ χs≤δ Gk . (4.129)

Thus

|Gk| ≤ χt>δ |Gk| + χt≤δ χs>δ |Gk| + χt≤δ χs≤δ |Gk| .

And

∫

R3

|Gk|
|x− y| dy ≤ 2

∫

R3

χt≤δ(y)χs≤δ(y)
C2

|x− y| dy + 2

∫

R3

χt≤δ(y) χs>δ(y)
exp

(
− i c Im k |x− y|

)

|x− y| dy

+

∫

R3

χt>δ(y)
exp

(
− 2 Im k |x− y|

)

|x− y|
(
1 + 2

δ |x− y|
)α Im k

2|k|2 dy

+

∫

R3

χt>δ(y)
exp(−i2 c k(|x|+ |y|)

|x− y| dy .

We can bound the last three integrals by an integration over R3,

∫

R3

|Gk|
|x− y| dy ≤ 2

∫

R3

χt≤δ(y)χs≤δ(y)
C2

|x− y| dy + 2

∫

R3

exp
(
− i c Im k |x− y|

)

|x− y| dy

+

∫

R3

exp
(
− 2 Im k |x− y|

)

|x− y|
(
1 + 2

δ |x− y|
)α Im k

2|k|2 dy

+

∫

R3

exp(−i2 c k(|x|+ |y|)
|x− y| dy .

These integrals are finite and are bounded by a constant independent of x. They are directly computed
by using spherical coordinates centered at x. Denote them respectively by I1, I2, I3 and I4. Since s, t ≤ δ
implies that |x|, |y| ≤ δ, we have

I1 ≤
∫

|x|≤δ,|y|≤δ
dy ≤ 4π

∫ δ

0

r dr = 2πδ2 .

For I2, . . . , I3, due to the exponential decay factor, they are all bounded by, for some constant d, inde-
pendent of x and y,

I2 , I3 , I4 ≤ 4π

∫ ∞

0

exp(−i2 d Im k r) dr .

This finishes the verification.

Inria



Outgoing solutions in helieoseismology 63

4.3.3 Verification of fundamental solution properties

The proof is adapted from [38, Prop. 4.9] for the Laplacian and from [35, Prop. 2.1] for the Helmholtz
operator. We will use the second Green’s formula: for a bounded region R and w, v ∈ C2(R),

∫

R

(
(∆xw) v − w (∆xv)

)
dx =

∫

∂R

(
v

∂

∂ν(x)
w − w

∂

∂ν(x)
v
)
dσ(x) , (4.130)

where ν(x) is the normal vector along ∂R and points outward of R. By a fundamental solution to
(
−∆x − k2 +

α∞
|x|

)
Φk(x, y) = δ(x− y) , in D′(R3), (4.131)

we mean
lim
ε→0+

∫

Ω(y,ε)

[
(−∆x − k2 +

α∞
|x| )φ(x)

]
Φk(x, y) dx = φ(y) , ∀φ ∈ C∞c (R3) .

Proposition 15. When γ 6= 0 (i.e. in the presence of attenuation), the function Φk(x, y) defined in
(4.70)

Φk(x, y) :=
Γ(1 + χ)

4π |x− y|
1

i k

(
∂

∂s
− ∂

∂t

)(
W−χ,1/2(−i k s) M−χ,1/2(−i k t)

)
;

with s := |x| + |y| + |x− y| ; t := |x| + |y| − |x− y|

(4.132)

is a fundamental solution to (4.131). In this case (γ 6= 0), Φk(x, y) ∈ L2(R3
x) for y in compact subset

of R3 and vice versa (due to the symmetry in x and y).

When γ = 0, the kernel Φ±k0(x, y), defined in (4.74) and (4.76) respectively, is a fundamental
solution to (

−∆x − k2
0 +

α∞
|x|

)
Φ±k0(x, y) = δ(x− y) , in D′(R3). (4.133)

Proof. Let us first define

Ω(y,ε) := R3 \ B(y,ε) with B(y,ε) := {x ∈ R3
∣∣∣ |x− y| ≤ ε} ;

S(0,ε) := ∂ B(y,ε) := {x ∈ R3
∣∣∣ |x− y| = ε} .

(4.134)

To show that Φk as defined in (4.70) is a fundamental solution (or equivalently that Φω is a distribu-
tional solution to (4.131)) means, for arbitrary φ ∈ C∞c (R3), we have to show

〈(
−∆x − k2 +

α∞
|x|
)

Φk(x, y) , φ(x)

〉
= φ(y) ;

or equivalently
〈

Φk(x, y) ,
(
−∆x − k2 +

α∞
|x|
)
φ

〉
= φ(y) ;

or equivalently lim
ε→0

∫

Ωy,ε

c
G(x, y)

|x− y|
(
−∆x − k2 +

α∞
|x|
)
φ(x) dx = φ(y) .

Here 〈·, ·〉 is the distributional pairing D′(R3)×D(R3).

Using the fact that Φk satisfies
(
−∆x − k2 +

α∞
|x|

)
Φk(x, y) = 0 , on Ω(y,ε) , ε > 0 , (4.135)
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we can write
∫

Ω(y,ε)

[
(−∆x − k2 +

α∞
|x| )φ(x)

]
Φk(x, y) dx

=

∫

Ω(y,ε)

[(
−∆x − k2 +

α∞
|x|

)
φ(x)

]
Φk(x, y) dx −

∫

Ω(y,ε)

φ(x)

(
−∆x − k2 +

α∞
|x|

)
Φk(x, y) dx

=

∫

Ω(y,ε)

(−∆xφ) Φk(x, y) dx −
∫

Ω(y,ε)

φ(x) (−∆x Φk(x, y)) dx

(4.130)
= −

∫

∂Ω(y,ε)

(
Φk(x, y) (∂ν(x)φ)(x) − φ(x) (∂ν(x)Φk)(x, y)

)
dσ(x) ,

= I1 − I2 ,

with ν(x) the normal vector pointing outside of Ω(y,ε). Here, we have defined (a spherical change of
variable centered at y, i.e. x = y + ε$ with ε = |x|)

I1 :=

∫

S(0,1)
Φk(y + ε$ , y)

(
(x− y)

|x− y| · ∇xφ
) ∣∣∣∣∣

x=y+εω

ε2d$ ;

I2 :=

∫

S(0,1)

(
(x− y)

|x− y| · ∇xΦk(x, y)

) ∣∣∣∣∣
x=y+εω,y

φ(y + εω) ε2 d$ .

We next consider the limits of each integral as ε→ 0+. Use (4.83b) to obtain that

lim
ε→0

I1 = 0 ,

while use (4.84), to obtain that

lim
ε→0

I2 = − 1

4π

∫

S(0,1)
φ(y) dσ($) = −φ(y) .

Putting together these two limits, we have

lim
ε→0+

∫

Ω(y,ε)

[
(−∆x − k2 +

α∞
|x| )φ(x)

]
Φk(x, y) dx = lim

ε→0+
(I1 − I2) = φ(y).

4.4 Green representation in bounded domain
The following proposition generalizes Helmholtz representation. The proof is similar to that for Prop.
15.

Proposition 16 (Green representation in bounded domain). Consider Ω bounded, u ∈ H2(Ω), n(x)
normal vector points outward. We have the following three representations. The first one uses Φk

with Im k 6= 0 (i.e. with attenuation).

u(x) =

∫

∂Ω

(
(∂n(y)u)(y) Φk(x, y) − u(y) (∂n(y)Φk)(x, y)

)
dσ(y)

−
∫

Ω

Φk(x, y)
(

∆ + k2 − α∞
|y|
)
u(y) dy .

(4.136)
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At real k0 > 0 (i.e. without attentuation), we have

u(x) =

∫

∂Ω

(
(∂n(y)u)(y) Φ±k0(x, y) − u(y) (∂n(y)Φ

±
k0

)(x, y)
)
dσ(y)

−
∫

Ω

Φ±k0(x, y)
(

∆ + k2
0 −

α∞
|y|
)
u(y) dy .

(4.137)

Proof. Define the bounded subregion Ω(y,ε) of Ω,

Ω(y,ε) := Ω \ B(y, ε) .

As before, using the fact that Φk(x, y) satisfies
(
−∆x − k2 +

α∞
|x|

)
Φk(x, y) = 0 , on Ω(y,ε) , ε > 0 ,

we can write
∫

Ω(y,ε)

[
(−∆x − k2 +

α∞
|x| )u(x)

]
Φk(x, y) dx

=

∫

Ω(y,ε)

[(
−∆x − k2 +

α∞
|x|

)
u(x)

]
Φk(x, y) dx −

∫

Ω(y,ε)

u(x)

(
−∆x − k2 +

α∞
|x|

)
Φk(x, y) dx

=

∫

Ω(y,ε)

(−∆xu) Φk(x, y) dx −
∫

Ω(y,ε)

u(x) (−∆x Φk(x, y)) dx

(4.130)
= −

∫

∂Ω∪ Sy,ε

(
Φk(x, y) (∂ν(x)u)(x) − u(x) (∂ν(x)Φk)(x, y)

)
dσ(x) , ν points outward of Ω(y,ε)

= −
∫

∂Ω

(
Φk(x, y) (∂n(x)u)(x) − u(x) (∂n(x)Φk)(x, y)

)
dσ(x)

+

∫

S(y,ε)

(
Φk(x, y)

(
x− y
|x− y| · ∇xu

)
(x) − u(x)

(
x− y
|x− y| · ∇xΦk

)
(x, y)

)
dσ(x) .

We thus have
∫

Ω(y,ε)

[
(−∆x − k2 +

α∞
|x| )u(x)

]
Φk(x, y) dx

= −
∫

∂Ω

(
Φk(x, y) (∂n(x)u)(x) − u(x) (∂n(x)Φk)(x, y)

)
dσ(x) + I1 − I2 .

(4.138)

Here, we have used a change of variable x = ε$ and introduce the integrals,

I1 :=

∫

S(0,1)
Φk(y + ε$ , x)

( x− y
|x− y| · ∇xu

)∣∣∣∣∣
x=y+ε$

ε2d$ ;

I2 :=

∫

S(0,1)

(
x− y
|x− y| · ∇xΦk

) ∣∣∣∣∣
x=y+ε$ , y

u(y + ε$) ε2 d$ .

As in the proof for Prop 15, we use (4.83b) and (4.84) to obtain that

lim
ε→0

I1 = 0 ; lim
ε→0

I2 = − 1

4π

∫

S(0,1)
u(y) dσ($) = −u(y) .

Letting ε → 0 on both sides of (4.138), we obtain (4.136). The proof for the representation with Φ±k0
follows in the exact same manner.
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4.5 Construction of solutions to the inhomogeneous equation

Under the choice of square root g2 (4.11a), working with k2 ∈ C is equivalent to working with k in the
upper hand plane and the positive real axis. For k2, we distinguish k2 ∈ C \ [0,∞) and k2 > 0, the first
case is equivalent to working with Im k > 0 and the second one k = k0 > 0. Consider the inhomogeneous
equation (i.e. with a non-zero right-hand side)

(
−∆ − k2 +

α∞
|x|
)
u(x) = f(x) . (4.139)

Define the following integrals,

Re k2 > 0 , Im k2 6= 0 : R(k) f := R̃(k2) f :=

∫

R3

Φk(x, y) f(y) dy , f ∈ L2(R3) , (4.140)

and

k0 > 0 : R±(k0) f := R̃±(k2
0) f :=

∫

R3

Φ±k0(x, y) f(y) dy , f ∈ L2
c(R3) . (4.141)

Proposition 17. • For f ∈ L2(R3) and k with Im k 6= 0, R(k)f in (4.140) defines the unique L2

solution to (4.139).

• For f ∈ L2
c(R3), R±(k0)f in (4.141) defines a solution for (4.139) with the property,

(
∂r(x) ∓ i k0

)
R±(k0)f = O(|x|−2) , |x| → ∞ . (4.142)

• For f ∈ L2
c(R3), we have pointwise convergence as follows: for each x ∈ R3,

lim
γ→0±

(R(k)f)(x) = (R±(k0)f)(x) .

There is also the convergence in L2
loc(R3), i.e. for φ ∈ C∞c (R3) with Suppφ = Ω,

lim
γ→0±

∥∥φ
(
R(k)−R±(k0)

)
f
∥∥
L2(Ω)

= 0.

Proof. Part 1a For fixed x ∈ R3, we show that the integrals of the form

Iγ =

∫

R3

Φk(x, y)f(y) dy , with Im k 6= 0 , f ∈ L2(R3),

and I±0 =

∫

R3

Φ±k0(x, y)f(y) dy , with f ∈ L2
c(R3) .

are well-defined. We break them up into a sum of an integration on B(x,ε) := {y|x− y| ≤ ε} and one on
the complement,

I =

∫

B(x,ε)

Φk(x, y)f(y) dy +

∫

R3\B(x,ε)

Φk(x, y)f(y) dy;

I±0 =

∫

B(x,ε)

Φ±k0(x, y)f(y) dy +

∫

R3\B(x,ε)

Φ±k0(x, y)f(y) dy.

(4.143)

For all three cases, the integrals on B(x,ε) are well-defined due to (4.83b) of Prop 9. On the other hand,
cf. subsection 4.2.3, W−χ,1/2(−2iks) and W′−χ,1/2(−2iks) decay for k ∈ C with Im k 6= 0, and oscillates
but stay bounded for k0 > 0. As a result, the integrals on R3 \ B(x,ε) are well-defined for Im k 6= 0 and
f ∈ L2(R3). For k0 > 0 (i.e. Im k = 0), they are only well-defined for f ∈ L2

c(R3).
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Part 1b We show that it defines a (distributional) solution. For φ ∈ C∞c (R3), we show that
∫

R3

(R(k)f)(x)

(
−∆x − k +

α∞
|x|

)
φ(x) dx =

∫

R3

f(x)φ(x) dx , Im k 6= 0 , f ∈ L2(R3) ,

and ∫

R3

(R±(k0)f)(x)

(
−∆x − k0 +

α∞
|x|

)
φ(x) dx =

∫

R3

f(x)φ(x) dx , f ∈ L2
c(R3).

We first note that the order of integration in the above expressions can be reversed, i.e.
∫

R3

(R(k)f)(x)φ(x) dx =

∫

R3

(∫

R3

Φk(x, y) f(y) dy

) (
−∆x − k +

α∞
|x|

)
φ(x) dx

=

∫

R3

(∫

R3

Φk(x, y)

(
−∆x − k +

α∞
|x|

)
φ(x) dx

)
f(y) dy

(4.144)

This is justified by Tonelli’s theorem, cf. [11, Prop. 5.2.1], since

Φk(x, y) f(y)φ(x) , with Im k 6= 0 , f ∈ L2(R3) ,

and Φ±k0(x, y) f(y)φ(x) , with f ∈ L2
c(R3),

are almost everywhere continuous in R3
x × R3

y (continuous except at x = y). They are thus measurable.
Next, using the fact that Φ is a fundamental solution given in Prop 15 to rewrite the second expression
on the righ-hand-side of (4.144), we obtain

∫

R3

(R(k)f)(x)φ(x) dx =

∫

R3

φ(y) f(y) dy .

The proof for Φ±k0 and f ∈ L2
c(R3) is verbatim.

Part 2a : That R(k)f ∈ L2 when k2 ∈ C \ [0,∞) follows from Proposition 14. The uniqueness of the
L2 solution when Im k 6= 0 is given by Proposition 1 of Section 3.

Part 2b : We show the radiation condition in the case of no attenuation for k0. It is justified in
Appendix E, for

y ∈ Ω bounded , f ∈ L2
c(R3) , Supp f ⊂ Ω ,

and
0 ∈ Ω , x ∈ R3 \ Ω ,

to pass the differentiation across the integral sign and obtain

∂r(x)

∫

R3

Φ+
k0

(x, y) f(y) dy =

∫

R3

∂r(x)Φ
+
k0

(x, y) f(y) dy .

In another word, we have
(
x

|x| · ∇x ∓ i k0

)∫

R3

Φ+
k0

(x, y) f(y) dy =

∫

R3

f(y)

(
x

|x| · ∇x ∓ i k0

)
Φ+

k0
(x, y) dy .

Next, we use the radiating property of Φ±k0 given in (4.112) of Prop 12,
(
x

|x| · ∇x ∓ i k0

)
Φ±k0(x, y) = O(|x|−2) ,

uniformly for y in compact set, when |x| → ∞. We thus obtain the uniform Sommerfeld radiation for
R+(k0)f .

(
x

|x| · ∇x ∓ i k0

)∫

R3

Φ+
k0

(x, y) f(y) dy =

∫

Supp f

O(|x|−2) f(y) d(y) = O(|x|−2) .
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Part 3 This uses dominated convergence theorem and the limits (4.19)

kγ → k0 , ηγ → η0 , χγ → χ0 , as γ → 0+;

kγ → −k0 , ηγ → −η0 , χγ → −χ0 , as γ → 0− .

Denote the following regions in C, with a, b, c > 0

R+ := {z ∈ C
∣∣ Re z ∈ [a, b] , Im z ∈ [0, c]} ;

R− := {z ∈ C
∣∣ Re z ∈ [a, b] , Im z ∈ [−c, 0]} .

Using the branch of square root defined in (4.11b), the following maps

R+ −→ C(R3 × R3 , C) ; z 7→ Φ√z(x, y) ,

R− −→ C(R3 × R3 , C) ; z 7→ Φ√z(x, y) ,

are uniformly continuous.

Remark 23. Here, we have considered H := −∆ +
β

|x| with constant β ∈ R and β ≥ 0. This is

called a repulsive potential, which is the case for application in helioseismology. The above results can
be rephrased from the perspective of spectral theory as

σ(H) = σcont(H) = σac(H) = [0,∞) ,

see also [16]. However, for β < 0, there are point spectrum on the negative axis22. Note that in both
cases (either β > 0 or β ≤ 0), there is no embedded positive eigenvalue into the spectrum (equivalently
the spectrum is absolutely continuous).

4.6 Uniqueness under radiation condition at k0

In previous section, we have constructed a solution to

(−∆ − k2
0 +

α∞
|x|
)
u = f , with f ∈ L2

c(R3) , (4.146)

which satisfies the uniform Sommerfeld radiation condition

∂ru(x) − ik0 u(x) = o(r−1) , as r = |x| → ∞ uniformly in
x

|x| ∈ S(0, 1) .

We will show that this is a defining property, i.e. such a solution (with this property) is unique. We first
discuss several equivalent forms of radiation conditions. Recall the second Green’s formula (4.130), for a
bounded domain Ω,

∫

Ω

(
w (∆xu) − u (∆x w)

)
dx =

∫

∂Ω

w ∂n(x)u − u ∂n(x)w ,

where n(x) is the normal vector along ∂Ω and points outward (from the interior of R). On the other
hand,

∫

Ω

(
(∆xu)w − u (∆x w)

)
dx =

∫

Ω

w
(

(∆x + k2
0 −

α∞
|x| )u − u (∆x + k2

0 −
α∞
|x| )w

)
dx.

22For the attractive Coulomb potential i.e. β < 0

σ(H) = [0,∞) ∪ σpoint(H) ,with σcont(H) = σac(H) = [0,∞) ,

and the point spectrum consisting of an infinite discrete set of negative eigenvalues with finite multiplicity with zero
accumulation point,

σdis(H) = {− β2

4n2
∈ [−β2, 0) , n = 1, 2, . . .} . (4.145)

For computation see [26, Chapter 10 p.191].
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As a result, we have
∫

Ω

w
(

(∆x + k2
0 −

α∞
|x| )u − u (∆x + k2

0 −
α∞
|x| )w

)
dx =

∫

∂Ω

w ∂n(x)u − u ∂n(x)w . (4.147)

In particular, we can apply (4.147) to the pair (u, u) to obtain
∫

Ω

(
u

(
∆x + k2

0 −
α∞
|x|

)
u − u

(
∆x + k2

0 −
α∞
|x|

)
u

)
dx = −

∫

∂Ω

2 i Im
(
u ∂n(x)u

)
dσ(x) , (4.148)

since
u ∂n(x)u − u ∂n(x)u = −2 i Im

(
u ∂n(x)u

)
= 2 i Im

(
u ∂n(x)u

)
.

In the same spirit of the proof for Helmholtz equation, cf. e.g. [35, Thm 2.3], we obtain the results
with additional presence of a positive Coulomb potential.

Proposition 18 (Equivalent forms of radiation conditions). For u a solution to

(
−∆− k2

0 +
α∞
|x|
)
u = 0 , (4.149)

in the exterior domain k0 > 0 of Ω{ := R3 \ Ω, with Ω bounded, the following statements are
equivalent.

1. Uniform Sommerfeld radiation condition

∂ru(x) − ik0 u(x) = o(r−1) , as r = |x| → ∞ uniformly in
x

|x| ∈ S(0, 1). (4.150)

2. L2-radiation condition

lim
R→∞

∫

S(0,R)

∣∣(∂ru)(x) − i k0 u(x)
∣∣2 dσ(x) = 0 . (4.151)

This can be written as

lim
r→∞

∫

S(0,r)
|(∂ru)(x)|2 + k2

0|u(x)|2 dσ(x) = −2k0

∫

∂Ω

Im
(
u(x) ∂ru(x)

)
dσ(x) . (4.152)

3. Exterior representation formula

u(x) =

∫

∂Ω

(
(∂nu)(y) Φ+

k0
(x, y) − u(y) (∂n(y)Φ

+
k0

)(x, y)
)
dσ(y) . (4.153)

Proof. Part 1 : (1)⇒ (2) Assuming the uniform radiation condition (4.150), we show that

∫

S(0,r)
|∂ru− ik0u|2 dSr = o(1) , as r →∞.

This is because
∫

S(0,r)
|∂ru− ik0u|2 dSr =

∫

S(0,1)
|∂ru($)− ik0u(r$)|2r2d$ =

∫

S(0,1)
o(r2) r2 d$ = o(1) .

Part 2 : (2)⇒ (3) Step 0 Consider r so that

Ω ⊂ B(0,r) .
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Denote by
Rr := Ω{ ∩ B(0,r) , (4.154)

where Ω{ denotes the complement, Ω{ = R3 \Ω. Since u is a solution of
(
−∆− k2

0 +
α∞
|x|
)
u = 0 in Rr,

apply Proposition 16 which gives the integral representation in Rr,

u(x) =

∫

∂Ω

(
(∂nu)(y) Φ+

k0
(x, y) − u(y) (∂nΦ+

k0
)(x, y)

)
dσ(y) .

Note that
∂Rr = ∂Ω ∪ S(0,r) .

Denote by I this integral along S(0,r), i.e.

I :=

∫

S(0,r)

(
(∂nu)(y) Φ+

k0
(x, y) − u(y) (∂nΦ+

k0
)(x, y)

)
dσ(y) .

We need to show that
lim
r→∞

I = 0 .

Step 1 We first obtain the second form (4.152) of the L2-radiation condition using (4.148). Since
both α∞ and k0 are real, both u and u satisfy the homogeneous equation in Rr

(
∆x + k2

0 −
α∞
|x|

)
u = 0 ;

(
∆x + k2

0 −
α∞
|x|

)
u = 0 .

Using this fact and applying the modified Green’s formula (4.148) to (u, u) in region Rr, we have
∫

∂Rr

Im
(
u(x) ∂ν(x)u(x)

)
dσ(x) = 0 , ν(x) normal vector pointing outward of Rr .

Since ∂Rr = ∂Ω ∪ S(0,r), with n(x) denoting the normal vector along ∂Ω and S(0,r) but now points
outward (towards infinity), we have

∫

∂Ω

Im
(
u(x) ∂n(x)u(x)

)
dσ(x) =

∫

S(0,r)
Im
(
u(x) ∂n(x)u(x) dσ(x) . (4.155)

On the other hand, since
∣∣(∂ru)(x) − ik0 u(x)

∣∣2 = |(∂ru)(x)|2 + k2
0|u(x)|2 + 2 Im

(
u(x) ∂ru(x)

)
,

we have
∫

S(0,r)

∣∣(∂ru)(x) − ik0 u(x)
∣∣2 dσ(x)

=

∫

S(0,r)
|(∂ru)(x)|2 + k2

0|u(x)|2 +

∫

S(0,r)
2 Im

(
u(x) ∂ru(x)

)
dσ(x)

(4.155)
=

∫

S(0,r)
|(∂ru)(x)|2 + k2

0|u(x)|2 dσ(x) +

∫

∂Ω

2 Im
(
u(x) ∂ru(x)

)
dσ(x) .

Hence we obtain the second form of (4.151)

lim
r→∞

∫

S(0,r)
|(∂ru)(x)|2 + k2

0|u(x)|2 dσ(x) = −2k0

∫

∂Ω

Im
(
u(x) ∂ru(x)

)
dσ(x) .

Step 2 To make use of the L2-radiation condition (4.151) and (4.152), we next rewrite I as

I = I1 + I2 ,
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where

I1 :=

∫

S(0,r)

(
(∂nu)(y) − i k0 u(y)

)
Φ+

k0
(x, y) dσ(y) ;

I2 :=

∫

S(0,r)
u(y)

(
i k0 Φ+

k0
(x, y) − (∂n(y)Φ

+
k0

)(x, y)
)
dσ(y) .

Here, we have added and subtracted the term ik0Φ+
k0
u. From (4.152), we have that

∫

S(0,r)
|(∂ru)(x)|2 dσ(x) = O(1) ,

∫

S(0,r)
|u(x)|2 dσ(x) = O(1) , as r →∞ .

We first consider I2. With x in a compact set and considered as a parameter, y 7→ Φ+
k0

(x, y) solves
(4.149) in R3 \ {x} and satisfies

(
y

|y| · ∇y − ik

)
Φ+

k = O(|y|−2) .

Result of Part 1 (now applied in variable y) then gives
∫

S(0,r)

∣∣∣∣
y

|y| · ∇yΦ+
k − i kΦ+

k

∣∣∣∣
2

dσ(y) = o(1) , as r →∞ .

By Cauchy-Schwarz, we obtain

|I2| ≤
(∫

S(0,r)
|u(y)|2 dσ(y)

)1/2 (∫

S(0,r)
| y|y| · ∇yΦ+

k − ikΦ+
k |2 dσ(y)

)1/2

= O(1) o(1) ,

as r →∞ .

Thus
I2 = o(1) , as r →∞ .

We next consider I1. For x in a compact set,

Φ+
k0

(x, y) = e
1
2 ik0|y|(e−iπik0|y|)χ0(1 + O(|y|−2)

1

y

(
1 + O(|y|−1)

)

⇒ Φ+
k0

(x, y) = e
1
2 ik0|y|(e−iπik0|y|)χ0

1

|y|
(
1 + O(|y|−1)

)
.

Since ∫

S(0,r)
|Φ+

k0
(x, y)|2dσ(y) =

∫

S(0,1)
|Φ+

k0
(x, y)|2|y|2dσ(y) ,

we thus have, for x in a compact set
∫

S(0,r)
|Φ+

k0
(x, y)|2dσ(y) = O(1) , as r →∞ .

Note that we are currently assuming (4.151), i.e.
∫

S(0,r)
|(∂ru)(y)− ik0u(y)|2 dσ(y) = o(1) as r →∞.

As before, we now use Cauchy-Schwarz to bound

|I1| ≤
(∫

S(0,r)
|Φ+

k0
(x, y)|2 dσ(y)

)1/2 (∫

S(0,r)

∣∣∣∣
y

|y| · ∇yΦ+
k0
− i kΦ+

k0

∣∣∣∣
2

dσ(y)

)1/2

= O(1) o(1) , as r →∞ .
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As a result of this,
I1 = o(1) , as r →∞ .

Together with the result for I2, we obtain the conclusion for I, i.e. I = o(1) as r →∞, and hence (4.153).

Part 3 (3)⇒ (1) Now we assume that u is a solution to (4.149) in Ω{ and that u can be given by
(4.153).

u(x) =

∫

∂Ω

(
(∂n(y)u)(y) Φ+

k0
(x, y) − u(y) (∂n(y)Φ

+
k0

)(x, y)
)
dσ(y) , (4.156)

with the normal vector n points outward of ∂Ω. In fact, we can obtain a representation on S(0,r) for r > 0
large enough so that

Ω ⊂ B(0,r).

As done in the proof for Part 2, we apply Proposition 16 which gives the integral representation in Rr,

u(x) =

∫

∂Ω∪S(0,r)

(
(∂ν(y)u)(y) Φ+

k0
(x, y) − u(y) (∂ν(y)Φ

+
k0

)(x, y)
)
dσ(y) ,

where ν points outward from (R3 \ Ω) ∩ B(0,r). Combining with the representation (4.156)
∫

∂Ω

(
(∂n(y)u)(y) Φ+

k0
(x, y) − u(y) (∂n(y)Φ

+
k0

)(x, y)
)
dσ(y)

= −
∫

∂Ω

(
(∂n(y)u)(y) Φ+

k0
(x, y) − u(y) (∂n(y)Φ

+
k0

)(x, y)
)
dσ(y)

+

∫

S(0,r)

(
(∂r(y)u)(y) Φ+

k0
(x, y) − u(y) (∂r(y)Φ

+
k0

)(x, y)
)
dσ(y) .

This leads to
∫

∂Ω

(
(∂n(y)u)(y) Φ+

k0
(x, y) − u(y) (∂n(y)Φ

+
k0

)(x, y)
)
dσ(y)

=
1

2

∫

S(0,r)

(
(∂r(y)u)(y) Φ+

k0
(x, y) − u(y) (∂r(y)Φ

+
k0

)(x, y)
)
dσ(y).

As a result of this, u can be written as

u =
1

2

∫

S(0,r)

(
(∂r(y)u)(y) Φ+

k0
(x, y) − u(y) (∂r(y)Φ

+
k0

)(x, y)
)
dσ(y).

We will work with this representation.
With differentiation under the integral sign justified in Appendix E, we can write

(
∂r(x) − i k0

)
2u = A1 + A2 ,

where

A1 :=

∫

S(0,r)
(∂nu)(y)

(
x

|x|∇x − ik0

)
Φ+

k0
(x, y) ,

A2 :=

∫

S(0,r)
u(y)

(
x

|x|∇x − ik0)

)
∂n(y)Φ

+
k0

(x, y) dσ(y).

Note that we are integrating with respect to y ∈ ∂Ω, the boundary of bounded domain Ω, thus y is
indeed in a bounded set and we can apply the radiating property of Φ+

k0
(x, y). Prop 11 and 13 give the

asymptotic properties of Φ+
k0

(x, y) and ∂r(y)Φ
+
k (x, y),

(
∂r(x) − i k0

)
Φ+

k0
(x, y) = O(|x|−2) ,

(
∂r(x) − i k0

)
∂r(y)Φ

+
k0

(x, y) = O(|x|−2) ,
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as |x| → ∞ and y in a bounded set. As a result of this

A1 =

∫

∂Ω

O(1)O(|x|−2) dσ(y) = O(|x|−2) .

Similarly, we obtain A2 = O(|x|−2). And thus
(
∂r(x) − ik0

)
u = O(|x|−1) ,

which implies (4.150).

Definition 3. For k0 > 0, a function u ∈ L2
loc(R3) is a outgoing solution for

(
−∆− k2

0 +
α∞
|x|
)
u = f , (4.157)

in R3 \ Ω, where Ω is a bounded region if u satisfies one of the conditions listed in Prop 18, in
particular, the Uniform Sommerfeld radiation condition (4.150)

∂ru(x) − ik0 u(x) = o(r−1) , as r = |x| → ∞ uniformly in
x

|x| ∈ S(0, 1) ,

or the L2-radiation condition (4.151),

lim
R→∞

∫

S(0,R)

∣∣(∂ru)(x) − i k0 u(x)
∣∣2 dσ(x) = 0 . 4

Proposition 19. With definition of outgoing given by Definition 3, we have the following statements.

• For k0 > 0, if u ∈ H2
loc(R3) is an outgoing solution to (−∆ − k2

0 + α∞
|x| )u = 0 and satisfies the

outgoing radiation condition, then u ≡ 0.

• For k0 > 0, if u ∈ H2
loc(R3) is an outgoing solution to (−∆ − k2

0 + α∞
|x| )u = f , f ∈ L2

c(R3), then u
is unique.

Proof. If u is an outgoing solution in R3, then by the exterior representation formula (4.153)

u(x) =

∫

S(0,ε)

(
(∂nu)(y) Φ+

k0
(x, y) − u(y) (∂n(y)Φ

+
k0

)(x, y)
)
dσ(y) , (4.158)

in R3 \ B(0,ε) for all ε < |x|. Let ε→ 0, we obtain that u(x)→ 0.
For the second statement, suppose u1 and u2 are two outgoing solutions of the inhomogeneous equa-

tion, then u = u1−u2 solves the homogeneous equation and is still outgoing. By the first part, u ≡ 0.

4.7 Rellich’s lemma
The following theorem is also proved in [26, Thm 1.2]. This is usually needed to show uniqueness of
exterior boundary value problem.

Lemma 20 (Rellich estimate). Consider a solution u ∈ C2(R3 \ B(0,r))

(
−∆− k2

0 +
α∞
|x|
)
u = 0 on R3 , with k0 > 0 ,

RR n° 9280



74 Barucq & Faucher & Pham

which does not vanish identically, then ∃C > 0, and r̃ > r such that

∀ r > r̃ ,

∫

r≤|x|≤r
|u(x)|2 dx ≥ C r . (4.159)

Proof. Step 1 In the region R3 \ B(0,r), with RHS being 0, the equation has the radial symmetry and a
general solution can be decomposed as expansions of spherical harmonics, i.e.

u(r, θ, φ) =

∞∑

`=0

∑̀

m=−`
um
` (r) Ym

` (θ, φ) ,

where the coefficients um
` (r) are

um
` (r) =

∫

S1
u(r$) Ym

` ($) d$ =

∫ π

0

∫ 2π

0

u(r, φ, θ) Ym
` (θ, φ) sin θ dφ dθ .

By the orthogonality of {Ym
` }, we also have

∫

S2
|u(s,$)|2d$ =

∞∑

`=0

∑̀

m=−`
|um
` (s)|2 .

As a result,

∫

r≤|x|≤r
|u(x)|2 dx =

∫ r

r

∫

S1
|u(s,$)|2 s2 d$ ds =

∫ r

r

∞∑

`=0

∑̀

m=−`
|um
` (s)|2 s2 ds .

By hypothesis that u 6≡ 0 on R3 \ B(0,r), there exists radius s0 and mode (m, `) so that

|um
` (s0)| > 0 . (4.160)

This quantity will be as a lower bound for the L2 norm of u on the annulus r ≤ s ≤ r,
∫

r≤|x|≤r
|u(x)|2 dx ≥

∫ r

r

|um
` (s)| s2 ds > 0 . (4.161)

Step 2a We will look for r̃ and C > 0 so that if r > r̃ then
∫ r

r

|um
` (s)| s2 ds > Cr .

By (4.174) (which gives expansion in spherical harmonic and Whittaker functions) and (4.160), for some
ã and b̃ with |ã|2+|b̃|2 > 0,

um
` (s) =

1

s

(
ãW−χ,`+ 1

2
(−2 i k s) + b̃W

χ,`+
1
2

(2 i k s )

)
.

Using the asymptotic properties (4.49) of the Whittaker function in Appendix C.2, we have, for some a
and b with |a|2 + |b|2 > 0,

um
` (s) =

1

s

(
a e−

π
2 η0 sin

(
k0r − η0 log(2 k0 s)

)
+ b e−

π
2 η0 cos

(
k0r − η0 log(2 k0 s)

)
+ O(s−2)

)
.

(4.162)
In fact, b = ã+ b̃ and a = i(ã− b̃).

We next rewrite the two dominant terms in (4.162) as,

a sin
(
k0r − η0 log(2 k0 s)

)
+ b cos

(
k0r − η0 log(2 k0 s)

)
= sin

(
k0r − η0 log(2 k0 s) + θ0

)
,
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where the angle θ0 is given by

cos θ0 =
a√

a2 + b2
, sin θ0 =

b√
a2 + b2

.

We can write

um
` (s) = e−

π
2 η0

√
a2 + b2

(
sin
(
k0r − η0 log(2 k0 s) + θ0

)
+ O(s−1)

)
;

⇒ |um
` (s)|2 s2 = e−πη0 (a2 + b2)

(
sin
(
k0r − η0 log(2 k0 s) + θ0

)
+ O(s−1)

)2

;

= e−πη0 (a2 + b2)
(

sin2
(
k0r − η0 log(2 k0 s) + θ0

)
+ O(s−1)

)
;

= e−πη0
a2 + b2

2

(
1 − cos 2

(
k0r − η0 log(2 k0 s) + θ0

)
+ O(s−1)

)
.

For the last equality, we use the identity sin2 φ = 1−cos 2φ
2 .

After this step we have obtained
∫ r

r

|um
` (s)|2 s2 ds

= e−πη0
a2 + b2

2

(
r − r +

∫ r

r

cos 2
(
k0r − η0 log(2 k0 s) + θ0

)
ds

)
+ O(log r) .

(4.163)

Step 2b We next show that the second integral in (4.163)

I =

∫ r

r

cos 2
(
k0s − η0 log(2 k0 s) + θ0

)
ds .

is O(1) as r →∞. We first define

g(s) := k0s − η0 log(2 k0 s) + θ0 ⇒ g′(s) = 2k0 − 2η0
1

s
=

2k0s− 2η0

s
.

In terms of g, we write

I =

∫ r

r

1

g′(s)
cos g(s)× g′(s) ds = −

∫ r

r

1

g′(s)

(
sin g(s)

)′
ds .

Using integration by parts,

I = − sin g(s)

g′(s)

∣∣∣
r

r
+

∫ r

r

sin g(s)

(
1

g′(s)

)′
ds. (4.164)

Since |sin(·)| ≤ 1 and

lim
r→∞

1

g′(r)
= 2k0 ,

the first term on the RHS of (4.164) reads

− sin g(r)

g′(r)
+

sin g(r)

g′(r)
= O(1) , as r →∞ . (4.165)

We next consider the second term on the RHS of (4.164). First recall that η0 =
α∞
2 k0

> 0 since α∞ > 0

and k0 > 0. Hence,

g′′ = 2 η0
1

s2
> 0 and

(
1

g′(s)

)′
=

g′′(s)
(g′(s))2

> 0 . (4.166)

RR n° 9280



76 Barucq & Faucher & Pham

Now using |sin(·)| ≤ 1 to bound
∣∣∣∣∣

∫ r

r

sin g(s)

(
1

g′(s)

)′
ds

∣∣∣∣∣ ≤
∫ r

r

∣∣∣∣∣

(
1

g′(s)

)′∣∣∣∣∣ ds
(4.166)

=

∫ r

r

(
1

g′(s)

)′
ds =

1

g′(r)
− 1

g′(r)
.

Since
lim
r→∞

1

g′(r)
=

1

2k0
,

we thus have
1

g′(r)
− 1

g′(r)
= O(1).

As a result of this, ∫ r

r

sin g(s)

(
1

g′(s)

)′
ds = O(1) . (4.167)

Putting together (4.165) and (4.167), we obtain

I = O(1) , as r →∞. (4.168)

Step 2c From (4.168) and (4.163), we then conclude the existence of C > 0 and r̃ > 0

∫ r

r

|um
` (s)|2s2 ds = e−πη0

a2 + b2

2
r + O(1) + O(log r) .

Here we have gathered into O(1) the terms e−πη0
a2 + b2

2

(
− r + I

)
. The final Rellich estimate (4.159)

now follows after using (4.161).

4.8 General solutions for the homogeneous equation
In this subsection, we will describe a generic solution of the homogeneous problem of operator (4.2)

(
−∆x − k2 +

α∞
|x|
)
u = 0 . (4.169)

Recall that by separation of variable, this is reduced to an ODE on each mode (`,m)

(
− d2

dr2
− k2 − α∞

r
+

`(`+ 1)

r2

)
um` = 0 , ` = 0, 1, 2, . . . .

By Remark 21, the range of angle for z = 2ei
π
2 k r is in the definition range (−π2 , 3π

2 ) of

W
χ,`+

1
2

(z) and W−χ,`+ 1
2

(e−πiz) , (4.170)

a pair of fundamental solutions for (4.5) at ∞, and in the definition range (−π, π) of the fundamental
pair near the origin,

M
χ,`+

1
2

(e−iπz) and W
χ,`+

1
2

(e−iπz) . (4.171)

These fundamental pairs are listed in Subsubsection 4.2.4 with their definition given in (4.26)–(4.29) for
the Buchholtz function M

χ,`+
1
2

and in (4.32)–(4.33) for the Whittaker function W
χ,`+

1
2
. We obtain

readily the following results.

Proposition 21. If u ∈ L2
loc is a solution to

(
−∆x − k2 +

α∞
|x|
)
u = 0 , (4.172)
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• in a sphere |x| ≤ R, then u is given by

u =

∞∑

`=0

∑̀

m=−l

cm`

M
χ,`+

1
2

(2 i k |x|)
|x| Ym

` (θ, φ) , (4.173)

• and in an annulus 0 < R1 ≤ |x| ≤ R2 is given by

u =

∞∑

`=0

∑̀

m=−l

1

|x|
(
am
` W−χ,`+ 1

2
(e−iπ 2 i k |x|) + bm` W

χ,`+
1
2

(2 i k |x|)
)

Ym
` (θ, φ) . (4.174)

• If u is, in addition, outgoing by Definition 3, then on 0 < R1 ≤ |x| ≤ R2,

u =

∞∑

`=0

∑̀

m=−l

am`

W−χ,`+ 1
2

(e−iπ 2 i k |x|)
|x| Ym

` (θ, φ) . (4.175)

Remark 24. The series (4.174) and (4.173) converge on compact subsets of R3 \ {0}. 4

Remark 25. In the general spherically symmetric case, we still have ρ(x) = ρ(|x|), but ρ′ρ is not reduced
to a constant. However, on each mode (`,m), we still obtain an ODE of the form

(
− d2

dr2
− k2

0 + v(r)

)
um` = 0 .

This is a specific case of the general problem considered in [7, Chapter 2],

(
− d2

d2r
− f2(r)

)
u = 0 , f(r) =

√
k2

0 − v(r) > 0 . (4.176)

For k2
0 6= 0, in case of a decaying potential v(r) that is

v(r)→ 0 as r →∞ . (4.177)

with further condition, cf. [7, Eqn 4.45], for a x0 chosen arbitrarily large,

∫ ∞

x0

|v′(r)|2 dr < ∞ ,

∫ ∞

x0

|v′′(r)| dr <∞ . (4.178)

Applying Theorem 4.5 and 4.6 of [7] gives that the equation (4.176), has a pair of solutions with the
following asymptotics, as r →∞,

exp

(
±i k0

∫ r

r0

√
1− v(s)

k2
0

ds

)
(1 + o(1)) .

In our case, by (2.19) and (2.11) and supposing constant speed,

v(r) =
α2(r)− α2

∞
4

+
∂rα(r)− α′∞

2
+
α∞(r)

r
+
`(`+ 1)

r2
.

In order to apply this result, we assume that α∞(r) is such that v(r) satisfies (4.177) and (4.178) and
that k2 ≥ v(r). 4
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4.9 Exact Dirichlet-to-Neumann map
Definition 4. Consider a bounded domain Ω ⊂ R3 with smooth boundary Γ. Denote respectively by |±Γ
the outer and inner trace along Γ. Consider the Schrödinger equation with Coulomb potential,

(
−∆ − k2 +

α∞
|x|
)
u = 0 . (4.179)

For g ∈ L2(Γ),

• the outer D-t-N operator T+ associated with (4.179) and Γ is defined as

T+g = ∂nu|+Γ where
u is the outgoing solution to (4.179) in Rn \ Ω

with boundary condition u|+Γ = g
;

• while the inner D-t-N operator T− is

T−g = ∂nu|−Γ where
u is the unique solution to (4.179) in Ω

with boundary condition u|−Γ = g.

4

Proposition 22. Consider equation (4.179) in exterior of the sphere B(0,R) with boundary denoted
by Γ. The outer D-t-N along Γ associated with this equation is given by

T+ (u|Γ) =

∞∑

`=0

γ`
∑̀

m=−`
um
` Ym

` (θ, φ) , (4.180)

where um` are the coefficients of the expansion of u|Γ in the spherical harmonic basis Ym
` , i.e.

u|Γ(θ, φ) =

∞∑

`=0

∑̀

m=−`
um` Ym

` (θ, φ) ,

with um` :=

∫ π

0

∫ 2π

0

u(R, θ, φ) Ym
` (θ, φ) sin θ dφ dθ,

(4.181)

and γ` are the modal coefficients of T+ at level ` (called modal D-t-N coefficients),

γ` := −2 i k

W′
−χ,`+ 1

2

(−2 i kR)

W−χ,`+ 1
2

(−2 i kR)
− 1

R
, χ =

iα∞
2k

. (4.182)

Proof. From (4.173), an outgoing solution uout in R ≤ |x| ≤ R′ is given by

uout =

∞∑

`=0

∑̀

m=−l

am`

W−χ,`+ 1
2

(−2 i k |x|)
|x| Ym

` (θ, φ) , χ =
iα∞
2k

.

The sequence am
` is next determined from the outer Dirichlet trace of uoutgoing along Γ given by u|Γ.

Upon imposing the boundary condition on each mode (m, `), with um` given in (4.181), we obtain

am`

W−χ,`+ 1
2

(−2 i kR)

R
= um` . (4.183)

Since the series converges absolutely and uniformly in R ≤ |x| ≤ R′, we can differentiate term-by-term
in the radial direction to obtain the outer normal trace uout along Γ is then

∂nuout|Γ+ = −
∞∑

`=0

∑̀

m=`

am
`


 2ik

W′
−χ,`+ 1

2

(−2 i kR)

R
+

W−χ,`+ 1
2

(−2 i kR)

R2


 Ym

` (θ, φ).
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Replace am` by expression (4.183), with simplification we obtain

∂nuout|Γ+ = −
∞∑

`=0


 2ik

W′
−χ,`+ 1

2

(−2 i kR)

W−χ,`+ 1
2

(−2 i kR)
+

1

R


 ∑̀

m=`

um` Ym
` (θ, φ).

5 Results for the original problem
We rephrase the results obtained for the conjugated operator (2.5)

L = ρ−1/2 Lorig ρ1/2 = −∆ − ω2

c2
+ ρ1/2 ∆ ρ−1/2 ,

in terms of those for the original one (2.1)

Lorig u := −∇ · (ρ−1∇u) − ω2

ρ c2
u .

5.1 Global outgoing solutions
We first recall the constructed resolvent for the conjugated operator L in Subsection 3.3, denoted by

Rω2(k2) :=
(
−∆ + q(x)− ω2

c2

)−1

, cf. (3.69) in the presence of attenuation , and (3.71) (Approach 1)
or (3.84) (Approach 2) without attenuation. The ‘outgoing’ resolvent for the original operator in (1.1) is
given as

ρ1/2 Rω2(k2) ρ1/2 . (5.1)

Here, ‘outgoing’ or physical means that w is L2 in the presence of attenuation and k0-outgoing in the
case without attenuation. As a result, ‘outgoing’ or physical for the original equation means that ρ−1/2u
is L2 in the presence of attenuation and k0-outgoing in the case without attenuation.

Definition 5 (Outgoing solution for the original problem). For f with ρ1/2f ∈ B (Remark 9)
for the case without attenuation, or ρ1/2f ∈ L2 with attenuation, a solution u to Lorigu = f is
called outgoing if u = ρ1/2w where w is the (unique) outgoing/physical solution to Lw = ρ1/2f .
Specifically, with w = Rω2(k2) ρ1/2f , the outgoing solution is then

u = ρ1/2 Rω2(k2) ρ1/2f . 4

Remark 26 (Global outgoing solution to the inhomogeneous equation in the Atmo model). For com-
pleteness of discussion, we consider the case in which Atmo model is applied for the whole R3, i.e.

ρ(x) = d e−α∞|x| , c = c∞ , x ∈ R3 .

In this case, with γ ≥ 0, the normalized wavenumber is given by (4.15), and we have specific expression
for the resolvent of the conjugated operator L. For23 g ∈ B, cf. (4.140)–(4.141),

Rω2(k2) g = R̃(k2) g =

∫

y∈R3

Φk(x, y)g(y) dy , Im k2 6= 0 ,

Rω2
0
(k2

0) g = R̃+(k2
0) g =

∫

y∈R3

Φ+
k0

(x, y)g(y) dy , k0 > 0 .

Under the current assumption, density ρ decays exponentially, thus for f ∈ L2(R3), ρ1/2f satisfies condi-
tion ρ1/2f ∈ B without attenuation and ρ1/2f ∈ L2 for the case with attenuation. In another word, one

23stronger assumptions are either L2
σ with σ > 1/2 or simply L2

comp.
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can readily apply the constructed resolvent R̃(k2) to ρ1/2f . The outgoing solution u to Lorigu = f with
f ∈ L2(R3) is then given by

u = d e−
α∞
2 |x|

∫

y∈R3

Φk(x, y) e−
α∞
2 |y|f(y) dy , Im k2 6= 0 ,

u = d e−
α∞
2 |x|

∫

y∈R3

Φ+
k0

(x, y) e−
α∞
2 |y|f(y) dy , k0 > 0 .

(5.2)

For convenience, we recall here the explicit kernel given in (4.70),

Φk(x, y) := − Γ(1 + χ)

4π |x− y|

∣∣∣∣∣∣

W−χ,1/2(−i k s) M−χ,1/2(−i k t)

W′−χ,1/2(−i k s) M′−χ,1/2(−i k t)

∣∣∣∣∣∣
,

with the auxiliary variable defined in (4.71),

s = |x| + |y| + |x− y| , t = |x| + |y| − |x− y| .

The normalized wavenumber (4.15) is

k := g2

(
ω2

c2
− α2

4

)
= g2

(
ω2

0

c2
− α2

4
+ i

γ

c2
ω2

0

)
;

η :=
α

2k
; χ := i η .

The outgoing resolvent without absorption (i.e. γ = 0) is given in (4.75) as a limit as γ → 0+ of the
above kernel,

Φ+
k0

(x, y) = −Γ(1 + χ0)

4π |x− y|

∣∣∣∣∣∣

W−χ,1/2(−i k0 s) M−χ,1/2(−i k0 t)

W′−χ,1/2(−i k0 s) M′−χ,1/2(−i k0 t)

∣∣∣∣∣∣
. 4

5.2 Expansion of outgoing solutions to the homogeneous equation in the Atmo
model

In this case, we consider equation Loriguorig = 0 in the exterior of a sphere B(0,R) with R ≥ Ra. Recall
in this case that the sound speed c is constant as well as density height scale H(r) and α(r) = 1

H(r) . To
be consistent with the notation from the general case, we will work with notation

c(r) = c∞ , α(r) = α∞ .

The wavenumber k in this case is given in (4.15)

k =

√
ω2

0

c2
− α2

4
+ i

γ

c2
ω2

0 ; χ =
iα

2 k
, γ ≥ 0 .

The relation between uorig solution to

−∇ · (ρ−1∇u) − ω2

ρ c2∞
u = 0

and u solution to the conjugated problem Lu = 0 is uorig = ρ1/2w. With

ρ = ρS(Ra) exp(−α∞|x|) ,

in the Atmo model, this relation has the form,

uorig = e−
1
2 α∞ |x|

√
ρS(Ra)u ,
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where |x|u is described in terms of the Whittaker functions, cf. Prop 21. In short, in Ra < r < R′a, uorig
is given by

uorig(x) =
e−

α∞
2 |x|

|x|
∞∑

`=0

∑̀

m=−l

am
` W−χ,`+ 1

2
(−2 i k |x|) Ym

` (θ, φ) .

Without attenuation, the wavenumber reduces to

k0 =

√
ω2

0

c2
− α2

∞
4

, χ =
iα∞
2 k0

.

A general outgoing solution to (1.1) in r > Ra is given by

uoutorig(x) =
e−

α∞
2 |x|

|x|
∞∑

`=0

∑̀

m=−l

am
` W−χ0,`+

1
2

(−2 i k0 |x|) Ym
` (θ, φ),

while an incoming one by

uinorig(x) =
e−

α∞
2 |x|

|x|
∞∑

`=0

∑̀

m=−`
am
` W

χ0,`+
1
2

(2 i k0 |x|) Ym
` (θ, φ).

5.3 Exact D-t-N in the Atmo model

Under the same notation as in previous subsection, i.e. we work with constants Ra > 0, c∞ > 0, α∞ > 0
and d > 0,

ρ(r) = d exp(−α∞|x|) , R > Ra ,

and consider equation

−∇ · (ρ−1∇u) − ω2

ρ c2∞
u = 0 , in R3 \ B(0,R) .

Recall that the constant Ra represents the height of the atmosphere, and d = ρS(Ra) with ρS from model
S. Also denote the boundary of B(0,Ra) by Γ.

Proposition 23. The outer D-t-N along Γ associated with the above equation is given as

T+
orig (u|Γ) =

∞∑

`=0

γ`
∑̀

m=−`
um
` Ym

` (θ, φ) , (5.3)

where um` are the coefficients of the expansion of u|Γ in the spherical harmonic basis Ym
` , i.e.

u|Γ(θ, φ) =

∞∑

`=0

∑̀

m=−`
um` Ym

` (θ, φ) ,

with um` :=

∫ π

0

∫ 2π

0

u(R, θ, φ) Ym
` (θ, φ) sin θ dφ dθ,

(5.4)

and γorig
` are called the radiation impedance coefficients of T+

orig at level `,

γorig
` := − 1

R
− α∞

2
− 2ik

W′
−iη,`+

1
2

(−2 i kR)

W−iη,`+
1
2

(−2 i kR)
, η =

α∞
2 k

. (5.5)

with k defined in (4.15).
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Proof. From Prop 21, an outgoing solution uout to Lorigu = 0 in R ≤ |x| ≤ R′ is given by

uout =

∞∑

`=0

∑̀

m=−l

am`
e−

α∞
2 |x|

|x| W−χ,`+ 1
2

(−2 i k |x|) Ym
` (θ, φ) , χ =

iα∞
2k

.

The sequence am
` is next determined from the (outer Dirichlet trace of uoutgoing along Γ given by u|Γ.

Upon imposing the boundary condition on each mode (m, `), with um` given in (5.4), we obtain

am`
e−

α∞
2 R

R
W−χ,`+ 1

2
(−2 i kR) = um` . (5.6)

Since the series converges absolutely and uniformly in R ≤ |x| ≤ R′, we differentiate term-by-term in the
radial direction to obtain the outer normal trace uout along Γ,

∂nuout
∣∣+
Γ

= −
∞∑

`=0

∑̀

m=`

am
` e
−α∞2 R

(W−iη,`+
1
2

(−2 i kR)

R2

+
α∞
2

W−iη,`+
1
2

(−2 i kγ R)

R
+ 2ik

W′
−iη,`+

1
2

(−2 i kR)

R

)
Ym
` (θ, φ).

Replace am` by expression (5.6), with simplification we obtain

∂nuout
∣∣+
Γ

= −
∞∑

`=0

∑̀

m=`

um
`


 1

R
+

α∞
2

+ 2ik

W′
−iη,`+

1
2

(−2 i kR)

W−iη,`+
1
2

(−2 i kR)


 Ym

` (θ, φ).

6 Radiation Boundary Conditions (RBC) in the Atmo model

The framework of potential scattering gives rise to the normalized wavenumber k (2.18), which is (4.15)
in the Atmo model. The defined ‘outgoing’ conjugated solution is shown to satisfy a Sommerfeld-type
radiation condition with in terms of k (and not the original complex frequency ω (4.13)). In this section,
we compare how two approaches affect the form of the radiation boundary condition and the choice of
gauge function (or ‘parameters of interest’) in approximating the transparent nonlocal condition, with
some preliminary numerical experiments in Subsection 6.6. Another novelty of the current discussion is
the Whittaker function family, which allows for the evaluation of the exact D-t-N impedance coefficient,
cf. Prop 23. We thus have a true reference coefficient, in addition to the nonlocal transparent one (see
below discussion). Another important point is that this is defined for the case with or without absorption.
Lack of the true D-t-N, a numerical approximation was employed in [5] to create a reference solution,
however is only applicable in the case of absorption γ > 0.

More in-depth discussion and numerical analysis are reserved to a following up report. For the current
discussion, we restrict ourselves to the atmosphere described by the Atmo model. We expect that in the
general case (under applicable assumption), the minimal condition ∂ru− iku = 0 should work as well as
the zeroth-order Sommerfeld radiation condition for the Helmholtz equation. On the other hand, from
the theoretical analysis, it does not come as a surprise that condition ∂ru − iωu = 0 does not capture
the oscillatory behavior of the solution and hence fails to distinguish between the incoming and outgoing
one.

Notation We denote (·)1/2 the choice of square root g1 (4.11a), (i.e. the Principal branch) with
Arg1(z) ∈ (−π, π].
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6.1 Relations among RBCs
We first recall that under separation of variables, the original problem (2.1),

(
−∇ · (ρ−1∇u)− ω2

ρ c2∞

)
uorig = 0 , (6.1)

gives, on each mode (`,m),
(
− d2

dr2
−
(

2

r
+ α∞

)
d

dr
− ω2

c2∞
+

`(`+ 1)

r2

)
[uorig]m` = 0 . (6.2)

On the other hand, under the change of unknown (2.3) (relisted below in (6.8)) the original problem
becomes the conjugated problem (4.2),

(
−∆ − ω2

c2
+

α2
∞
4

+
α∞
r

)
u = 0. (6.3)

This gives, on each mode ` , the ODE (4.3)
(
− d2

dr2
− 2

r

d

dr
− k2 +

α∞
r

+
`(`+ 1)

r2

)
um` = 0 . (6.4)

We further remove the first-order term and work with(
− d2

dr2
− k2 +

α∞
r

+
`(`+ 1)

r2

)
wm` = 0 . (6.5)

This is called the reduced 1D problem. Note that this problem is only defined on each mode.

In summary, we have the following quantities and equations.

1. uorig solves the original problem (6.1) in R3, which after separation of variables is equivalent to
solving [uorig]m` solution to the 1D (6.2)

2. u solves the conjugated problem (6.3) in R3, which after separation of variables is equivalent to um`
solution to the 1D (6.4).

3. wm` solves the reduced 1D problem (6.5).

The coefficients [uorig]m` , um` and wm` are related by

[uorig]m` = d e−
α∞
2 r um` = d

e−
α∞
2 r

r
wm` , (6.6)

um` = r−1 wm` . (6.7)
The 3D solutions of the original and conjugate problems are related by

uorig = d e−
α∞
2 r u. (6.8)

Relations among the modal RBCs The above relations (6.6) and (6.7) lead to the following relations
among the RBCs of discussed ODEs. We denote by Z`• a radiation impedance coefficient in the Robin-type
boundary condition

∂r w = Z`• w , w = wm` . (6.9)

used to truncate the reduced ODE (6.5) to a finite interval so that the resulting solution approximates
the outgoing solution. The RBC for the ODE (6.4) is given by

∂r u = − 1

R
u + Z`• u , u = [u]m` . (6.10)

The RBC for the ODE (6.2) is given by

∂r u = −
(

1

R
+
α∞
2

)
u + Z`• u , u = [uorig]m` . (6.11)
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Relations between the 3D RBCs To obtain the RBC in 3D for the conjugated problem (6.3), the
terms involving ` in Z`• will have to be reinterpreted as differential operators (or in fact pseudo-differential
operators) in the tangential variables. Denote the resulting operators by Z•, the RBC for (6.3) is

∂r u = − 1

R
u + Z• u , u = u . (6.12)

From relation (6.8), those for (6.1) are of the form

∂r u = −
(

1

R
+
α∞
2

)
u + Z• u , u = uorig . (6.13)

Exact radiation condition and its approximation were constructed in [5] by working directly with (6.1),
and thus of the form (6.13) or the modal version (6.11) in radial symmetry. Same approach was used
in [13], see Remark 27. On the other hand, we work with conjugated problem and thus 3D RBC of the
form (6.10) or its completely reduced modal version (6.9) in radial symmetry.

Remark 27. As in Remark 2, in the spherical symmetry, the completely reduced ODE (6.5) can be
obtained from the original problem (6.1), by a separation of variable then a removal of the first order term
( 2
r+α∞) ddr , see Appendix A.2. This amounts to doing all-at-once the change of unknown w = rρ−1/2uorig.

This is mentioned in [13, Eqn 8]. However, for spherical symmetry, [13] employs the radiation conditions
constructed in [5] using the original equation i.e. the ODE (6.2). They also employ the same idea to
construct boundary conditions for cylindrical symmetry, cf. [13, section 3.2]. As a result, all of their
radiation conditions (listed in Subsection 6.5), like those in [5] contain the term 1

R + 1
2H (which is 1

R + α∞
2

in our current notation). This was also noted in [13], see the discussion right after Eqn (13) there. 4

6.2 Nonlocal modal radiation impedance coefficients
For convenience of discussion, we define

Q` :=
ω2

c2∞
− α2

∞
4
− α∞

r
− `(`+ 1)

r2
= k2 − α∞

r
− `(`+ 1)

r2
. (6.14)

Recall that ω and k are given by (4.13) and (4.15) respectively using the second branch g2. See also
Remark 17 for the case γ ≥ 0.

In the current discussion, we work with nonnegative absorption γ ≥ 0. We rewrite (6.5) using the
quantity Q` as

d2

dr2
wm` = −Q` wm` .

Define the nonlocal radiation impedance coefficient,

Z`nonlocal := i g1(Q`) .

In [5], the outgoing wave at ∂B(0,R) is defined by condition,

∂r[uorig]m` =

(
− 1

R
− α∞

2
+ Zexact,S

)
[uorig]m` , (6.15)

while that for the conjugated problem is

∂rw
m
` = Z`nonlocal w

m
` . (6.16)

With (·)1/2 = g1(·) and γ ≥ 0, we will verify below that Zexact can be written as

Z`nonlocal = i
ω

c∞

(
1− c2

∞
ω2

(
α2
∞
4

+
α∞
r

+
`(`+ 1)

r2

))1/2

= i k

(
1 − α∞

r

1

k2
− `(`+ 1)

(r k)2

)1/2

.

(6.17)
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Verification of (6.17) We can write

Q` =
ω2

c2∞

(
1− α2

∞
4

c2
∞
ω2
− α∞

r

c2
∞
ω2
− `(`+ 1)

r2

c2
∞
ω2

)
.

Since ω2 = ω2
0 + iγ, and γ ≥ 0, we have Arg1(Q`) ∈ [0, π] and Arg1( ω

2

c2∞
) ∈ [0, π2 ], thus

Arg1(Q`) − Arg1

(
ω2

c2∞

)
∈ [−π2 , π] ⊂ (−π, π] .

With property (J.4) satisfied, and the second statement of Prop 33 gives

g1(Q`) = g1

(
ω2

c2∞

)
g1

(
1 − c2

∞
ω2

(
α2
∞
4

+
α∞
r

+
`(`+ 1)

r2

))
.

With this, we obtain the first equality in (6.17) by now using Remark 17 which gives the equality of the
two branches g1 and g2 under the current assumption γ ≥ 0.

We can also factor Q` in terms of k2,

Q` = k2

(
1 − α∞

r

1

k2
− `(`+ 1)

(r k)2

)
.

However, by its definition, Re k2 can be positive or negative, thus

Arg1(k2) ∈ [0, π] and Arg1(Q`)−Arg1(k2) ∈ [−π, π] .

The above quantity can only take on value −π when Q` > 0 and k2 < 0. This cannot happen, since

α∞ > 0 , ` ≥ 0 ⇒ k2 > Q`.

As a result, assumption (J.4) is satisfied, and the second statement of Prop 33 gives

g1(Q`) = g1(k2) g1(
Q`
k2

) .

As before, we obtain the second equality in (6.17) by using Remark 17. �

6.3 New approximations of the nonlocal modal radiation impedance coeffi-
cients

Approximate radiation boundary conditions were constructed in [5], by asymptotic expansion of

(
1− c2

∞
ω2

(
α2
∞
4
− α∞

r
− `(`+ 1)

r2

))1/2

,

using as small quantities (also called as gauge function) ω or `(`+1)
R2
aω

2 . Approximation obtained with the
second quantity is called small-angle-incidence (SAI) approximation. Here we will approximate

(
1 − 1

k2

(
α∞
r

+
`(`+ 1)

r2

))1/2

using k or SAI like quantities defined in terms of k as gauge functions. We will use expansion (J.9) in
Appendix J.3,

g1(−z + 1) =

∞∑

k=0

(
1/2

k

)
(−z)k = 1 +

∞∑

k=1

(−1)k−1

k22k−1

(
2k − 2

k − 1

)
(−z)k

= 1− 1

2
z − 1

8
z2 − 1

16
z3 − 5

128
z4 + . . . , |z| < 1 .
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Approach 1 With the small quantity (gauge function) as

ε =
1

k2

(
α∞
r

+
`(`+ 1)

r2

)
,

we obtain as first-order approximation,

(
1 − α∞

r

1

k2
− `(`+ 1)

(r k)2

)1/2

= 1 + O(ε) , (6.18)

and second-order approximation,

(
1 − α∞

r

1

k2
− `(`+ 1)

(r k)2

)1/2

= 1− 1

2

1

k2

(
α∞
r

+
`(`+ 1)

r2

)
+ O(ε2) . (6.19)

If we assume further that
`(`+ 1)

r
� α∞ ,

then we have the following approximation,

(
1 − α∞

r

1

k2
− `(`+ 1)

(r k)2

)1/2

∼ 1− 1

2

1

k2

α∞
r
. (6.20)

Approach 2 Another approach is to write

(
1 − α∞

r

1

k2
− `(`+ 1)

(r k)2

)1/2

=

(
1 − α∞

r

1

k2

)1/2

1 −

`(`+1)
(r k)2

1 − α∞
r

1
k2




1/2

.

The small quantity is considered as

ε =

`(`+1)
(r k)2

1 − α∞
r

1
k2
.

The first order approximation gives

(
1 − α∞

r

1

2k2

)1/2

(1 + O(ε)) , (6.21)

while the second one gives

(
1 − α∞

r

1

k2

)1/2

1 − 1

2

`(`+1)
(r k)2

1 − α∞
r

1
k2

+ O(ε2)




=

(
1 − α∞

r

1

k2

)1/2

− 1

2

`(`+1)
(r k)2

(
1 − α∞

r
1
k2

)1/2 + O(ε2) .

(6.22)

In summary, we gather the results of (6.18) – (6.22), which were obtained by using the new gauge
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function k and multiply with i k. Here Ra is the radius of artificial boundary Γa = ∂B(0,Ra).

ZS-HF-0
(6.18)

= i k ;

ZS-HF-1a
(6.19)

= i k − i

2 k

1

Ra
α∞ ;

Z`S-HF-1b
(6.20)

= i k − i

2 k

1

Ra

(
α∞ +

`(`+ 1)

Ra

)
;

Z`S-SAI-0
(6.21)

= i k

(
1 − α∞

Ra

1

k2

)1/2

;

Z`S-SAI-1
(6.22)

= ik

(
1 − α∞

Ra

1

k2

)1/2

− i

2

`(`+1)
R2
a k

(
1 − α∞

Ra
1
k2

)1/2
.

(6.23)

6.4 Coefficients from literature
We recall the coefficients obtained in [5] and [13] (by using ω as the gauge function).

ZA-HF-0 = i
ω

c∞
,

Z`A-HF-1 = i
ω

c∞
+

c∞
2 iω

(
`(`+ 1)

R2
a

+
α∞
Ra

+
α2
∞
4

)
,

and

Z`A-SAI-0 = i
ω

c∞

(
1− c2

∞
ω2

(
α∞
Ra

+
α2
∞
4

))1/2

,

Z`A-SAI-1 = i
ω

c∞

(
1− c2

∞
ω2

(
α∞
Ra

+
α2
∞
4

))1/2

+

c∞
2iω

`(`+1)
R2
a(

1− c2∞
ω2

(
α∞
Ra

+
α2
∞
4

))1/2
.

The two SAI families, A-SAI and S-SAI, turn out to coincide. This is verified below,

Z`A-SAI-0 = i
ω

c∞

(
1− c2

∞
ω2

(
α∞
Ra

+
α2
∞
4

))1/2

= i

(
ω2

c2∞
− α∞
Ra
− α2

∞
4

)1/2

= i

(
k2 − α∞

Ra

)1/2

= ik

(
1− α∞

Ra

1

k2

)1/2

= Z`S-SAI-0 .

It remains to verify the second term in the A-SAI-1.

c∞
2iω

`(`+1)
R2
a(

1− c2∞
ω2

(
α∞
Ra

+
α2
∞
4

))1/2
=

1
2i
`(`+1)
R2
a

ω
c∞

(
1− c2∞

ω2

(
α∞
Ra

+
α2
∞
4

))1/2

=

1
2i
`(`+1)
R2
a(

k2 − α∞
Ra

)1/2
= − i

2

1
2i
`(`+1)
R2
a

k
(

1− α∞
Ra

1

k2

)1/2
.

We will thus only use one notation for them

Z`SAI-0 = Z`A-SAI-0 = Z`S-SAI-0 ;

Z`SAI-1 = Z`A-SAI-1 = Z`S-SAI-1 .
(6.24)
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Another condition suggested in [5] is obtained by removing all terms involving 1
Ra

in coefficient Z`A-SAI-1
and working with original modal (6.2). In particular, from the condition, at an artificial boundary r = Ra,

∂ru = −
(

1

Ra
+
α∞
2

)
u + Z`A-SAI-1 u , u = um` , (6.25)

the new condition called Atmo RBC 1 is created by dropping all terms with 1
Ra

(still using with ODE
(6.2))

∂ru =

(
−α∞

2
+ i

ω

c∞

(
1− c2

∞ α2
∞

4ω2

)1/2
)
u , for u = [uorig]m` . (6.26)

In our notation24

ZA-RBC-1 :=
1

Ra
+ i

ω

c∞

(
1− c2

∞ α2
∞

4ω2

)1/2

=
1

Ra
+ ZS-HF-0 . (6.29)

See also Remark 28.

Remark 28. In our analysis, we know that in condition (6.25) the first factor 1
Ra

does not play the same
role as in the other 1

Ra
appearing in the definition of Z`A-SAI-1. The first one is crucial and appears in both

outgoing and incoming solution, i.e. part of every solution, while those in Z`A-SAI-1 actually contribute
to distinguishing the incoming from the outgoing one. We thus suggest using the same idea but however
dropping only the 1

Ra
term in Z`A-SAI-1, and work with

i
ω

c∞

(
1− c2

∞
ω2

α2
∞
4

)1/2

.

But this turns out to be

i
ω

c∞

(
1− c2

∞
ω2

α2
∞
4

)1/2

= i

(
ω2

c2∞
− α2

∞
4

)1/2

= i k = ZS-HF-0 . 4

We also put in our notation a modal radiation boundary condition called Naive Sommerfeld discussed
in [5] and [13]. In particular, at an artificial boundary r = Ra, the following RBC

∂ru = i
ω

c∞
u , for u = [uorig]m` , (6.30)

is applied to ODE (6.2). In our notation, this is equivalent25 to working impedance coefficient defined as

ZNaive :=
1

Ra
+

α∞
2

+ i
ω

c∞
. (6.33)

24Using A-RBC-1 with the original modal ODE (6.2) is equivalent to working with the conjugated modal ODE (6.4) and
RBC,

∂ru =

(
1

Ra
+ i

ω

c∞

(
1− c2

∞ α2
∞

4ω2

)1/2
)

u , for u = wm` . (6.27)

or the reduced ODE (6.5) and RBC,

∂ru = i
ω

c∞

(
1− c2

∞ α2
∞

4ω2

)1/2

u , for u = wm` . (6.28)

25Due to the relation (6.10)– (6.11) among the RBC among the three ODEs, working with the original modal ODE (6.2)
and RBC (6.31) is equivalent to working with the conjugated modal ODE (6.4) and RBC,

∂ru =

(
α∞
2

+ i
ω

c∞

)
u , for u = um` , (6.31)

or the reduced ODE (6.5) and RBC,

∂ru =

(
1

Ra
+

α∞
2

+ i
ω

c∞

)
u , for u = wm` . (6.32)
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6.5 List of modal radiation impedance coefficients

For convenience of numerical comparison, we gather in a list all of the modal radiation impedance
coefficients mentioned above. They are to be used in Robin-type boundary conditions (6.10), (6.10) or
(6.11) according to the chosen problem (reduced (6.5), conjugated modal (6.4), or original modal (6.2)
respectively). The 3D versions are (6.12) for the conjugated problem (6.3), or (6.13) for original problem
(6.1). Recall that (·)1/2 to mean the choice of square root g1 (4.11a), (i.e. the Principal branch) i.e. with
Arg1(z) ∈ (−π, π].

1. The reference coefficient Z`DtN comes from the modal D-t-N coefficients (6.17) γ` cf. (4.182), see also
Prop 23 or 22,

Z`DtN := −2 i k

W′
−χ,`+ 1

2

(−2 i kRa)

W−χ,`+ 1
2

(−2 i kRa)
, χ =

iα∞
2k

. (6.34)

Note that this is the DtN impedance coefficient for the reduced ODE 6.5.

2. The nonlocal modal radiation coefficient Z`nonlocal is the same in both approaches (either using ω or
k) and is given (6.17),

Z`nonlocal = i
ω

c∞

(
1− c2

∞
ω2

(
α2
∞
4

+
α∞
Ra

+
`(`+ 1)

R2
a

))1/2

= i k

(
1 − α∞

r

1

k2
− `(`+ 1)

(Ra k)2

)1/2

.

3. The HF family

ZS-HF-0
(6.18)

= i k ;

ZS-HF-1a
(6.19)

= i k − i

2 k

1

Ra
α∞ ;

Z`S-HF-1b
(6.20)

= i k − i

2 k

1

Ra

(
α∞ +

`(`+ 1)

Ra

)
;

ZA-HF-0 = i
ω

c∞
;

Z`A-HF-1 = i
ω

c∞
+

c∞
2 iω

(
`(`+ 1)

R2
a

+
α∞
Ra

+
α2
∞
4

)
.

(6.35)

4. The SAI family

ZSAI-0
(6.21)

= i k

(
1 − α∞

Ra

1

k2

)1/2

;

Z`SAI-1
(6.22)

= ik

(
1 − α∞

Ra

1

k2

)1/2

− i

2

`(`+1)
R2
a k

(
1 − α∞

Ra
1
k2

)1/2
,

(6.36)

and

ZA-RBC-1 :=
1

Ra
+ ZS-HF-0 . (6.37)

5. We will also include the Naive Sommerfeld (in our notation)

ZNaive :=
1

Ra
+

α∞
2

+ i
ω

c∞
. (6.38)
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6.6 Numerical experiments

We test how well the radial ABC can approximate the outgoing solution given by the Whittaker function
W. For simplicity, we work with the reduced ODE (6.5). In particular, we consider the truncated outer
Dirichlet problem on Rmin ≤ r ≤ Ra,





(
− d2

dr2
− k2 +

α∞
r

+
`(`+ 1)

r2

)
w = 0 , Rmin ≤ r ≤ Ra;

w(Rmin) = 1 ;

w′(Ra) = Z•w(Ra) .

(6.39)

Here Z• are given in the list of ABCs in (6.23). The numerical solutions corresponding to a coefficient
Z• is labeled as

wZ•,`,ω0 or simply wZ• ,

if we ignore the dependence on ` and ω0.

The above solutions will be compared with the exact solution,

wref,`,ω0 = wD-t-N,`,ω0 ,

or simply written as
wref = wD-t-N .

This is defined as the unique solution to problem,




(
− d2

dr2
− k2 +

α∞
r

+
`(`+ 1)

r2

)
wref = 0 , Rmin ≤ r ≤ Ra ;

wref(Rmin) = 1 ;

wref k− outgoing .

(6.40)

The explicit expression for the analytic solution is,

wref = wD-t-N =
W−χ,`+ 1

2
(−2 i k r)

W−χ,`+ 1
2

(−2 i kRmin)
. (6.41)

We recall that with g2(·) the branch of square root using argument [0, π),

χ =
iα∞
2k

, k = g2

(
ω2

0

c2∞
− α2

∞
4

+ i
γ

c2∞
ω2

0

)
, ω = ω0 g2(1 + i γ) . (6.42)

In our experiments, we fix the following parameters,

c∞ = 3 , Rmin = 1 , Ra = 1.2 , α∞ = 50 . (6.43)

We will compare the solution in varying l, γ and ω0 (hence ω).

Remark 29. For the resolution of Problem (6.39), we employ a finite difference discretization of order six
and the Whittaker function is computed using Matlab intrinsic function whittakerW(·,·,·). However,
despite our relatively common range of values, we already observe some numerical instability in the
computation of Whittaker function in Matlab, these can be seen in Figures 19, 20, 21 and 22, with
the artifact shapes near the cut-off frequency near ` = 100. For more precise computations, we instead
implemented the hypergeometric functions from the arb library, [22], within a Fortran interface in order
to conduct similar experiments in [6].
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Figure 13: Comparison of wZ• solution to (6.39) on [1, 1.2] with the analytical solution wref in (6.41).
Here the comparison is in terms of the real part of the solution. The parameters used are ω0 = 2π20,
α∞ = 50, l = 3 and γ = 0. Evolution of the global profile (left) and zoom towards the end (right).
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Figure 14: Comparison of wZ• solution to (6.39) on [1, 1.2] with the analytical solution wref in (6.41).
Here the comparison is in terms of the real part of the solution. The parameters used are ω0 = 2π20,
α∞ = 50, l = 3 and γ = 5. Evolution of the global profile (left) and zoom towards the end (right).
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Figure 15: Comparison of the solutions Re(w•,`,ω0
(r̃)) as a function of the frequency ω0 and ` in

r̃ = 1.01 without attenuation (γ = 0).

Experiment group 1 Here, for a chosen ` = 3 and ω0 = 2π20, we plot wZ• on [Rmin, Ra] against
the reference solution wref given in (6.41). This is carried out for γ = 5 in Figure 14 and without
attenuation, i.e. γ = 0, in 13. This comparison shows that the solutions can be grouped into two
distinct groups. Lower accuracy coefficients are ZA-HF-0 and ZNaive. The remaining coefficients belong to
the higher accuracy group. However, within this group, the plots coincide with that of wref, and it is not
possible to visually distinguish one from another.

Experiment group 2 In order to have a better comparison, we compute the solutions for a wide range
of ` and frequencies ω0 with ` taking integer values between 0 to 140 and ω0 varying from 2π1 to 2π100.
It results in 14 100 test-cases, which are then doubled due to the presence or absence of attenuation.
There are three subgroups of figures.

1. We first plot the solution wZ•,`,ω0
(r) in a fixed position r = 1.01, for every choice of ` and ω0. In

Figures 15 and 16, the results are shown for γ = 0 and γ = 5 respectively.

2. We proceed similarly for fixed point r = 1.10 in Figures 17 and 18. This is closer to Ra and further
away from Rmin.

3. We quantify the comparison in terms of errors. We consider global L2 error and error at a fixed point
r,

E•(`, ω0) :=
‖w•,`,ω0

− wref,`,ω0
‖L2(Rmin,Ra)

‖wref,`,ω0‖L2(Rmin,Ra)
, e•(`, ω0, r) := |w•,`,ω0(r) − wref,`,ω0(r)| .

(6.44)
The comparisons using error norm e• are shown in Figure 19 for γ = 0 and 20 for γ = 5, while those
using error norm E• are in Figures 21 for γ = 0 and 22 for γ = 5.

From the pictures of the solutions in one position, i.e. in Figure 15 – 18 we can already observe some
differences between the coefficients:
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Figure 16: Comparison of the solutions Re(w•,`,ω0
(r̃)) as a function of the frequency ω0 and ` in

r̃ = 1.01 with attenuation γ = 5.
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Figure 17: Comparison of the solutions Re(w•,`,ω0
(r̃)) as a function of the frequency ω0 and ` in r̃ = 1.1

without attenuation (γ = 0). The black dashed line indicates the cutoff frequency given in (6.45).

RR n° 9280



94 Barucq & Faucher & Pham

0 50 100
0

20

40

60

80

100

`

fr
eq

.
(H

z)

(a) Re(wZ`DtN
(r̃))

0 50 100`

(b) Re(wZNaive (r̃))

0 50 100`

(c) Re(wZnonlocal (r̃))

0 50 100`

(d) Re(wZA-RBC-1 (r̃))

0 50 100
0

20

40

60

80

100

`

fr
eq

.
(H

z)

(e) Re(wZA-HF-0
(r̃))

0 50 100`

(f) Re(wZ`A-HF-1
(r̃))

0 50 100`

(g) Re(wZSAI-0
(r̃))

0 50 100`

(h) Re(wZ`SAI-1
(r̃))

0 50 100
0

20

40

60

80

100

`

fr
eq

.
(H

z)

(i) Re(wZS-HF-0
(r̃))

0 50 100`

(j) Re(wZS-HF-1a
(r̃))

0 50 100`

(k) Re(wZ`S-HF-1b
(r̃))

−1

0

1

am
pl

it
ud

e

Figure 18: Comparison of the solutions Re(w•,`,ω0
(r̃)) as a function of the frequency ω0 and ` in r̃ = 1.1

with attenuation γ = 5. The black dashed line indicates the cutoff frequency given in (6.45).

1. There are more pronounced differences when the fixed point in consideration is closer to Rmin. In this
case r = 1.01 in Figures 15 and 16, compared to r = 1.1 for Figures 17 and 18. In particular, there
are no ridges in the figure for the reference solution, which however appear in those for the coefficients
independent of `. The difference is most pronounced with ZNaive. Visually, it seems that Znonlocal,
Z`SAI-1, Z`S-HF-1b and Z`A-HF-1 give better performance.

2. The observations are confirmed in the presence of attenuation, which does not impact the performance
of the coefficients.

3. When we move away from the initial point, see Figures 17 and 18 for r = 1.10, it is now very hard to
distinguish any difference between the approaches.

4. We observe in all cases, the plots resemble one another below the cut-off frequency, i.e. for

ω0 < c∞

√
α2
∞
4 + α∞

Ra
+ `(`+1)

R2
a
. (6.45)

This corresponds with the green area (under the black dashed line) on the bottom right of the subfigures
of Figures 17 and 18.

We give in Table 1 the mean of the error E over the investigated range of frequency and `, where we
conclude that

mean(EZnonlocal) < mean(EZ`SAI-1
) < mean(EZ`S-HF-1b

) < mean(EZ`A-HF-1
) < mean(EZSAI-0

)

< mean(EZS-HF-1a
) < mean(EZS-HF-0

) < mean(EZA-RBC-1) < mean(EZA-HF-0
) < mean(EZNaive).

(6.46)

We have the following observations concerning the results using error norm e• shown in Figure 19 and 20,
and error norm E• in Figures 21 and 22

1. Each Z• yields lower error in the presence of attenuation than without.
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Figure 19: Comparison of the error e•(`, ω0, r̃) as a function of the frequency ω0 and ` in r̃ = 1.1
without attenuation (γ = 0).
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Figure 20: Comparison of the error e•(`, ω0, r̃) as a function of the frequency and ` in r̃ = 1.1 with
attenuation γ = 5.
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Figure 21: Comparison of the error E•(`, ω0) as a function of the frequency ω0 and ` without
attenuation (γ = 0).
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Figure 22: Comparison of the error E•(`, ω0) as a function of the frequency ω0 and ` with attenuation
γ = 5.
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2. It does not come as a surprise that the coefficients dependent on ` behave better than the independent
ones, since they are higher order approximates of the nonlocal.

3. Small angle approximation SAI represents in each group a better approximation than the HF ones.
In particular, among higher order approximations with dependence on `, Z`SAI-1 performs better than
Z`S-HF-1b and Z`A-HF-1, while among lower order ones independent of `, ZSAI-0 performs better than
ZS-HF-1a and ZS-HF-0.

4. The fact the ZS-HF-0 performs better than ZA-RBC-1 shows that the term 1
Ra

should be factored out,
and not considered as part of a impedance coefficient, see Remark 28.

5. Within the coefficients that are independent of `, ZSAI-0, ZS-HF-1a and ZS-HF-0 give the higher perfor-
mance than the A-RBC-1 and A-HF-0. They have the advantage of being simpler to implement in a
3D discretization (since dependence on ` translates to a tangential differential operator),

6. The new S-HF family performs better than the A-HF with

mean(EZ`S-HF-1b
) < mean(EZ`A-HF-1

) and mean(EZS-HF-0
) < mean(EZA-HF-0

) .

The comparison between Z`S-HF-1b and Z`A-HF-1, and between ZA-RBC-1 and Z`A-HF-1 confirm that k is
the correct wavenumber to work with, and not ω/c. This also means that with ZA-RBC-1 gives the
Sommerfeld-like condition, comparable to the Sommerfled radiation condition cf. [4, Sec 4.3] for
Helmholtz equation, while with ZS-HF-0, we retrieve a condition with similar performance with the
first-order radiation condition [4, Eqn. 21] for Helmholtz equation.

As a conclusion, for a discretization in 3D and in time domain, ZSAI-0 and ZS-HF-1a are the best options
in terms of ‘simplicity vs. accuracy ratio’. The second one is ZS-HF-0. This last one has the further
advantage of lending itself readily to simulation in time domain.

γ = 0 γ = 5

mean(EZnonlocal) 0.0045 0.0021

mean(EZ`SAI-1
) 0.0132 0.0057

mean(EZ`S-HF-1b
) 0.0136 0.0058

mean(EZ`A-HF-1
) 0.0175 0.0076

mean(EZSAI-0
) 0.0670 0.0312

mean(EZS-HF-1a
) 0.0672 0.0312

mean(EZS-HF-0
) 0.0684 0.0318

mean(EZA-RBC-1) 0.0691 0.0323

mean(EZA-HF-0
) 0.0838 0.0398

mean(EZNaive) 0.1505 0.0779

Table 1: Mean of E for 0 ≤ ` ≤ 140 and 2π1 ≤ ω0 ≤ 2π100, i.e., mean of the error pictured in Figures 21
and 22. Within each group, one observes that small-angle-incidence (SAI) approximation gives better
accuracy than the high frequency (HF) one, and that the new S-HF family performs better than the
A-HF. Radiation boundary conditions with ZSAI-0, ZS-HF-1a and ZS-HF-0 (highlighted in blue) represent

the best options in terms of ‘simplicity vs. accuracy ratio’.

7 Conclusion
The main theme of the current report is the characterization and construction of ‘outgoing’ solutions
(also called physical) to the scalar wave equation that is based on the model S+Atmo. In the absence
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of attenuation, outgoing solutions are characterized by their L2-boundedness, while in the presence of
attenuation, they are defined by Limiting Absorption Principle (LAP), which are obtained by taking limits
from above the continuous spectrum [0,∞) (in Ck2 with k2 the energy level in operator −∆−k2+potential)
of corresponding attenuated (L2) solutions.

Two techniques have been used to construct and define the uniqueness of the outgoing solutions. In
both cases, the equation is first rewritten, using the Liouville transform, as a potential scattering problem
for Schrödinger equation. The conjugated form of the operator makes appear the constant wavenumber k2

which gathers zero-th energy level and limiting values at infinity of the potential (so that the normalized
potential now decays to zero at infinity). In the general case, results are obtained by means of the long-
range potential scattering theory by Saito and Ikebe, with slight modifications to accommodate the weak
singularity at the origin and the dependence on ω of the potential. When the Atmo model is extended
to the whole domain, results for existence and uniqueness of the outgoing solution is redone by working
directly with the explicit expression of the Green kernel of the resolvent given by Whittaker functions.

The results concerning the fundamental outgoing kernel also have implications in numerical imple-
mentation. They provide the expression for the D-t-N map, which is used as a reference to evaluate the
accuracy of radiation boundary conditions. We have also carried out some preliminary comparisons which
confirm that k is the correct wavenumber to work with. This is predicted theoretically by the fact that
the outgoing solution satisfies a Sommerfeld-like radiation condition in the newly defined wavenumber k.
The numerical experiments also show that, in terms of ‘simplicity vs. accuracy ratio’ for a discretization
in 3D and in time domain, ZSAI-0 and ZS-HF-1a are best options, while a second-to-best one is given by
ZS-HF-0. The latter two coefficients are newly introduced in this report by working with the wavenumber
k and in the conjugated form of the operator.

As future work, further numerical experiments will be included in a second report more dedicated
towards radiation boundary conditions. We will test the performance of the new and old radiation
boundary conditions on more realistic cases e.g. S+Atmo and other models of atmosphere. We also
plan to implement the boundary conditions with ZSAI-0, ZS-HF-1a and ZS-HF-0 in 3D discretization using
Hybridizable Discontinuous Galerkin and in domains with non-spherical geometry.

A More details on Louiville transform

Here we show details of the calculation of the potential resulted from Liouville transformation discussed
in Section 2.

A.1 General symmetry

Proposition 24. For ρ > 0, if u is a solution of

−∇ · (1

ρ
∇u) − ω2

ρc2
u = f ,

then w = ρ−1/2u solves

−∆w + qw − ω2

c2
w = ρ1/2 f ,

where
q := ρ1/2∆ ρ−1/2 . (A.1)

Proof. We first consider the following identities,

∇(ρ1/2 w) = (∇ρ1/2)w + ρ1/2∇w
⇒ ∇ ·

[
ρ−1∇(ρ1/2w)

]
= ∇ ·

[
ρ−1 (∇ρ1/2)w + ρ−1/2∇w

]

= w ∇ · (ρ−1∇ρ1/2)︸ ︷︷ ︸
−∆ ρ−1/2

+ (ρ−1∇ρ1/2) · ∇w + (∇ρ−1/2) · ∇w︸ ︷︷ ︸
0

+ ρ−1/2∆w .

Inria



Outgoing solutions in helieoseismology 99

The above cancellation is due to the identity,

ρ−1∇ρ1/2 = −∇ρ−1/2 , (A.2)

since
ρ−1∇ρ1/2 = ρ−1 1

2 ρ
−1/2∇ρ = 1

2 ρ
−3/2∇ρ , ∇ρ−1/2 = − 1

2 ρ
−3/2∇ρ .

Using the above identities, we obtain the PDE satisfied by w

−∇ ·
[
ρ−1∇(ρ1/2 w)

]
− ω2

ρc2
ρ1/2w = f

⇔ w∆ρ−1/2 − ρ−1/2∆w − ω2

ρc2
ρ1/2w = f .

Since ρ 6= 0, thus we can divide both sides by ρ−1/2, and obtain

−∆w + w ρ1/2∆ρ−1/2 − ω2

c2
w = ρ1/2f .

We next describe in more details the potential q. We recall the definition of α(x) in (2.8),

α(x) := −
x
|x| · ∇ρ
ρ(x)

= −∂rρ
ρ
.

Proposition 25. Potential q := ρ1/2∆ρ−1/2 defined in (A.1) can be written as,

q =
3

4

∥∥∥∥
∇ρ
ρ

∥∥∥∥
2

− 1

2

∆ρ

ρ

=
α(x)2

2
+

∂rα(x)

2
+

α(x)

|x| +
1

4|x|2
(3‖∇S2ρ‖2

ρ2
− 2 ∆S2ρ

ρ

)
.

(A.3)

Proof. Part 1 We calculate the gradient and Laplacian of ρ−1/2.

∇ρ−1/2 = − 1
2ρ
−1/2∇ρ

ρ

⇒ ∆ρ−1/2 = ∇ · ∇ρ−1/2 = − 1
2∇(ρ−1/2) · ∇ρ

ρ
− 1

2ρ
−1/2∇ · ∇ρ

ρ
.

We further rewrite the last term in the above right-hand-side,

∇ · (∇ρ
ρ

) = ∇ρ−1 · ∇ρ + ρ−1∇ · ∇ρ = −ρ−2∇ρ · ∇ρ + ρ−1∆ρ

= −∇ρ
ρ
· ∇ρ
ρ

+ ρ−1∆ρ .

We thus obtain

∆ρ−1/2 =
1

4
ρ−1/2‖∇ρ

ρ
‖2 +

1

2
ρ−1/2‖∇ρ

ρ
‖2 − 1

2
ρ−1/2ρ−1∆ρ ,

and

q := ρ1/2∆ρ−1/2 =
3

4
‖∇ρ
ρ
‖2 − 1

2

∆ρ

ρ
.
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Part 2 Consider the gradient in terms of α,

∇ρ = (∂rρ) er +
∇S2ρ

r
where er =

x

|x|

⇒ ∇ρ
ρ

= −α(x) er +
1

r

∇S2ρ

ρ
⇒

∥∥∥∥
∇ρ
ρ

∥∥∥∥
2

= α2(x) +
1

r2

‖∇S2ρ‖2
ρ2

.

Similarly, we rewrite the Lapalcian in terms of α,

∆ρ = ∂2
rρ +

2

r
∂rρ +

∆S2ρ

r2
.

By the definition of α, we have

−ρ(x)α(x) = ∂rρ ⇒ −(∂rρ)α − ρ(∂rα) = ∂2
rρ ⇒ ∂2

rρ

ρ
= α2 − ∂rα .

Thus
∆ρ

ρ
= α2(x)− ∂rα−

2

r
α(x) +

1

r2

∆S2ρ

ρ
.

And we obtain

q(x) =
3

4

(
α2(x) +

1

r2

‖∇S2ρ‖2
ρ2

)
− 1

2

(
α2 − ∂rα −

2

r
α +

1

r2

∆S2ρ

ρ

)

=
1

2
α(x)2 +

1

2
∂rα(x) +

α(x)

|x| +
1

4|x|2
(3‖∇S2ρ‖2

ρ2
− 2∆S2ρ

ρ

)
.

A.2 Radial symmetry calculation
In radial symmetry, the original ODE on each mode (6.2) can be rewritten as the reduced conjugated
problem (6.5) by the basic technique in ODE to remove first order derivative term. In the current

discussion, we assume α is constant and k2 =
ω2

c2
.

We consider (
− d2

dr2
− (

2

r
+ α∞)

d

dr
− ω2

c2∞
+

`(`+ 1)

r2

)
u = f . (A.4)

We carry out the change of unknown,
u = h(r) w(r) ,

where h is chosen as
h(r) = e−

1
2

∫
(2r−1+α) = r−1 e−

α
2 r.

In another word, h satisfies the ODE

h′(r) = −1

2

(
2

r
+ α

)
h .

Hence we have,

h′′ = −1

2

(
2

r
+ α

)
h′ +

1

r2
h

⇒ h′′ +

(
2

r
+ α

)
h′ =

1

2

(
2

r
+ α

)
h′ +

1

r2
h = −1

4

(
2

r
+ α

)2

h+
1

r2
h

⇒ h′′ + ( 2
r + α)h′

h
= − 1

r2
− α

r
− 1

4
α2 +

1

r2
= −α

r
− α2

4
.
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Substitute the above calculation into (A.4) satisfied by u,

u′′ +

(
2

r
+ α

)
u′ − `(`+ 1)

r2
u + k2 u = −f ,

we obtain that for w,

(h′′w + 2h′ w′ + hw′′) +

(
2

r
+ α

)
(h′w + hw′) − `(`+ 1)

r2
hw + k2hw = −f ;

⇒ hw′′ + w′
[
2h′ +

(
2

r
+ α

)
h

]

︸ ︷︷ ︸
0

+ w

[
h′′ +

(
2

r
+ α

)
h′
]
− `(`+ 1)

r2
hw + k2hw = −f .

Divide both sides by h, we are left with the reduced conjugated ODE,

w′′ +

[
ω2

c2
− V (r)

]
w = h−1 f , V (r) =

α∞
r

+
α2
∞
4

+
`(`+ 1)

r2
.

B Some elements of spectral and perturbation theory
Basics notations from spectral theory We first recall the notions of spectrum and resolvent for a
general operator for an operator A densely defined on a complex Hilbert space H and with domain D(A).

• The resolvent set ρ(A) is defined as

ρ(A) := {λ ∈ C | A− λ is invertible with bounded inverse defined on H} .

• The spectrum σ(A) is the complement

σ(A) := C \ ρ(A) .

λ is an eigenvalue of A if there exists f 6= 0 such that (A − λ)f = 0, i.e. A − λ is not injective (thus
not invertible). Dim Ker (A− λ) is called the geometric multiplicity and ker(A− λ) is the geometric
eigenspace of A− λ.

• We have the disjoint decomposition of σ(A) into the discrete spectrum

σdis(A) := {λ ∈ σ(A) | λ is an isolated eigenvalue of A with finite algebraic multiplicity} ,
and the remaining part called the essential spectrum26,

σess(A) := σ(A) \ σdis(A).

Spectral properties for self-adjoint operators For self-adjoint A,

σ(A) ⊂ R .

In addition, the essential spectrum is characterized as

σess(A) = {λ ∈ σ(A)
∣∣ ∃ {un} ⊂ D(A) , ‖u‖ = 1 , un

w→ 0 , (A− λ)un
s→ 0 } .

In this case, the geometric multiplicity is equal to algebraic multiplicity. Thus the spectrum of self-
adjoint A consists of only discrete eigenvalues (with finite multiplicity) and λ for which there exists a
Weyl sequence,

σ(A) = σdis(A)
⊔ {

λ ∈ σ(A) | ∃ {un} ⊂ D(A) , ‖u‖ = 1 , un
w→ 0 , (A− λ)un

s→ 0
}
.

⊔
denotes the disjoint union. We have further have the characterization,

λ ∈ σ(A) ⇔ ∃un , un ∈ D(A) , ‖un‖ = 1 , ‖(A− λ)un‖ → 0, n→ 0 .

Note that if λ ∈ σess(A) and λ is not an eigenvalue, then the element of a Weyl sequence can be considered
as approximate eigenfunctions.

26The essential spectrum can also be characterized by one of the following three conditions. For λ ∈ σ(A), σ ∈ σess(A)
iff λ is not an eigenvalue, or λ is an accumulation point of the set of eigenvalues or or dimKer(A − λ) = ∞. Essential
spectrum is a closed set.
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Perturbation theory regarding self-adjointness We following the exposition of [17, 13.1 p.132].
Suppose that A is self-adjoint and B closed.

• B is relative A-bounded if D(A) ⊂ D(B). If ρ(A) 6= ∅, then there exist constants a, b > 0 such that

‖Bu‖ ≤ a ‖Au‖ + b ‖u‖ , ∀u ∈ D(A) . (B.1)

Smallest such constant a is called the relative A-bound of B.

An example is the Kato-Rellich class which by definition consists of V ∈ L2(R3) + L∞(R3). Such
potentials have relative A-bound zero, i.e. ‖V u‖ ≤ b ‖u‖. For proof see [17, Exp 13.4 p.133].

• The Kato-Rellich gives condition so that A+B is self-adjoint.

Theorem 26 (Kato-Rellich [17, Thm 13.5] ). Let A be self-adjoint and B a closed, symmetric and
A-bounded operator with relative A-bounded less than one. Then A+B is self-adjoint on D(A).

Perturbation theory regarding essential spectrum We follow the exposition of [17, Chapter 14
p.139]

• For A a closed operator with ρ(A) 6= ∅, an operator B is relatively A-compact if D(A) ⊂ D(B) and
B(A− z)−1 is compact for some (and thus all) z ∈ ρ(A).

For A self-adjoint, all A-relatively compact operators are A-bounded with relative bound zero,

• Weyl Theorem gives the condition under which essential spectrum of an operator is invariant under
relatively compact perturbation.

Theorem 27 ([17, Theorem 14.6]). Let A and B be self-adjoint operators let A − B by A-compact,
then

σess(A) = σess(B) .

• Not all Kato-Rellich potentials are relatively compact (e.g V = 1 ) but a subclass is. By definition,
cf. [17, Def 14.7], V is Kato-type if V ∈ L2(Rn) + L∞(Rn)ε, which means that for any ε > 0, we can
decompose V as

V = V1 + V2 , V1 ∈ L2 , ‖V2‖L∞ < ε . (B.2)

Examples of Kato potential includes

– V real-valued, continuous and vanishes at infinity, i.e. V (x)→ 0 as |x| → ∞, and

– allows the potential to have singularity e.g. Coulomb potential V (x) = α
|x| .

• A real Kato potential is relatively ∆-compact, cf. Thm 14.9 of [17] .

C Collected facts on Whittaker functions

We have introduced the Whittaker equation

∂2
zW +

[
− 1

4
+
χ

z
+

1
4 − µ2

z2

]
W = G. (C.1)

C.1 Properties of derivatives

In this subsection, we list the formula to calculate the derivative of the Whittaker functions and their
properties near zero and infinity. These information are employed in the derivation of the properties of
the Green kernel Φk(x, y) (4.70).
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Connection formulae for derivatives We cite the differentiation identities which are Eqn 13.15.15,
13.15.25 and 13.15.26 in [32] respectively,

dn

dzn

(
e

1
2 z zµ−

1
2 Mκ,µ(z)

)
= (−1)n(−2µ)n e

1
2 z zµ−

1
2 (n+1) M

κ− 1
2n,µ−

1
2n

(z) , (C.2a)

dn

dzn

(
e−

1
2 z zµ−

1
2 Wκ,µ(z)

)
= (−1)n e−

1
2 z zµ−

1
2 (n+1) W

κ+
1
2n,µ−

1
2n

(z) , (C.2b)

(
z
d

dz
z

)n (
e−

1
2 z zκ−1 Wκ,µ(z)

)
= (−1)n e−

1
2 z zκ+n−1 Wκ+n,µ(z) . (C.2c)

We simplify these identities for one-time differentiation.

Lemma 28. The first order derivative of Mκ,µ and Wκ,µ can be obtained by the following connection
formulae.

M′κ,µ(z) =

(
−1

2
+

1
2 − µ
z

)
Mκ,µ(z) +

Γ(2µ)√
z

M
κ− 1

2 ,µ−
1
2

(z) ; (C.3a)

W′κ,µ(z) =

(
1

2
− µ− 1

2

z

)
Wκ,µ(z) − 1√

z
W
κ+

1
2 ,µ−

1
2

(z) ; (C.3b)

W′κ,µ(z) =

(
1

2
− κ

z

)
Wκ,µ(z) − 1

z
Wκ+1,µ(z) . (C.3c)

When µ = 1
2 , they simplify further to,

M′
κ,

1
2

(z) = −
M
κ,

1
2

(z)

2
+

M
κ− 1

2 ,0
(z)

√
z

; (C.4a)

W′
κ,

1
2

(z) =
W
κ,

1
2

(z)

2
−

W
κ+

1
2 ,0

(z)
√
z

; (C.4b)

W′
κ,

1
2

(z) =

(
1

2
− κ

z

)
W
κ,

1
2

(z) −
W
κ+1,

1
2

(z)

z
. (C.4c)

Proof. For one time differentiation, we set n = 1 and the left-hand-sides of (C.2) simplify to

d

dz

(
e

1
2 z zµ−

1
2 Mκ,µ(z)

)
=

(
1

2
Mκ,µ(z) +

µ− 1
2

z
Mκ,µ(z) + M′κ,µ(z)

)
e

1
2 z zµ−

1
2 ;

d

dz

(
e−

1
2 z zµ−

1
2 Wκ,µ(z)

)
=

(
−1

2
Wκ,µ(z) +

µ− 1
2

z
Wκ,µ(z) + W′κ,µ(z)

)
e−

1
2 z zµ−

1
2 ;

z
d

dz
z

(
e−

1
2 z zκ−1 Wκ,µ(z)

)
= z

d

dz

(
e−

1
2 z zκ Wκ,µ(z)

)

=

(
−1

2
Wκ,µ(z) +

κ

z
Wκ,µ(z) + W′κ,µ(z)

)
e−

1
2 z zκ+1 .

By definition of the Pochhammer’s symbol (4.23),

(−2µ)n = (−1)n (2µ− n+ 1)n = (−1)n
Γ(1 + 2µ− n)

Γ(n)
.

For n = 1, since Γ(1) = 1, this takes on value

(−2µ)1 = −Γ(2µ) .
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The first identity (C.2a), after canceling out e
1
2 z zµ−

1
2 , gives

1

2
Mκ,µ(z) +

µ− 1
2

z
Mκ,µ(z) + M′κ,µ(z) = Γ(2µ) z−

1
2n M

κ− 1
2 ,µ−

1
2

(z) .

After rearrangement, we obtain (C.3a). The identity (C.4a) with µ = 1
2 follows by

(−2µ)1
µ=1/2

= −Γ(1) = −1 .

The second identity (C.2b), after canceling out e−
1
2 z zµ−

1
2 , can be written as

(
−1

2
+

µ− 1
2

z

)
Wκ,µ(z) + W′κ,µ(z) = − z−

1
2 W

κ+
1
2 ,µ−

1
2

(z) .

After rearrangement, we obtain (C.3b). Similarly, after canceling out e−
1
2 z zκ+1, the third identity (C.2b)

is written as,

−1

2
Wκ,µ(z) +

κ

z
Wκ,µ(z) + W′κ,µ(z) = −1

z
Wκ+1,µ(z) .

After rearrangement, we obtain (C.3c).

Remark 30 (Concerning typos in [27]). We note that identity (C.3c) agrees with the last identity con-
cerning derivative of W on p. 302 of [27]. We however note the following typos in [27].

1. The first identity with Mκ,µ on p. 302 of [27] is

2µM
κ− 1

2 ,µ−
1
2 (z)

=
√
zM′κ,µ(z) +

2µ− 1 + z

2
√
z

Mκ,µ(z)

⇔ M′κ,µ(z) =

(
−1

2
+

1
2 − µ
z

)
Mκ,µ(z) +

2µ√
z

M
κ− 1

2 ,µ−
1
2 (z)

.

This is thus different from (C.3a) in the coefficient of M
κ− 1

2 ,µ−
1
2 (z)

. The right coefficient should be

Γ(2µ) and not just 2µ. Note that identity (C.3a) is also verified numerically by using finite difference.

2. In the same section, the fifth-to-last identity of [27] is

2 W
κ+

1
2 ,µ−

1
2

(z) =
1− 2µ+ z√

z
Wκ,µ(z) − √zW′κ,µ(z)

⇔ 1√
z

W
κ+

1
2 ,µ−

1
2

(z) =

(
1

2
− µ− 1

2

z

)
Wκ,µ(z) − 1

2
W′κ,µ(z)

⇔ 1

2
W′κ,µ(z) =

(
1

2
− µ− 1

2

z

)
Wκ,µ(z) − 1√

z
W
κ+

1
2 ,µ−

1
2

(z) .

According the fifth-to-last identity in [27], the right-hand-side of the above expression gives 1
2W′κ,µ(z).

However, according to the verified identity (C.3b), this should give W′κ,µ(z). To resolve this in-
coherence, we numerically verify the identities by using high-order finite difference to calculate the
derivatives of Wκ,µ, and this process shows that identity (C.3b) is the correct one. Hence, there is a
typo in the fifth-last equation in [27, p. 302]. 4

Proposition 29. Behavior as z → 0

Mκ,1/2(0) = 0 ; lim
z→0

M′κ,1/2(z) = 1 .
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Asymptotic as z →∞, and Arg z ∈ (− 1
2π,

3
2π),

Mκ,1/2(z) ∼ e
1
2 z z−κ

(
1

Γ(1− κ)
+ O(z−1)

)
+ e−

1
2 z zκ

(
e(1−κ)πi

Γ(1 + κ)
+ O((−z)−1)

)
,

and

M′
κ,

1
2

(z) ∼ e
1
2 z z−κ

(
1

2 Γ(1− κ)
+ O(z−1)

)
+ e−

1
2 z zκ

(
− 1

2

e(1−κ)πi

Γ(1 + κ)
+ O((−z)−1)

)
.

Proof. By [32, Eqn (13.14.6) p 334]

Mκ,n(z) = e−
1
2 zz

1
2 +n

(
1 +

∞∑

k=1

( 1
2 + n + κ)k

(1 + 2n)k k!
zk

)
, 2n 6= −1,−2,−3, . . . (C.5)

converges for all z ∈ C. In particular,

Mκ,n(z) = e−1/2zz

(
1 +

∞∑

k=1

(1 + κ)k
(2)k k!

zk

)
(C.6)

converges for all z ∈ C, and
Mκ,1/2(0) = 0 . (C.7)

To obtain the limit of the derivative, we first use the connection formula (C.4a),

M′
κ,

1
2

=
1√
z

M
κ− 1

2 ,0
(z) − 1

2
M
κ,

1
2

(z) . (C.8)

The limit of the first term is obtained by using (C.5) (with n = 0)

M
κ− 1

2 ,0
(z) = e−

1
2 zz

1
2

(
1 +

∞∑

k=1

( 1
2 + κ)k

(1)k k!
zk

)
⇒ lim

z→0

1√
z

M
κ− 1

2 ,0
(z) = 1 .

Together with (C.7), we obtain that limz→0 M′ = 1.
We next consider the behavior as z →∞. By [32, 13.19.2] and using also [32, 13.7.2], we have

Mκ,µ ∼
1

Γ( 1
2 + µ− κ)

e
1
2 z z−κ

∞∑

k=0

(
1
2 − µ+ κ

)
k

(
1
2 + µ+ κ

)
k

k!
z−k

+
e(

1
2 +µ−κ)πi

Γ( 1
2 + µ+ κ)

e−
1
2 z zκ

∞∑

k=0

(
1
2 + µ− κ

)
k

(
1
2 − µ− κ

)
k

k!
(−z)−k ,

Arg z ∈ (− 1
2π,

3
2π) and

(
2µ 6= −1,−2,−3 or µ− κ 6= − 1

2 ,− 3
2 , . . .

)
.

(C.9)

Here, we use the condition27 of [32, 13.7.2]. In particular forMκ,1/2 andMκ−1/2,0, we have, for Arg z ∈
(− 1

2π,
3
2π),

Mκ,1/2 ∼
1

Γ(1− κ)
e

1
2 z z−κ

∞∑

k=0

(
κ
)
k

(
1 + κ

)
k

k!
z−k

+
e(1−κ)πi

Γ(1 + κ)
e−

1
2 z zκ

∞∑

k=0

(
1− κ

)
k

(
− κ
)
k

k!
(−z)−k ,

(C.10)

27The verbatim statement is that, unless a = 0,−1, . . . and b − a = 0,−1, . . . then asypmtotic (13.7.2) holds. This is
equivalent to, if

a 6= 0,−1, . . . or b− a 6= 0,−1, . . . ,

then we have the asymptotics (13.7.2) in [32]. Since a = 1
2

+ µ− κ, and b = 1 + 2µ this translates to if
1
2

+ µ− κ 6= 0,−1, . . . or 1 + 2µ 6= 0,−1

When µ = 1/2, this gives
1− κ 6= 0,−1, . . . or 2 6= 0,−1, . . .

This condition is always satisfied for µ = 1
2
.

RR n° 9280



106 Barucq & Faucher & Pham

and

M
κ− 1

2 ,0
∼ 1

Γ(1− κ)
e

1
2 z z−κ+

1
2

∞∑

k=0

(
κ
)
k

(
κ
)
k

k!
z−k

+
e(1−κ)πi

Γ(κ)
e−

1
2 z zκ−

1
2

∞∑

k=0

(
1− κ

)
k

(
1− κ

)
k

k!
(−z)−k .

Thus

M
κ− 1

2 ,0

z1/2
∼ 1

Γ(1− κ)
e

1
2 z z−κ

∞∑

k=0

(
κ
)
k

(
κ
)
k

k!
z−k

− e(1−κ)πi

Γ(1 + κ)
e−

1
2 z zκ

∞∑

k=1

κ
(
1− κ

)
k−1

(
1− κ

)
k−1

(k − 1)!
(−z)−k .

We combine these asymptotics to obtain that for M′

M′
κ,

1
2

=
1√
z

M
κ− 1

2 ,0
(z) − 1

2
M
κ,

1
2

(z)

∼ e
1
2 z z−κ

1

Γ(1− κ)

∞∑

k=0

(
κ
)
k

k!

(
−1

2

(
1 + κ

)
k

+
(
κ
)
k

)
z−k

+
e(1−κ)πi

Γ(1 + κ)
e−

1
2 z zκ

(
−1

2
+

∞∑

k=1

(
−1

2

(
1− κ

)
k

(
− κ
)
k

k!
−

κ
(
1− κ

)
k−1

(
1− κ

)
k−1

(k − 1)!

)
(−z)−k

)
.

The coefficients of the series can be further simplified, using the identity Γ(a+ 1) = aΓ(a),

− 1

2

(
1− κ

)
k

(
− κ
)
k

k!
−

κ
(
1− κ

)
k−1

(
1− κ

)
k−1

(k − 1)!

= − 1

2k!

Γ(1− κ+ k)

Γ(1− κ)

Γ(k − κ)

Γ(−κ)
− κ

(k − 1)!

(
Γ(k − κ)

Γ(1− κ)

)2

= − 1

2k!

(k − κ)

(−κ)

(
Γ(k − κ)

Γ(−κ)

)2

− κ

(k − 1)!(−κ)2

(
Γ(k − κ)

Γ(−κ)

)2

=

(
k − κ
2κ

− k

κ

)
1

k!

(
Γ(k − κ)

Γ(−κ)

)2

= −k + κ

2κ

1

k!

((
− κ
)
k

)2

and

−1

2

(
1 + κ

)
k

+
(
κ
)
k

= −1

2

Γ(1 + κ+ k)

Γ(1 + κ)
+
(
κ
)
k

= −1

2

Γ(κ+ k)

Γ(κ)

(κ+ k)

κ
+
(
κ
)
k

=

(
−1

2

(κ+ k)

κ
+ 1

)(
κ
)
k

=
κ− k

2κ

(
κ
)
k
.

Thus

M′
κ,

1
2

(z) ∼ e
1
2 z z−κ

1

Γ(1− κ)

∞∑

k=0

(
κ
)
k

(
κ
)
k

k!

(κ− k)

2κ
z−k

− 1

2

e(1−κ)πi

Γ(1 + κ)
e−

1
2 z zκ

(
1 +

∞∑

k=1

(k + κ)

κ

(
− κ
)
k

(
− κ
)
k

k!
(−z)−k

)
.
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Proposition 30. Behavior for z → 0

W
κ,

1
2

(z) =
1

Γ(1− κ)
+ O(z ln z) , z → 0 ;

W′
κ,

1
2

(z) =
ln z

Γ(−κ)
+
ψ(−κ) + 2γ

Γ(−κ)
+

1

Γ(1− κ)
+ O(z ln z) , z → 0.

(C.11)

Behavior for z →∞

W
κ,

1
2

(z) = e−
1
2 zzκ

(
1 + O(|z|−1

)
, |Arg z| ≤ 3

2π − δ , z →∞ ;

W′
κ,

1
2

(z) = e−
1
2 zzκ

(
− 1

2 + O(|z|−1
)
, |Arg z| ≤ 3

2π − δ, , z →∞ ,

and the radiating property

e
1
2 z z−κ

(
W′
κ,

1
2

(z) + 1
2 W

κ,
1
2

(z)
)

= O(|z|−1) . (C.12)

Proof. For the behavior at 0, we use the second identity in (C.4b),

W′
κ,

1
2

(z) =
W
κ,

1
2

(z)

2
−

W
κ+

1
2 ,0

(z)
√
z

.

Result (C.11) now follows by using the properties of W
κ+

1
2 ,0

(z) as z → 0, cf. (4.39)

W
κ+

1
2 ,0

(z) = −
√
z

Γ(−κ)

(
ln z + ψ(−κ) + 2γ

)
+ O(z3/2 ln z) ,

and that of W
κ,

1
2

(z),

W
κ,

1
2

(z) =
1

Γ(1− κ)
+ O(z ln z) .

Thus
W′
κ,

1
2

(z) =
1

2

(
1

Γ(1− κ)
+ O(z ln z)

)
+

(
ln z + ψ(−κ) + 2γ

Γ(−κ)
+ O(z ln z)

)
.

In a similar manner, to obtain the behavior of the derivative at ∞, we use the relation (C.4),

−Wκ+1,µ(z)

z
+

(
1

2
− κ

z

)
Wκ,µ(z) = W′κ,µ(z) .

From the relation, we have

W′κ,µ(z) +
1

2
Wκ,µ(z) = −Wκ+1,µ(z)

z
+ Wκ,µ(z)− κ

z
Wκ,µ(z) ,

we observe that the two terms
κ

z
Wκ,µ(z) and − Wκ+1,µ(z)

z
+ Wκ,µ(z) ,

consist of only of lower order terms. This is due to

W
κ,

1
2

(z) ∼ e−
1
2 zzκ

∞∑

k=0

(1− κ)k (−κ)k
k!

(−z)−k , |Argz| ≤ 3
2π − δ, z →∞ ,

z−1W
κ+1,

1
2

(z) ∼ e−
1
2 zzκ

∞∑

k=0

(2− κ− 1)k (−κ− 1)k
k!

(−z)−k , |Argz| ≤ 3
2π − δ, z →∞.
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C.2 Asymptotics and Limiting behavior (with regards to incoming or outgo-
ing convention)

Here we show the calculation for the statement in subsection 4.2.3, which shows the highest order term in
the asymptotic expansion of the Whittaker function when z →∞, as well as their relation when γ → 0+
or γ → 0−. With (4.63), we are in the applicable range (− 3π

2 ,
3π
2 ) of (4.61) to obtain the behavior at ∞,

for Wκ,µ(z) and W−κ,µ(e−iπz) with z defined in (4.6). We expand the leading term explicitly in terms
of r and kγ , ηγ , defined in (4.15).

First we need the following identities involving the principal branch log, i.e. −π < Im(log z) ≤ π.
This means

log(−|s|) = ln|s| + iπ , s ∈ R \ {0}. (C.13)

Recall

0 ≤ Arg(kγ) ≤ π
2 γ ≥ 0 ;

π

2
< Arg(kγ) < π , γ < 0,

We have

γ > 0 : log(2 ei
π
2 kγ r) = log(2 kγ r) + iπ2 ;

log(2 e−i
π
2 kγ r) = log(2kγr)− iπ2 ;

(C.14)

γ < 0 : log(2 ei
π
2 kγ r) = log(2 kγ r) + iπ2 − i2π ;

log(2 e−i
π
2 kγ r) = log(2kγr)− iπ2 .

(C.15)

• For γ > 0, we have

γ > 0 : Wiηγ ,µ(z) ∼ e−
z
2 ziηγ = e−

z
2 +i ηγ log(z)

(4.61),(4.63)
= exp

(
− i kγ r + i ηγ log

(
2ei

π
2 kγ r

))

(C.14)
= exp

(
− i kγ r + i ηγ log

(
2 kγ r

)
− π

2 ηγ

)
;

(C.16)

Similarly

γ > 0 : W−iηγ ,µ(e−iπz) ∼ e−
1
2 (e−iπz)(e−iπz)−iηγ ∼ e

z
2 − i ηγ log(e−iπz)

= exp
(

i kγ r − i ηγ log
(
2e−i

π
2 kγr

))

(C.14)
= exp

(
i kγ r − i ηγ log

(
2 kγ r

)
− π

2 ηγ

)
.

(C.17)

Using kγ → k0, ηγ → η0, κγ → κ0, as γ → 0+, cf. (4.19), taking limits as γ → 0+, we obtain

exp
(
− i kγ r + i ηγ log

(
2 kγ r

)
− π

2 ηγ

)
−→ exp

(
− i k0 r + i η0 log

(
2 k0 r

)
− π

2 η0

)
, γ → 0+

exp
(

i kγ r − i ηγ log
(
2 kγ r

)
− π

2 ηγ

)
−→ exp

(
i k0 r − i η0 log

(
2 k0 r

)
− π

2 η0

)
, γ → 0+ .

• For γ < 0, we use (C.15),

γ < 0 : Wiηγ ,µ(z)
(C.15)∼ exp

(
− i kγ r + i ηγ log

(
2 kγ r

)
− 3π

2 ηγ

)
;

W−iηγ ,µ(e−iπz)
(C.15)∼ exp

(
i kγ r − i ηγ log

(
2 kγ r

)
− π

2 ηγ

)
.
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Using kγ → −k0 , ηγ → −η0, κγ → −κ0 as γ → 0−, cf. (4.19), taking limits as γ → 0−,

exp
(
− i kγ r + i ηγ log

(
2 kγ r

)
− 3π

2 ηγ

)
−→ exp

(
i k0 r − i η0 log

(
− 2 k0 r

)
+ 3π

2 η0

)

(C.13)
= exp

(
i k0 r − i η0

(
log
(
2 k0 r

)
+ iπ

)
+ 3π

2 η0

)

= exp
(

i k0 r − i η0 log
(
2 k0 r

)
+ η0π + 3π

2 η0

)

= exp
(

i k0 r − i η0 log
(
2 k0 r

)
+ 5π

2 η0

)
;

exp
(

i kγ r − i ηγ log
(
2 kγ r

)
− π

2 ηγ

)
−→ exp

(
− i k0 r + i η0 log

(
− 2 k0 r

)
+ π

2 η0

)

(C.13)
= exp

(
− i k0 r + i η0

(
log
(
2 k0 r

)
+ iπ

)
+ π

2 η0

)

= exp
(
− i k0 r + i η0 log

(
2 k0 r

)
− πη0 + π

2 η0

)

= exp
(
− i k0 r + i η0 log

(
2 k0 r

)
− π

2 η0

)
.

The properties of L2 comes from Remark 20.

D Definition of the Kummer functions

Equation (4.21) has a regular singularity at z = 0 with indices 0 and 1− b, and an irregular singularity at
infinity of rank one. When b is not an integer, method of Fröbenius can be used to construct two linearly
independent solution. The first Kummer function, also called confluent hypergeometric function,
M(a, b; z) or 1F1(a, b; z) cf. [32, Eqn 13.2.2],

M(a, b; z) = 1F1(a, b; z) :=

∞∑

k=0

(a)k
(b)k k!

zk , b 6= −1,−2,−3, . . . (D.1)

Here (•)k is the Pocchammer’s symbol, cf. [32, Eqn 5.2(iii)],

(a)k :=
Γ(a+ k)

Γ(a)
. (D.2)

When b is not an integer, then in the neighborhood of z = 0, a pair of linearly independent solution to
the Kummer equation are given by,

M(a, b; z) and z1−b M(a− b+ 1 , 2− c ; z) , b 6= 0,−1,−2, . . . (D.3)

M(a, b; z) is entire in z and a while meromorphic in b, with single order poles at b = −1,−2,−3, . . . This
results in M

κ,`+
1
2

(z) not defined for 2` + 2 = −1,−2,−3 . . . (i.e. 2 + 2` ∈ Z−). However, these are

also the same poles of the Gamma function, the limiting value limb→−n
M(a, b; z)

Γ(b)
exists. In fact, the

function

M(a, b; z) :=
M(a, b; z)

Γ(b)
(D.4)

is entire in a, b and z, and cf. [8, Eqn 8a p.4]

lim
b→−n

M(a, b; z)

Γ(b)
= M(a,−n ; z) =

(a)n+1

(n+ 1)!
zn+1M(a+ n+ 1, n+ 2; z) , n = 0, 1, 2, . . . (D.5)
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Using the simplification28, this can be written as, cf. [8, Eqn 8a p.4]

lim
b→−n

M(a, b; z)

Γ(b)
= zn+1

∞∑

k=0

(a)n+1+k

(n+ 1 + k)!

zk

k!
=

∞∑

k=n+1

(a)k
(k − n− 1)!

zk

k!
. (D.6)

Note that Γ(k − n) = (k − n− 1)!.
Despite the fact that the limiting value exists at b = −1,−2,−3, . . . , the pair (D.3) are linearly

dependent when b ∈ Z. In this case, we have to generate another independent solution by differentiating
with respect to the parameter b. This gives rise to the second Kummer function, also called Tricomi
confluent hypergeometric function, U(a, b, z), which is uniquely determined by the property

U(a, b; z) ∼ z−a , z →∞ , |Arg z| ≤ 3
2π − δ . (D.7)

In general, this is a multi-valued function (due to the factor z−a (with the origin being a branch point
and the point at infinity an essential singularity). The principal branch is that of ln z, by convention in
[32, 13.14.22]. We list its specific definitions under the assumption29 a 6= 0,−1,−2, . . .

• When b is not an integer, cf. [27, p.263-264]

U(a, b; z) :=
π

sin(πb)

(
M(a, b; z)

Γ(b) Γ(1 + a− b) − z1−b M(a+ 1− b , 2− b ; z)

Γ(a) Γ(2− b)

)

, −π < Arg z ≤ π , b /∈ Z

=
Γ(1− b)

Γ(1 + a− b) M(a, b; z) +
Γ(b− 1)

Γ(a)
z1−b M(1 + a− b, 2− b; z) .

(D.8)

The second equality is obtained by using

π

sin(πb)
= Γ(b) Γ(1− b) = −Γ(b− 1) Γ(2− b) .

• When b is an integer, then for b = n+ 1, n = 0, 1, 2, and a 6= 0,−1,−2, cf. [32, 13.2.9],

U(a, n+ 1, z) :=
1

Γ(a)

n∑

k=1

(k − 1)! (1− a+ k)n−k
(n− k)!

z−k +
(−1)n+1

n! Γ(a− n)
M(a, n+ 1; z) ln z

(−1)n+1

n! Γ(a− n)

(
ψ(a+ k)−ψ(1 + k)−ψ(n+ k + 1)

)
, n = 0, 1, 2, . . .

(D.9)

Here ψ is the Digamma function listed in Notations.

• When b = −n, n = 0, 1, 2, . . ., then

U(a,−n, z) = zn+1 U(a+ n+ 1 , n+ 2 , z) , n = 0, 1, 2, . . . (D.10)

where the expression on the right-hand-side is given defined by (D.9).

28Note that Γ(k) = (k − 1)! for k ∈ Z+,

(a)n+1 (a+ n+ 1)k =
Γ(a+ n+ 1)

Γ(a)

Γ(a+ n+ 1 + k)

Γ(a+ n+ 1)
=

Γ(a+ n+ 1 + k)

Γ(a)
= (a)n+1+k

(n+ 1)! (n+ 2)k = (n+ 1)!
Γ(n+ 2 + k)

Γ(n+ 2)
= (n+ 1)!

(n+ 1 + k)!

(n+ 1)!
= (n+ 1 + k)! .

29This is sufficient since in our application κ = i α
2 k

is not integer, while µ = `+ 1
2
with ` = 0, 1, 2, . . ..
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Basis of independent solutions We list a basis of independent solution, cf. [27, 6.3 and 6.3.1 p 269].

• b = n+ 1 for n = 1, 2, 3, . . ., two linearly independent solutions are, are

M(a, n+ 1 ; z) and
n! Γ(a− n)

(−1)n+1
U(a, n+ 1, z) . (D.11)

In cf. [32, 13.2.47], the second basis function is written 30in the form (D.12).

• b = −n, for n = 0, 1, 2, . . ., using (D.10), two linearly independent solutions are

zn+1 M(a+ n+ 1 , n+ 2 ; z) and

(n+ 1)! Γ(a− 1)

(−1)n
U(a,−n, z) = zn+1 (n+ 1)! Γ(a− 1)

(−1)n
U(a+ n+ 1, n+ 2; z) .

(D.13)

In [32, 13.2.30], the second basis function is written31 as (D.14).

A basis of solutions for Kummer’s equation in the neighborhood of infinity is given by

U(a, b, z) , ez U(b− a , b , e−πi z) , − 1
2π ≤ Arg z ≤ 3

2z;

U(a, b, z) , ez U(b− a , b , eπi z) , − 3
2π ≤ Arg z ≤ 1

2z .
(D.15)

E Justification of integration under the integral sign

E.1 Volume integral

30By algebraic derivation, we can rewrite n! Γ(a−n)

(−1)n+1 U(a, n+ 1, z), n = 1, 2, 3, . . ., as

n∑
k=1

n! (k − 1)!

(n− k)! (1− a)k
z−k − M(a, n+ 1 ; z) ln z −

∞∑
k=0

(a)k

(n+ 1)k

zk

k!

(
ψ(a+ k) −ψ(1 + k) − ψ(n+ k + 1)

)
︸ ︷︷ ︸

:=J

.
(D.12)

Using the definition of U given in (D.9) in this case, we have

n! Γ(a− n)

(−1)n+1
U(a, n+ 1, z) = −J +

n! Γ(a− n)

(−1)n+1

1

Γ(a)

∞∑
k=1

(k − 1)! (1− a+ k)n−k
(n− k)!

z−k

Consider the coefficients of the second series,

n! Γ(a− n)

(−1)n+1

1

Γ(a)

(k − 1)! (1− a+ k)n−k
(n− k)!

=
n! (k − 1)!

(n− k)!

Γ(1− a)

Γ(1− a+ k)

Γ(a− n)

Γ(a)

Γ(1− a+ k + n− k
Γ(1− a)

=
n! (k − 1)!

(n− k)! (1− a)k
× 1

(−1)n+1

Γ(a− n)Γ(1− (a− n)

Γ(a) Γ(1− a)︸ ︷︷ ︸
−1

.

That the second factor is −1, is due to the identity, for a 6= Z,

Γ(a)Γ(1− a) =
π

sin(πa)
,

and
Γ(a− n) Γ(1− (a− n)) =

π

sin(π(a− n)
=

π

sin(πa) cos(πn)
=

π

(−1)n sin(πa)
.

31With the same derivation as in Footnote 30, the right-hand-side can be written as

n+1∑
k=1

(n+ 1)! (k − 1)!

(n− k + 1)! (−a− n)k)
zn−k+1 − zn+1M(a+ n+ 1, n+ 2; z) ln z

−zn+1
∞∑
k=0

(a+ n+ 1)k

(n+ 2)k

zk

k!

(
ψ(a+ n+ k + 1) − ψ(1 + k) − ψ(n+ k + 2)

)
.

(D.14)
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Proposition 31. Consider a bounded region Ω with C2 boundary and Ω ⊂ B(0,r). We have

∂r(x)

∫

R3

Φ+
k0

(x, y) f(y) dy =

∫

R3

∂r(x)Φ
+
k0

(x, y) f(y) dy , f ∈ L2
c(R3) . (E.1)

Proof. Recall the notation

∂r(x)h(x) = lim
δ→0+

h(x+ δ x
|x| )− h(x)

δ
; ∂r(x)h(x) =

x

|x| · ∇xh .

For k0, we work with compactly supported function f . Denote by Ω the support of function f in this
case (i.e. without attenuation). Also define the product domains

R :=
(
R3 \ B(0,r)

)
x
× Ωy ;

R̃ :=
(
B(0,r̃) \ B(0,r)

)
x
× Ωy .

Step 0 : We first rewrite the problem in order to apply dominated convergence theorem. In spherical
coordinates based at x,

rx := |y − x| , $x =
y − x
|x− y| .

we write
∫

R3

Φ+
k0

(x, y) dy =

∫ ∞

0

Φ+
k0

(x , x+ rx$) r2
x drx d$ .

Define

hδ :=
Φ+

k0
(x+ δ x

|x| , x+ rx$) − Φ+
k0

(x , x + rx$x)

δ
f(x+ rx$) r2

x ;

h :=

(
∂r(x)Φ

+
k0

∣∣∣
x , x+rx$

)
f(x+ rx$) r2

x .

By definition of direction limit,
lim
δ→0+

hδ = ∂r(x)Φ
+
k0

(x, y).

In terms of the h and hδ, what we want to justify is now of the form

lim
δ→0+

∫ ∞

0

∫

S(0,1)
hδ drx d$x =

∫ ∞

0

∫

S(0,1)
lim
δ→0+

h drx d$x .

Step 1 : Since Φ+
k0

(x, y)r2
x is continuous in x and y, hδ and h are measurable function. What remains

to show that : there exists δ > 0 and an integrable function g(y) such that

|hδ| ≤ g(y) , ∀ δ < δ0.

Define the function
s 7→ φ(s) := Φ+

k0
(x+ s x

|x| , y) .

We have
d

ds
φ(s) = ∂r(x)Φ

+
k0

∣∣∣
(x+s

x
|x| , y)

.

and

Φ+
k0

(x+ δ x
|x| , y)− Φ+

k0
(x, y) =

∫ δ

0

d

ds
φ(s) ds .
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We obtain the bound

r2
x |f(y)|

|Φ+
k0

(x+ δ x
|x| , y)− Φ+

k0
(x, y)|

δ
≤

∥∥∥f(y) r2
x φ
′(s)
∥∥∥ .

And
|hδ| ≤

∥∥∥r2
x f(y)∇xΦ+

k0

∥∥∥
L∞(R̃)

1Ω(y) , (x, y) ∈ R̃ . (E.2)

On the other hand, from (F.32) in Appendix F.7, we have

|x− y|2 |∇xΦ+
k0
| ≤ c |G+

0 (x, y)| + 2 c |x− y|(|∂sH
+
0 | + |∂tH

+
0 |) .

From Remark 33 in Appendix F.6, exists C > 0, C̃ depending on Ω, and C̃ > 0 depending on Ω, r, r̃, so
that

|G+
0 (x, y)| < C , for x ∈ R3 , y ∈ Ω ;

and ∂tH
+
0 , for ∂sH

+
0 < C̃ , (x, y) ∈ R .

Thus there exists C ′ > 0 depending on Ω, r and r̃ such that

|x− y|2 |∇xΦ+
k0
| ≤ C ′ , for (x, y) ∈ R̃ .

Combining with (E.2), we obtain: there exists C ′′ > 0 depending on Ω, r and r̃

|hδ| ≤ C ′′ 1Ω(y) , (x, y) ∈ R̃ .

After this, we can apply Dominated Convergence Theorem to obtain

lim
δ→0+

∫ ∞

0

∫

S(0,1)
hδ drx d$x =

∫ ∞

0

∫

S(0,1)
lim
δ→0+

h drx d$x .

Remark 31. If we show differentiability for x away from the region of integration in the variable y, then
we can work directly with

h := ∂r(x)Φk0 , hδ :=
Φ+

k0

(
x+ δ x

|x| , y
)
− Φ+

k0
(x , y)

δ
.

In particular, we assume
Ω ⊂ B(0,r) ,

and
R :=

(
R3 \ B(0,r

)
x
× (∂Ω)y ,

then Remark 33, in particular, (F.29) in Appendix F, gives C > 0 such that

sup
(x,y)∈R

Φ+
k0

(x, y) , sup
(x,y)∈R

∂r(x)Φ
+
k0

(x, y) < C < ∞ .

As a result, the sequence {hδ} is bounded by an integrable function on ∂Ω (for statement 1) or S(0,r)

(for statement 2). In addition, both h and hδ are continuous on region (E.5) or (E.6), and are thus
measurable there. We then apply dominated convergence theorem to obtain: for (x, y) ∈ R3 \B(0,r̃) × ∂Ω,
φ ∈ L∞(∂Ω)

∂r(x)

∫

R3

f(y) Φ+
k0

(x, y) dy =

∫

R3

f(y) ∂r(x)Φ
+
k0

(x, y) dy , f ∈ L2
c(R3) . 4

E.2 Surface integral
Since our purpose for differentiating the integral is to obtain the asymptotic expansion as |x| →, we will
only justify a weaker statement and assume x away from the domain of integration in variable y.
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Proposition 32. • Consider a bounded region Ω with C2 boundary and Ω ⊂ B(0,r). For (x, y) ∈
R3 \ B(0,r) × ∂Ω, φ ∈ L∞(∂Ω), we have

∂r(x)

∫

∂Ω

φ(y) Φk(x, y) dσ(y) =

∫

∂Ω

φ(y) ∂r(x)Φk(x, y) dσ(y) . (E.3)

• With r̃ > r > 0, For (x, y) ∈ R3 \ B(0,r̃) × S(0,r), φ ∈ L∞(S(0,r)), we have

∂r(x)

∫

S(0,r)
φ(y) ∂r(y)Φk(x, y) dσ(y) =

∫

S(0,r)
φ(y) ∂r(x)∂r(y)Φk(x, y) dσ(y) . (E.4)

Proof. For
(x, y) ∈ (R3 \ Ω)x × ∂Ω , with Ω ⊂ B(0,r) , (E.5)

or
(x, y) ∈ (R3 \ B(0,r̃)x × S(0,r) , (E.6)

we can use Remark 33, in particular, (F.29) and (F.30) of Appendix F, for there exists C > 0 such that

sup
(x,y)∈R

Φ+
k0

(x, y) , sup
(x,y)∈R

∂r(y)Φ
+
k0

(x, y) , sup
(x,y)∈R

∂r(x)∂r(y)Φ
+
k0

(x, y) < C < ∞ .

To justify (E.3), we use

h := ∂r(x)Φk0 , hδ :=
Φ+

k0

(
x+ δ x

|x| , y
)
− Φ+

k0
(x , y)

δ
,

while for (E.4), we work with
h := ∂r(x)∂r(y)Φk0 ,

and

hδ :=
∂r(y)Φ

+
k0

(
x+ δ x

|x| , y
)
− ∂r(y)Φ

+
k0

(x , y)

δ
.

With the constant C introduced, we have the boundedness

|h| , |hδ| < C.

As a result, the sequence {hδ} is bounded by an integrable function on ∂Ω (for statement 1) or S(0,r) (for
statement 2). In addition, both h and hδ are continuous on region (E.5) or (E.6), and are thus measurable
there. The proof is finished by applying dominated convergence theorem.

F Gradient and asymptotics

F.1 Gradients and asymptotic of functions involving the distance function

Notations : Write x = (x1, x2, x3) and y = (y1, y2, y3). Also denote

∂r(x) :=
x

|x| · ∇x ; ∂r(y) :=
y

|y| · ∇y . (F.1)

Denote by (|x|, θx, φx) , and (|y|, θy, φy, ) the spherical coordinates of x and y with 0 ≤ θ ≤ π and
0 ≤ φ ≤ 2π. We have

x · y = |x| |y| x|x| ·
y

|y|
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and we define the bounded quantity dx,y,

dx,y :=
x

|x| ·
y

|y| = cos θx cos θy + sin θx sin θy cos(φx − φy) . (F.2)

We write
x · y = |x| |y| dx,y . (F.3)

In two dimension, this simplifies to
x

|x| ·
y

|y| = dx,y.

F.2 Asymptotics involving the distance function

For y in compact set and as |x| → ∞, using (F.3), we have the following expansion,

|x− y| =
(
|x|2 − 2|x| |y| dx,y + |y|2

)1/2

= |x|
(

1 − 2
|y|
|x| dx,y +

|y|2
|x|2

)1/2

= |x|
(

1 − |y||x| dx,y + O(|x|−2)
)
.

(F.4a)

(F.4b)

(F.4c)

For the version in 2Dcf. [9, p.64]. The above expansion gives, for y in compact set and as |x| → ∞,

|x− y| = |x| − |y| dx,y + O(|x|−1) ;

1

|x− y| =
1

|x|
(

1 + O(|x|−1
)

;

(F.5a)

(F.5b)

Using the above expression, we next obtain

x · (x− y)

|x||x− y| =
1

|x|
(
|x|2 − |x||y|dx,y

) 1

|x|
(

1 + O(|x|−1)
)

=

(
1− |y||x|dx,y

)(
1 + O(|x|−1)

)

= 1 + O(|x|−1) = O(1) ;

y · (x− y)

|y||x− y| =
(
− |y|+ |x|dx,y

) 1

|x|
(
1 + O(|x|−1

)

=

(
−|y||x| + dx,y

)(
1 + O(|x|−1)

)

= dx,y + O(|x|−1) = O(1) .

(F.6a)

(F.6b)

(F.6c)

(F.6d)

and
s = 2|x| + |y|

(
1 − dx,y

)
+ O(|x|−1) ;

t = |y|
(

1 + dx,y

)
+ O(|x|−1) = O(1) .

(F.7a)

(F.7b)

F.3 Gradients and normal gradients of the distance functions

∇x|x| = ∇x
√
x2

1 + x2
2 + x2

3 =
x

|x| ; ∇x|x|−1 = − x

|x|3 . (F.8)
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∇x|x− y| = ∇x
(
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

)1/2
=

x− y
|x− y| ;

∇y|x− y| =
y − x
|x− y| .

(F.9a)

(F.9b)

and
∇x

1

|x− y| = ∇x
(
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

)−1/2
= − x− y
|x− y|3 ;

∇y
1

|x− y| =
x− y
|x− y|3 .

(F.10a)

(F.10b)

We next consider the normal gradients

∂r(y)
1

|x− y| =
y

|y| ·
x− y
|x− y|3 ; ∂r(x)

1

|x− y| = − x

|x| ·
x− y
|x− y|3 ;

∂r(x) ∂r(y)
1

|x− y| =
y

|y| ·
(
x

|x| · ∇x
)

x− y
|x− y|3

=
y

|y| ·
(

x

|x||x− y|3∇x(x− y) + (x− y)∂r(x)
1

|x− y|3
)

=
y

|y| ·
(
x

|x| + 3
x− y
|x− y|

x

|x| ·
x− y
|x− y|

)
1

|x− y|3 .

(F.11a)

(F.11b)

As a result of this, for y in compact set and |x| → ∞, we have

∂r(x)|x− y|−1 = O(|x|−2) ; ∂r(y)|x− y|−1 = O(|x|−2) ;

∂r(x)∂r(y)|x− y|−1 = O(|x|−3) .
(F.12)

Gradients and normal gradients of the functions s and t

∇x s = ∇x
(
|x|+ |y|+ |x− y|

)
=

x

|x| +
x− y
|x− y| ;

∇y s =
y

|y| +
x− y
|y − x| ;

∇xt =
x

|x| −
x− y
|x− y| ; ∇yt =

y

|y| −
y − x
|x− y| .

(F.13a)

(F.13b)

(F.13c)

We compute the normal gradients.

∂r(y)s = 1 +
y

|y| ·
y − x
|x− y| ; ∂r(y)t = 1− y

|y| ·
y − x
|x− y| ;

∂r(x)s = 1 +
x

|x| ·
x− y
|x− y| ; ∂r(x)t = 1− x

|x| ·
x− y
|x− y| .

(F.14a)

(F.14b)

As a result of this, for y in compact set and |x| → ∞, we have

∂r(x)s
F.6b
= 1 + (1 + O(|x|−1) = 2 + O(|x|−1) = O(1) ;

∂r(y)s
F.6d
= 1 +

(
dx,y + O(|x|−1

)
= 1 + dx,y + O(|x|−1) = O(1) .

(F.15a)

(F.15b)

and
∂r(x)t

F.6b
= 1− (1 + O(|x|−1) = O(|x|−1) = O(1) ;

∂r(y)t
F.6d
= 1−

(
dx,y + O(|x|−1

)
= 1− dx,y + O(|x|−1) = O(1) .

(F.16a)

(F.16b)
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Using ∂r(x)(x− y) = x
|x| to obtain the second order normal gradients

∂r(x)∂r(y)s =
y

|y| · ∂r(x)
y − x
|x− y|

=
y

|y| ·
(
− x

|x|
1

|x− y| + (y − x)
x

|x| ·
x− y
|x− y|3

)
;

∂r(x)∂r(y)t = −∂r(x)∂r(y)s .

(F.17a)

(F.17b)

For y in compact set and |x| → ∞, we have

∂r(x)∂r(y)s = −∂r(x)∂r(y)s = O(|x|−1) . (F.18)

F.4 Other identities with the distance function

We have

|y||x− y| − y · (y − x) = |y||x− y| − |y|2 + y · x
= |y|

(
|x− y| − |y| − |x|+ |x|(1 + dx,y

)
;

⇒ 1− y · (y − x)

|y||y − x| =
−t + |x|(1 + dx,y)

|x− y| ;

⇒ ∂r(y)t

t
=

1

t
(1− y · (y − x)

|y||y − x| ) =
1

|x− y| (−1 + |x|1 + dx,y
t

) .

On the other hand, since

|x− y|2 = |x|2 + |y|2 − 2|x||y|dx,y

⇒ (|x|+ |y|)2 − |x− y|2 = 2|x||y|(1 + dx,y) ;

and

1

t
=

1

|x|+ |y| − |x− y| =
|x|+ |y|+ |x− y|

(|x|+ |y|)2 − |x− y|2 =
s

2|x||y|(1 + dx,y)
;

⇒ |x|1 + dx,y
t

= |x|1 + dx,y)

1

s

2|x||y|(1 + dx,y
=

s

2 |y| ,

we can write
∂r(y)t

t
=

1

|x− y|

(
−1 +

s

2 |y|

)
. (F.19)

Similarly, switching the role of x and y, we obtain

∂r(x)t

t
=

1

t

(
1 − x · (x− y)

|x| |x− y|

)
=

1

|x− y|

(
−1 + |y|1 + dx,y

t

)
.

After simplification, we have

∂r(x)t

t
=

1

|x− y|

(
−1 +

s

2 |x|

)
. (F.20)
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F.5 Partial derivatives of H

We calculate here ∂sH and ∂tH. Recall

H(s, t) =

∣∣∣∣∣∣

W−χ,1/2(−i k s) M−χ,1/2(−i k t)

W′−χ,1/2(−i k s) M′−χ,1/2(−i k t)

∣∣∣∣∣∣
.

We have

∂s

∣∣∣∣∣∣

W−χ,1/2(−i k s) M−χ,1/2(−i k t)

W′−χ,1/2(−i k s) M′−χ,1/2(−i k t)

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

ikW′−χ,1/2(−i k s) M−χ,1/2(−i k t)

ikW′′−χ,1/2(−i k s) M′−χ,1/2(−i k t)

∣∣∣∣∣∣
.

Since W−χ,1/2(−z) satisfies the ODE (4.67),

∂2
z W +

(
−1

4
+
χ

z

)
W = 0 ,

we can write

W′′−χ,1/2(−i k s) =

(
1

4
+

χ

iks

)
W−χ,1/2(−i k s) . (F.21)

Replace this in the previous expression to obtain,

∂sH = −ik

∣∣∣∣∣∣

W′−χ,1/2(−i k s) M−χ,1/2(−i k t)
(

1
4 + χ

iks

)
W−χ,1/2(−i k s) M′−χ,1/2(−i k t)

∣∣∣∣∣∣

= −ik
(

W′−χ,1/2(−i k s) M′−χ,1/2(−i k t) − 1
4W−χ,1/2(−i k s) M−χ,1/2(−i k t

)

+
χ

s
W−χ,1/2(−i k s) M−χ,1/2(−i k t) .

(F.22)

Similarly, we have

∂tH = −ik

∣∣∣∣∣∣

W−χ,1/2(−i k s) M′−χ,1/2(−i k t)

W′−χ,1/2(−i k s)
(

1
4 + χ

ikt

)
M−χ,1/2(−i k t)

∣∣∣∣∣∣

= −ik
(

1
4W−χ,1/2(−i k s) M−χ,1/2(−i k t) − W′−χ,1/2(−i k s) M′−χ,1/2(−i k t)

)

− χ

t
W−χ,1/2(−i k s) M−χ,1/2(−i k t) .

(F.23)

We next calculate ∂2
sH and ∂stH. We will also use (F.21) to replace W′′ by W,

∂2
sH = −ik

∣∣∣∣∣∣

−ikW′′−χ,1/2(−i k s) M−χ,1/2(−i k t)

−ik
(

1
4 + χ

iks

)
W′−χ,1/2(−i k s) − χ

iks2 W′−χ,1/2(−i k s) M′−χ,1/2(−i k t)

∣∣∣∣∣∣

= −k2

(
1

4
+

χ

i k s

)
H − χ

s2
M−χ,1/2(−i k t) W′−χ,1/2(−i k s) .

(F.24)

In a similar way, we obtain

∂stH = −k2

∣∣∣∣∣
W′−χ,1/2(−i k s) M′−χ,1/2(−i k t)

(
1
4 + χ

iks

)
W−χ,1/2(−i k s)

(
1
4 + χ

ikt

)
M−χ,1/2(−i k t)

∣∣∣∣∣

=
1

4
k2H + i kχ

∣∣∣∣∣
W′−χ,1/2(−i k s) M′−χ,1/2(−i k t)

s−1W−χ,1/2(−i k s) t−1M−χ,1/2(−i k t)

∣∣∣∣∣ ,

(F.25)
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and

∂2
tH = −k2

(
1

4
+

χ

ikt

) ∣∣∣∣∣∣

W−χ,1/2(−i k s) M−χ,1/2(−i k t)

W′−χ,1/2(−i k s) M′−χ,1/2(−i k t)

∣∣∣∣∣∣
= −k2

(
1

4
+

χ

ikt

)
H . (F.26)

F.6 Some remarks
Remark 32. From the above expressions (F.22)– (F.25), we see that H(= G), its first order derivatives

∂tH , ∂sH ,

and second order derivatives
∂stH , ∂2

sH ,

are sum of quantities of the form

W
(n)
−χ,1/2(−i k s) M

(m)
−χ,1/2(−i k t) ,where n,m ∈ {0, 1} (F.27)

times factors of the form
constant × s−α or t−β , 0 ≤ α , β ≤ 2 .

Here n and m denote the order of the partial derivative in s for W−χ,1/2 and in t for M−χ,1/2. In
fact, since W and M satisfy an ODE of order two, all higher order derivatives of these functions can be
expressed in terms of the zero-th order and first order derivatives. As a result, any derivative of H ∂αs ∂

β
t

for α, β ∈ N are sum of quantities of the form (F.27) and the factor

constant× sk , or tk̃ , 0 ≤ k, with k̃ ≤ max{β̃, β} . 4

Remark 33 (Boundedness). Consider x ∈ R3 \ B(0,r) with r > 0and y ∈ Ω with Ω bounded. Also define
the product region

R :=
(
R3 \ B(0,r)

)
x
× Ωy .

In this region R,
s = |x|+ |y|+ |x− y| > r > 0 ,

while t = |x|+ |y| − |x− y| is bounded but can attain zero.

• From Prop 29 in Appendix C.1, M and M′ are both defined at zero,

M′−χ,1/2(0) = 1 , M−χ,1/2(0) = 0.

While t can take on value zero, the limit at z = 0 exists,

lim
t→0

M−χ,1/2(−2ikt)

t
= −2 i k .

On the other hand, by (F.7b), for y in compact set, t = O(|x|−1) as |x| → ∞, i.e. t is bounded. As a
result of this,

sup
(x,y)∈R

M−χ,1/2(−2ikt) , sup
(x,y)∈R

M′−χ,1/2(−2ikt) , sup
(x,y)∈R

M−χ,1/2(−2ikt)

t
< ∞ .

• From Prop 30 in Appendix C.1,

W
χ,

1
2

(z) =
1

Γ(1− χ)
+ O(z ln z) , z → 0 ,

W′
χ,

1
2

(z) =
ln z + ψ( 1

2 − χ) + 2γ

Γ( 1
2 − χ)

+
1

Γ(1− χ)
+ O(z ln z) , z → 0.
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On the other hand, from the asymptotic expansion at infinity of Whittaker W, cf. Prop C.4 in Appendix
C,

W
χ,

1
2

(z) = e−
1
2 zzχ

(
1 + O(|z|−1

)
, |Arg z| ≤ 3

2π − δ , z →∞ ,

W′
χ,

1
2

(z) = e−
1
2 zzχ

(
1
2 + O(|z|−1

)
, |Arg z| ≤ 3

2π − δ , z →∞ ,

we have
W−χ, 12

(e−iπ i k s) = e
1
2 i k s(e−iπ i k s)−χ

(
1
2 + O(|s|−1

)
, as s→∞ ;

W′
−χ, 12

(e−iπ i k s) = e
1
2 i k s(e−iπ i k s)−χ

(
1
2 + O(|s|−1

)
, as s→∞ .

(F.28)

We have W−χ,1/2(−2iks) and W′−χ,1/2(−2iks) decay for k ∈ C with Im k = 0, or but stay bounded for
k0 > 0, cf. subsection 4.2.3. Putting together the behavior at zero and infinity, we have

sup
(x,y)∈R

W−χ, 12
(−2i k s) , sup

(x,y)∈R
W′
−χ, 12

(−2i k s) < ∞ .

Under the current assumption s > r, using the expression of its partial derivatives given in (F.22) and
(F.23), and the above observation, we obtain the bounded of the partial derivatives of H,

sup
(x,y)∈R

∂ns H ,n ∈ {0, 1, 2} , sup
(x,y)∈R

∂tH , sup
(x,y)∈R

∂s∂tH < ∞ . (F.29)

On the other hand, from expression (F.26) for ∂2
tH, we see that ∂2

tH is not bounded due to the factor
t−1 (which is not couple with M but H, and the latter is bounded but not zero at t = 0). However, using
either (F.19) or (F.20), we have the boundedness of

sup
(x,y)∈R

(∂r(y)t) ∂
2
tH , sup

(x,y)∈R
(∂r(x)t) ∂

2
tH < ∞ . (F.30)

4

Remark 34 (Asymptotic expansion). Following from the same reasoning in Remark 33, we obtain readily
the asymptotics expansion of ∂ns ∂mt H, n,m ∈ {0, 1}. In particular, since variable t is bounded,

M−χ,1/2(−2ik|t|) , M′−χ,1/2(−2ik|t|) , M−χ,1/2(−2ik|t|)
t

,

contribute as bounded terms. On the other hand, variable s = |x|(1 + O(|x|−1)), the final asymptotic
expansion follows from that of W−χ,1/2(−2ik|t|) and W′−χ,1/2(−2ik|t|) in (F.28). As a result, for n,m ∈
N, we have

∂ns ∂
m
t H = e

1
2 i k s (e−iπ i k s)−χ

(
c(y) + O(|s|−1

)
, as |x| → ∞,

for y in compact as |x| → ∞. Here, c(y) is a bounded and continuous function depending on y. 4

F.7 Gradient of Φk

y = 0 Recall from (4.80), we have

Φk(x, 0) = c
G(x, 0)

|x| , with G(x, 0) = W−χ,1/2(−2ik|x|) .

By chain rule,

∇x
1

c
Φk(x, 0) = G(x, 0)∇x|x|−1 +

1

|x| ∇xG(x, 0) .

Inria



Outgoing solutions in helieoseismology 121

We next substitute in the identities

∇x|x|−1 F.8
= − x

|x|3 ;

∇xG(x, 0) = −2 i kW′−χ,1/2(−2 i k |x|) ∇x|x|
(F.8)
= −2 i kW′−χ,1/2(−2 i k |x|) x

|x| ,

to obtain
∇xΦk(x, 0) = −cG(x, 0)

x

|x|3 − 2 c i kW′−χ,1/2(−2 i k |x|) x

|x|2 . (F.31)

y 6= 0 By chain rule, we have

∇xΦk(x, y) = cG(x, y)∇x
1

|x− y| +
c

|x− y| ∇xG(x, y) .

From the calculation in Appendix F, we have

∇x
1

|x− y|
(F.10a)

= − x− y
|x− y|3 ,

and

∇xG =
(
∇xs

)
∂sH +

(
∇ts
)
∂tH ;

with ∇x s
(F.13a)

=
x

|x| +
x− y
|x− y| ; ∇xt

(F.13c)
=

x

|x| −
x− y
|x− y| .

Hence

∇xΦk(x, y) = −cG(x, y)
(x− y)

|x− y|3 +
c

|x− y|

(
x

|x| (∂s + ∂t)H +
x− y
|x− y| (∂s − ∂t)H

)
. (F.32)

The partial derivatives of H are given in (F.23) and (F.22).

We next consider the normal derivatives. We have

∂r(y)
1

c
Φk = G ∂r(y)|x− y|−1 +

∂r(y)s

|x− y| ∂sH +
∂r(y)t

|x− y| ∂tH . (F.33)

And,

∂r(x) ∂r(y)
Φk

c

=
(
∂r(x)∂r(y)|x− y|−1

)
G +

(
∂r(y)|x− y|−1

)
∂r(x)s ∂sH +

(
∂r(y)|x− y|−1

)
∂r(x)t ∂tH

+
(
∂r(x)

∂r(y)s

|x− y|
)
∂sH +

( ∂r(y)s

|x− y| ∂r(x)s
)
∂2

sH +
( ∂r(y)s

|x− y| ∂r(x)t
)
∂tsH

+
(
∂r(x)

∂r(y)t

|x− y|
)
∂tH +

( ∂r(y)t

|x− y|∂r(x)s
)
∂stH +

( ∂r(y)t

|x− y| ∂r(x)t
)
∂2

tH .

(F.34)

G Incoming/outgoing convention
In this discussion, we assume that

k0 , ω0 > 0 , r > 0 , t > 0

The notion of incoming and outgoing are based on the direction of propagation in time. In particular,
with t > 0 and r > 0,
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• outgoing corresponds to as t↗∞, r increases (wave expanding to ∞),

• while oncoming to as t↗∞, r decreases (wave retracting to 0).

Starting from the above notion of direction of propagation, the definition of incoming and outgoing
solution in time-harmonic regime depends on the convention of the time-harmonic part.

Convention 1 : Time-harmonic part is given by e−iω0t. This is equivalent to the Fourier transforma-
tion convention

(Ff)(ω0) :=

∫
eiω0t f(t) dt , (F−1f)(t) = c

∫
e−iω0tf(ω0) dω0. (G.1)

This is the convention used in [15, (4)]. In this case, based on the above notion of incoming/outgoing,

eik0r e−iω0t = ei(k0r−ω0t) is outgoing ;

e−ik0r e−iω0t = e−i(k0r+ω0t) is incoming .

Thus, in this time-harmonic regime convention

eik0r is outgoing , while e−ik0r is incoming .

This is the convention in [12], [21, p.26], which results in the sommerfeld radiation condition for
Helmholtz

∂ru− ik0u = o(r−1) , r →∞.

Convention 2 : Time harmonic part is given by eiω0t. This is equivalent to the Fourier transformation
convention

(Ff)(ω0) :=

∫
e−iω0t f(t) dt , (F−1f)(t) = c

∫
eiω0tf(ω0) dω0. (G.2)

In this case, the sign is switched compared to Convention 1, i.e.

eik0r eiω0t = ei(k0r+ω0t) is incoming ;

e−ik0r eiω0t = ei(−k0r+ω0t) is outgoing .

Thus, in this time-harmonic regime convention

eik0r is incoming , while e−ik0r is outgoing .

H Verification fundamental solution for y = 0

We show that Φω as constructed is a fundamental solution (or equivalently that Φω is a distributional
solution to (4.131)). In the process, we will retrieve the constant c. The proof is adapted from [38, Prop.
4.9] for the Laplacian and from [35, Prop. 2.1] for the Helmholtz operator.

For arbitrary φ ∈ C∞c (R3), we have to show that
〈(
−∆x − k2 +

α

|x|
)

Φω , φ

〉
= φ(y) , or equivalently

〈
Φω ,

(
−∆x − k2 +

α

|x|
)
φ

〉
= φ(y) .

Here 〈·, ·〉 is the distributional pairing D′(R3)×D(R3). It suffices to investigates for y = 0. We have

Φω(0, y) = cG(y) = c
g(y)

|y| , g(y) = W−χ,1/2(−2i k y).

We will show that
lim
ε→0

∫

Ω(y,ε)

cG(y)
(
−∆y − k2 +

α

|y|
)
φ(y) dy = φ(0) ,
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where
Ω(y,ε) := R3 \Bε , Bε = {y ∈ R3 : |y| ≤ ε} .

Since Φk(x, y) satisfies
(
−∆x − k2 +

α

|x|

)
Φk(x, y) = 0 , on Ω(y,ε) , ε > 0,

we apply the second Green’s formula,
∫

Ω

(
(∆w) v − w (∆v)

)
dx =

∫

∂Ω

(
v ∂nw − w ∂nv

)
dσ(x) , w, v ∈ C2(Ω) , (H.1)

to obtain
∫

Ω(y,ε)

[
(−∆− k2 +

α

|x| )φ(x)
]
Φk(x, y) dx

=

∫

Ω(y,ε)

[(
−∆− k2 +

α

|x|

)
φ(x)

]
Φk(x, y) dx −

∫

Ω(y,ε)

φ(x)

(
−∆− k2 +

α

|x|

)
Φk(x, y) dx

=

∫

Ω(y,ε)

(−∆φ) Φk(x, y) dx −
∫

Ω(y,ε)

φ(x) (−∆ Φk(x, y)) dx

= −
∫

∂Ω(y,ε)

(
Φk(x, y) (∂nφ)(x) − φ(x) (∂nG)(x)

)
dσ(x)

= G(ε)

∫

S(0,ε)

∂nφ dσ(x) − G′(ε)
∫

S(0,ε)

φ(x) dσ(x)

= ε2G(ε)

∫

S(0,1)

(∂nφ)(ε$) dσ($)

︸ ︷︷ ︸
:=I1

− ε2G′(ε)
∫

S(0,ε)

φ(ε$) dσ($)

︸ ︷︷ ︸
:=I2

.

A change of variable x = ε$ was done to obtain the last equality. We next consider the limits of each
integral as ε→ 0+.

Consider first integral I1. Recall that G(r) = g(r)
r . Using the limiting form of W−χ,1/2(•) around 0,

cf. (4.38) in Appendix C, we have

g(r) = W−χ, 12
(−2 i kγ r) =

1

Γ(1 + χ)
+ O

(
(−2 i kγ r

)
ln(−2 i kγ r)

)
, r → 0

=
1

Γ(1 + χ)
+ O(r ln r) , r → 0 .

This means
lim
r→0

g =
1

Γ(1 + χ)
and G(r) ∈ L1(0, 1) . (H.2)

As a result, with σ(S(0, 1) denoting the surface area of S(0, 1),

I1 = ε g(ε)

∫

S(0,1)

(∂nφ)(ε$) dσ($) ≤ ε σ
(
S(0, 1)

)
|g(ε)| ‖φ‖C1 ⇒ lim

ε→0+
I1 = 0 . (H.3)

Consider second integral I2. We first consider the limit of the factor in ε2G′(ε). We have

G′(r) =
g′(r)
|x| −

g

|x|2 ⇒ r2G′(r) = r g′(r) − g(r) .

Using the asymptotic of g at 0, cf. (C.11)

g′(r) = −2 i kγ W′
−χ, 12

(−2 i kγ r)

= −2 i kγ

(
ln(−2 i kγ r) + ψ( 1

2 + χ) + 2γ

Γ( 1
2 + χ)

+
1

Γ(1 + χ)

)
+ O(z ln z) , z → 0.
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As a result,

lim
r→0+

r g′(r) = 0 and lim
r→0+

r2G′(r) = − 1

Γ(1 + χ)
. (H.4)

The limit of the integral is obtained by using dominated convergence to pass the limit inside the integral

lim
ε→0

∫

S(0,1)

φ(ε$) dσ($) =

∫

S(0,1)

φ(0) dσ($) = φ(0)σ(S(0, 1)) = 4πφ(0) .

As a result,

lim
ε→0+

I2 = − 4π

Γ(1 + χ)
φ(0). (H.5)

Putting together (H.3) and (H.5), we have

lim
ε→0+

∫

Ω(y,ε)

[
(−∆− k2 +

α

|x| )φ(x)
]
Φk(x, y) dx = lim

ε→0+
(I1 − I2) =

4π

Γ(1 + χ)
φ(0).

This means the normalizing constant c =
Γ(1 + χ)

4π
.

I Miscellaneous calculation
We compute |eikγr−iηγ log(2kγr)|. Start by rewriting,

ηγ log(2kγr) = ηγ(ln|2kγr|+ i Arg(kγ))

⇒ iηγ log(2kγr) = i Re ηγ ln|2kγr| − Im ηγ ln|2kγr| − ηγ Arg(kγ)

⇒ e−ikγr+iηγ log(2kγr) = e2r Im kγ − (Im ηγ) ln|2kγr| ei
(

2rRe kγ + (Re ηγ) ln|2kγr|
)
e−ηγ Arg(kγ)

⇒ |e−ikγr+iηγ log(2kγr)| = e2r Im kγ − (Im ηγ) ln|2kγr| |e−ηγ Arg(kγ)| .

Note that the last factor is a constant i.e. does not depend on r. We focus on the first factor. By
definition

ηγ = α
2 |kγ |2(Re kγ − i Im kγ

)

⇒ 2r Im kγ − Im ηγ ln|2kγr| = 2 Im kγ
(
r − α

4|kγ |2
ln|2kγr|

)

= 2 Im kγ
(
r − α

4|kγ |2
ln r
)
− Im kγ

α ln|2kγ |
2|kγ |2

.

Thus we can write

|e−ikγr+iηγ log(2kγr)| = e
2 Im kγ

(
r− α

4|kγ |2 ln r

) ∣∣∣e− Im kγ
α ln|2kγ |

2|kγ |2 −ηγ Arg(kγ)
∣∣∣;

|eikγr−iηγ log(2kγr)| = e
−2 Im kγ

(
r− α

4|kγ |2 ln r

) ∣∣∣eIm kγ
α ln|2kγ |

2|kγ |2 +ηγ Arg(kγ)
∣∣∣ .

J Remarks and calculation involving square root branch
We work with the following branch of argument

Arg1 : C −→ (−π, π] , Arg2 : C −→ [0, 2π) .

Note that Arg1 is the usual principal branch, cf. [27]. We have also introduced in subsection 4.1 the two
branches of square root g1 and g2 associated with the above arguments,

g1(z) = |z|1/2e
1
2 i Arg1(z) , g2(z) = |z|1/2e

1
2 i Arg2(z) . (J.1)
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J.1 Comparison between the two branches

We distinguish the following cases

• For Re z < 0 and Im z < 0

Arg1(z) + 2π = Arg2(z) ⇒ g2(z) = g1(z)eiπ = −g1(z) .

In this case
Re g1(z) > 0 , Im g1(z) < 0 and Re g2(z) < 0 , Im g2(z) > 0 .

• When Re z > 0 and Im z > 0

Arg1(z) = Arg2(z) ⇒ g1(z) = g2(z);

Re g1(z) = Re g2(z) > 0 ; Im g1(z) = Re g2(z) > 0 .

And

Arg1(−z) = Arg1(z)− π ⇒ g1(−z) = g1(z)e−i
π
2 = −ig1(z);

Arg2(−z) = Arg(z) + π ⇒ g2(−z) = g2(z)ei
π
2 = ig2(z) .

• When Re z < 0 and Im z > 0

g1(z) = g2(z) , Re g1(z) > 0 , Im g1(z) > 0 ,

and

Arg1(−z) = Arg(z)− π ⇒ g1(−z) = −ig1(z);

Arg2(−z) = Arg2(z) + π ⇒ g2(−z) = ig2(z);

and g1(−z) = −g2(−z) .

J.2 Square root of product

Proposition 33. • Consider z, w ∈ C \ {0} satisfying

0 ≤ Arg1(z) , Arg1(w) ≤ π such that (Arg1 w , Arg1 z) 6= (0, π) , (J.2)

or
−π < Arg1(z) , Arg1(w) < 0 . (J.3)

Then w and z satisfies
−π < Arg1(w)−Arg1(z) ≤ π . (J.4)

• If w, z ∈ C satisfy (J.4), then

Arg1(
w

z
) = Arg1(w) − Arg1(z) , (J.5)

and
g1

(w
z

)
=

g1(w)

g1(z)
. (J.6)

Proof. First statement Consider z, w ∈ C \ {0} with Im z ≥ 0 and Imw ≥ 0. We have

0 ≤ Arg1(z) ≤ π , 0 ≤ Arg1(w) ≤ π

⇒ − π ≤ Arg1(w)−Arg1(z) ≤ π .
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Note that the only case when the difference between two angles is −π is when Arg1(w) = 0 and Arg1(z) =
π ie w > 0 and z < 0. This case is ruled out by the assumption for this case that

(Arg1 w , Arg1 z) 6= (0, π) .

Thus w and z satisfies (J.4). Similarly, in the second case with hypothesis (J.3), z, w ∈ C \ {0} with
Im z < 0 and Imw < 0. And (J.4) follows automatically.

Second statement To obtain (J.5), we write w
z

w

z
=
∣∣∣w
z

∣∣∣ exp
(
i Arg1(

w

z
)
)

=
|w|
|z| exp

(
i Arg1(

w

z
)
)
,

as
w

z
=
|w|
|z| exp

[
i (Arg1(w)−Arg1(z)

)]
.

Property (J.5) now follows from (J.4) and the two equivalent representations of wz .

We next show (J.6), given (J.5). This is true because

g1(
w

z
) =

√
|w|
|z| exp

(
1

2
i Arg1(

w

w
)

)
=

√
|w|
|z| exp

(
1

2
i

(
Arg1(w)−Arg1(z)

))

=

√
|w| exp( 1

2 i Arg1(w))√
|z| exp( 1

2 i Arg1(z))
=

g1(w)

g1(z)
.

We apply the above theorem to following particular case.

Corollary 34. For k ∈ C \ {0} with 0 ≤ Arg1 k < π, consider w and z with

w = 1− 1

k2
(
α

r
+
`(`+ 1)

r2
) and z = 1− 1

k2

α

r
.

Then their argument in the branch Arg1 satisfies (J.4) i.e.

−π < Arg1 w −Arg1 z ≤ π.

As a result of this,

g1

(
1− 1

k2

(
α

r
+
`(`+ 1)

r2

))
= g1

(
1− 1

k2

α

r

)
g1

(
1−

`(`+1)
r2

1− 1
k2
α
r

)
.

Proof. It suffices to verify that w and z satisfy condition (J.4). We consider the following cases.

• Arg1 k = 0, i.e. k > 0. Write

−k−2 = − 1

a2
⇒ Arg1(−k−2) = π .

In this case, we distinguish further the following situations.

z > 0 , w > 0 : Arg1 z = Arg1 w = 0 ⇒ Arg1 w −Arg1 z = 0;

z > 0 , w < 0 : Arg1 w = π , Arg1 z = 0 ⇒ Arg1 w −Arg1 z = π;

z < 0 , w < 0 : Arg1 w = Arg1 z = π ⇒ Arg1 w −Arg1 z = 0 .

Note that under the current assumption that k > 0 z > w, it cannot happen that z < 0 and w > 0.
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• 0 < Arg1 k <
π
2 , then

0 < Arg1 k
2 < π ⇒ −π < Arg1 k

−2 < 0 ⇒ 0 < Arg1(−k−2) < π .

In this case,
0 < Arg1(w) , Arg1(z) < π , −π < Arg1 w −Arg1 z < π .

• Arg1 k = π
2 , i.e. k = i a where a > 0, then

−k−2 =
1

a
⇒ Arg1(−k−2) = 0 .

In this case,
Arg1(w) = Arg1(z) = 0 , Arg1 w −Arg1 z = 0 .

• π
2 < Arg1 k < π, we have

−π < Arg1(k2) < 0 ⇒ 0 < Arg1 k
−2 < π ⇒ −π < Arg1 k

−2 < 0 .

In this case
−π < Arg1(w),Arg1(z) < 0 , −π < Arg1 w −Arg1 z < π .

J.3 Power series expansion
For x 7→

√
x+ 1 is real-analytic on −1 < x < 1, with Taylor expansion around x = 0,

√
x+ 1 =

∞∑

k=0

(
1/2

k

)
xk = 1 +

∞∑

k=1

(−1)k−1

k22k−1

(
2k − 2

k − 1

)
xk

= 1 +
1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 + . . . , −1 < x < 1 .

(J.7)

We denote the translated disc by

B1 := {z − 1
∣∣ |z| < 1} , B−1 := {z + 1

∣∣ |z| < 1} .

Since the branch cut of g1 is R− and B1 ∩ R≤0 = ∅ thus on B1, z 7→ g1(z+ 1) is analytic for |z| < 1,
and restricts to a real-analytic function on B1 ∩ R>0 = (0, 1). On the other hand, restricted to the real
axis, z 7→ g1(z + 1) gives the usual (real) square root since

z = x , 0 < x < 1 , Arg1(x+ 1) = 0 , g1(z + 1) = g1(x+ 1) =
√
x+ 1 .

The latter function is real-analytic and with Taylor series (J.7). By analytic continuation, we then have

g1(z + 1) =

∞∑

k=0

(
1/2

k

)
zk = 1 +

∞∑

k=1

(−1)k−1

k22k−1

(
2k − 2

k − 1

)
zk

= 1 +
1

2
z − 1

8
z2 +

1

16
z3 − 5

128
z4 + . . . , |z| < 1 ,

(J.8)

and

g1(−z + 1) =

∞∑

k=0

(
1/2

k

)
(−z)k = 1 +

∞∑

k=1

(−1)k−1

k22k−1

(
2k − 2

k − 1

)
(−z)k

= 1− 1

2
z − 1

8
z2 − 1

16
z3 − 5

128
z4 + . . . , |z| < 1 .

(J.9)

Similarly, the branch cut of g2 is R≥0 and B−1 ∩ R≥0 = ∅, z 7→ g2(z − 1) is analytic on B−1. At the
same time B−1 ∩R<0 = (−1, 0), thus the function restricts to the real negative axis gives a real-analytic
function. When z = −x, 0 < x < 1, by definition of g2, we have

Arg2(−x− 1) = π , g2(−x− 1) =
√
x+ 1 ei

π
2 = i

√
x+ 1.

RR n° 9280



128 Barucq & Faucher & Pham

As a result of this,

g2(z − 1) = i

∞∑

k=0

(
1/2

k

)
(−z)k = i + i

∞∑

k=1

(−1)k−1

k22k−1

(
2k − 2

k − 1

)
(−z)k

= i− i
1

2
z − i

1

8
z2 − i

1

16
z3 − i

5

128
z4 + . . . , |z| < 1 .

(J.10)
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