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Abstract: This report studies the construction and uniqueness of physical solutions for the time-
harmonic scalar wave equation arising in helioseismology. Intuitively speaking, physical solutions
are characterized by their L?(R?)-boundedness in the presence of absorption, while without, by
their profile at infinity approximated by outgoing spherical waves (or retarded). For brevity, we
unite these two families (with and without absorption) under the label ‘outgoing’ or ‘physical’.
The definition of outgoing solutions to the equation in consideration or their construction and
uniqueness has not been discussed before in the context of helieoseismology. In our work, we
use the Liouville transform to conjugate the original equation to a potential scattering problem
for Schréodinger operator, with the new problem containing a Coulomb-type potential. Under
assumptions (in terms of density and background sound speed) generalizing ideal atmospheric
behavior, for v # 0, we obtain existence and uniqueness of variational solutions using only basic
techniques in analysis. For v = 0, under the same assumptions, the theory of long-range scattering
with singular potentials is employed to construct the resolvent by means of Limiting Absorption
Principle (LAP). Solutions obtained in this manner are characterized uniquely by a Sommerfeld-
type radiation condition at a new wavenumber denoted by k. The appearance of this wavenumber
is only clear after applying the Liouville transform. Another advantage of the conjugated form
is that it makes appear the Whittaker functions, when ideal atmospheric behavior is extended
to the whole domain R3 or outside of a sphere. This allows for the explicit construction of the
outgoing Green kernel and the exact Dirichlet-to-Neumann map and hence reference solutions
and radiation boundary condition. In addition, the role played by k in radiation condition and
asymptotic expansion of the solution suggests that k should be the more natural choice to use as
gauge function in approximating the exact nonlocal radiation condition. This perspective gives rise
to a simpler family of radiation boundary conditions. To supplement the theoretical discussion,
some preliminary numerical tests are carried out to investigate the robustness of this new family,
compared to those already existent in literature which were obtained in terms of the original
complex frequency w.

Key-words: Coulomb potential, long-range scattering, short-range scattering, perturbation the-
ory, spectral theory, limiting absorption principle, Whittaker functions, helioseismology, outgoing
solution, outgoing fundamental solution, outgoing Green kernel, radiation condition, Schrodinger
equation, Liouville transform, absorbing boundary condition, exact Dirichlet-to-Neumann map,
radiation impedance coeflicients.



Solutions sortantes pour I’équation des ondes scalaires en
héliosismologie

Résumé : Ce rapport étudie la construction et I'unicité des solutions pour I’équation des ondes
harmoniques scalaire dans un probléme d’héliosismologie. De fagon intuitive, les solutions physiques sont
caractérisées par le fait qu’elles soient bornées en L?(R3) en présence d’absorption (v # 0), et, en son
absence (v = 0), par leur profil & linfini approché par une onde sortante (ou retardée) sphérique. Nous
unissons ces deux familles sous 'appellation ‘sortante’ ou ‘physique’. La définition des solutions sortantes
pour notre équation, ou leur construction et unicité n’a jamais été abordée pour le cas de I’héliosismologie.
Dans notre travail, nous utilisons la transformée de Liouville pour conjuguer ’équation originale et obtenir
un probléme de diffusion pour 'opérateur de Schrédinger, avec un potentiel de type Coulomb. Sous des
hypotheéses (relatives a la densité et a la vitesse du son dans le milieu) généralisant un comportement
atmosphérique idéal, nous obtenons, pour v # 0, lexistence et I'unicité pour les solutions variationnelles
en utilisant les techniques d’analyse standard. Pour v = 0, la théorie de diffusion longue portée pour
les potentiels singuliers est utilisée pour construire le résolvant & partir du principe d’absorption limite.
Les solutions obtenues ainsi sont caractérisées de fagon unique par une condition de radiation de type
Sommerfeld, associée & un nouveau nombre d’onde k. L’apparition de ce nombre d’onde n’est seulement
claire qu’aprés avoir appliqué la transformée de Liouville. Un autre avantage de la forme conjuguée est
qu’elle fait apparaitre les fonctions Whittaker, lorsque le modéle atmosphérique idéal est étendu sur tout
R3 ou en dehors d’une sphére. Cela permet de construire explicitement le noyau de Green sortant et la
condition Dirichlet-to-Neumann exacte; et ainsi les solutions de référence et les conditions aux limites
de radiation. De plus, le role de k dans la condition de radiation, et le développement asymptotique de
la solution montre que k est un choix plus naturel pour la fonction de jauge dans 'approximation de la
condition de radiation non-locale exacte. Cela nous donne une famille simple pour les conditions aux
limites de radiation. Pour compléter les résultats analytiques, des exemples numériques sont mis en place
pour tester la robustesse de cette nouvelle famille, et la comparer avec celles existantes dans la littérature,
qui sont obtenues avec la fréquence original w.

Mots-clés : Potentiel de Coulomb, théorie de la perturbation, théorie spectrale, fonction Whittaker,
héliosismologie, solutions fondamentales sortantes, noyau de Green, condition de radiation, équation de
Schrédinger, transformée de Liouville, conditions au limite absorbantes, Dirichlet vers Neumann exact.



4 Barucq & Faucher & Pham

1 Introduction

In this report, we give a theoretical exposition to construct physical solutions of the linear scalar wave
equation arising in helioseismology with unknown gz and source forig,

w? 1

7@ Uorig — V. (;Vuorig) - forig in Rg . (11)
The equation models the propagation of acoustic waves in the Sun’s interior and atmosphere, where c
denotes the sound speed, and p the density. This is a Helmholtz equation with variable coefficients and
is obtained under simplifying assumptions from the original vectorial problem, cf. [I5] and discussion in
Remark |1l Absorption is prescribed in the form of a complex frequencyﬂ w e C,

w=+1+ivywy , wo€R"and~yeR. (1.2)

Here,  is called the absorption and the square root branch /- is chosen so that Im +/* > 0, see definition in
. Intuitively speaking, ‘physical’ solutions, in the presence of absorption (v # 0), are characterized
by their decay to zero at infinity ; in mathematical terms, they belong to L?(R?). When absorption tends
to zero, they display oscillatory behavior; the retarded ‘physical’ solutions are chosen so that they consist
of only outgoing spherical waves, which is however a delicate theoretical task.

Under the assumption that outside of compact set, ¢ is constant and p exponentially decay, called Atmo
model, in [5], the first author and collaborators constructed radiation boundary conditions for equation
(1.1) when v > 0, in order to obtain a numerical approximation (using finite element discretization) of
the physical solution that exists in the whole R?. Our work complements and extends theoretically the
numerical experiments in [5] by, under assumptions generalizing the Atmo model, providing a theoretical
definition of the ‘outgoing’ solution for v > 0, and justifying the existence and uniqueness of such a
solution. The analysis shines light on the structure of the solution,

exp(y) x% x exp(£i¢,) X (bounded part). (1.3)

This consists of a real exponential part represented by e?¥ with 1) a real function, an oscillatory part
described by a phase function ¢, depending on w, and a bounded part. The exponential real part e?
is common to all solutions, while it is the 4+ or — in the oscillatory part that will distinguish between
bounded and non-bounded function when v # 0, and between outgoing and incoming solution when
v = 0. Because of this, in order to establish existence and uniqueness of solution, it is more natural to
conjugate e¥ out of (1.3). This is one of the intuitions of our approach. We start with the same equation
considered in [5], but however use the Liouville transformation to rewrite it as a potential scattering
problem with Schrédinger operator. In particular, if uorig solves , then v = p~1/ 2uorig solves

2
w
—Au + q(x)u — C—zu = p1/2f0rig, (1.4)

with
q(@) = p'%(x) Ap~'P(x) , xR (1.5)

Instead of having a first order perturbation of —A, we only have zero-th order one.

Thanks to the Liouville transform, one can apply the theory of potential scattering for time indepen-
dent Schrédinger equation and obtain well-posedness for the conjugated problem when v = 0. Even
in the simplest (but important) case in helioseismology, the Atmo model, the potential g contains a
repulsive Coulomb-like potential, i.e. a slowly-decay potential with a singularity at the origin, and places
the problem in the more challenging type of potential scattering. However, with some assumptions on p
and ¢ (while still more general than Atmo), the slow decay of the potential is dealt with by the machinery

IThis can also be of the form
2iy

w = 1+ wo wo€R+and7€R.

wo

Inria



Outgoing solutions in helieoseismology 5

of long-range potential scattering by Ikebe and Saito, cf., e.g. [39]. The results obtained are not only the
existence of solution, but also resolvent bound, asymptotic expansion of solution cf. , as well as
radiation condition . Each of the two latter properties can be used to characterize the uniqueness
of the outgoing solution. There are slight modifications in applying the theory which as stated in [39]

only deals with real potential, while in our case, the potential can be complex due to the term ‘g—;

The framework of potential scattering gives rise to the normalized wavenumber k, which has impli-
cation in numerical approximation, in particular radiation boundary condition. The defined ‘outgoing’
conjugated solution is shown to satisfy a Sommerfeld-type radiation condition with in terms of k (and not
the original w/c). This gives a new perspective in approximating the transparent boundary condition,
with the right gauge function in terms of k. In [5], w and small angle of incidence in terms of w are used
as gauge function, and are called there ‘parameters of interest’. Due to the length of the report, we only
restrict ourselves to preliminary tests of radiation boundary condition for the case Atmo. However, we
expect that in the general case (under applicable assumption), the simplest condition 9,u—iku = 0 should
work as well as the zeroth-order Sommerfeld radiation condition (cf. [4, Sec 4.3]) for the Helmholtz equa-
tion. In addition, at the same order of approximation (of the nonlocal impedance coefficients), working
with k gives simpler radiation impedance coefficients with better performance (in terms of error compared
to the reference coefficients which are Dirichlet-to-Neumann (D-t-N) or nonlocal transparent one).

Another important advantage of working with Schrédinger equation is the natural link with the
Whittaker functions. In the case where one extents the behavior of ‘ideal atmospheric’ to the whole
domain, i.e. p is exactly described by a decaying exponential and ¢ constant, one has explicit description
of the outgoing Schwartz kernel for the resolvent in terms of Whittaker functions, and when the Atmo
hypothesis are assumed outside of a sphere, one has explicit description of the analytical solution using
the same family of special function. The role played by the Whittaker functions is not as easy to recognize
in the original form (L.1). In the second problem, once analytical solutions are obtained, one not only
has the true reference solution, and but also the ezact Dirichlet-to-Neumann map. The latter acts as
the true reference radiation impedance coefficient, which was lacked in [5], and thus has implication in
numerical implementation and evaluation of RBCs.

Liouville transformation was used in [30] to study the Calderén’s inverse conductivity problem with
an inhomogeneous conductivity, see also [28] [3]. In the context of helioseismology, this is the first time to
our knowledgeﬂ that theoretical consideration and justification of the well-posed of the outgoing solution
is done. This transformation is also mentioned in recent work, cf. e.g. [40, 15, T3], or [29] in one
form or another, however it is used either for bounded domain, or it is not used to construct radiation
boundary condition. For more discussion on some recent appearance using this transformation, we
refer to the introduction of Section [2] and Remark The second novelty of the work is in using
Liouville transformation and exploiting the theory of potential scattering to give a rigorous justification
for the existence of the outgoing solutions, as well as the asymptotic expansion and radiation condition.
The latter is used to characterize the uniqueness of outgoing solutions. As mentioned above, with the
recognition of the presence of the Whittaker function family in the problem, if the Atmo model is imposed
on the whole domain or outside of a sphere, one has explicit description of the analytical solutions. This
provides an accurate way to evaluate the performance of an approximate radiation boundary condition,
and adds to the novelty of the current work. Lack of the true D-t-N, a numerical approximation was
employed in [5] to create a reference solution. This however is only applicable in the case of absorption.
Since absorption is a natural physical phenomenon, the numerical reference solution is sufficient. However,
numerically, this type of numerical approximation will create troubles at very small absorption.

The organization of the report is as follows. We first describe in more details the Liouville transform in
Section [2| and introduce the generalized form of the problem in . Section |3|is devoted to discussion
of well-posedness of the physical solution. In the presence of absorption (v # 0), a straightforward proof
is given to obtain the existence and uniqueness of variational solution, cf. Proposition [1| and Proposition
At zero absorption (v = 0), we first extract elements of the theory of scattering with long-range and

2At the update of the second version of the report, we learn of the preprint [I] which also works with the conjugated
problem and allow for a Coulomb-type potential. They consider the problem S+Atmo in the context of inverse problem of
helioseismology. Instead of using the Whittaker functions, they use the Coulomb wave functions, which are normalized
version of Whittaker functions.

RR n°® 9280



6 Barucq & Faucher & Pham

singular potentials needed for our consideration, and then, in Subsection [3:3] apply them to the case of
the conjugated problem. The constructed resolvent is given in for v > 0 and for v = 0 in two
approaches, cf. and ([3.84)), while the asymptotic expansion and radiation condition are stated in
and . In Sectioaving the expression of the outgoing Green kernel, cf. , we give an
explicit construction and uniqueness proof of the solution in the spirit of Colton and Kress’s scattering
theory for Helmholtz operator in [12], cf. Prop In particular, when v = 0, the uniqueness is defined in
terms of several equivalent radiation conditions, cf. Prop [I8] one of which is the classic Sommerfeld-type
radiation condition. The exact Dirichlet-to-Neumann map is also obtained, as well as additional results
such as Rellich-type uniqueness theorem, cf. Lemma [20]and expansion of solution in spherical harmonics,
cf. Prop Section [5| rephrases all results of the conjugated problem as those for the original one .
In Section [6] we construct new radiation boundaries using the new gauge function k and provide a few
preliminary tests to show that its is more advantageous and correct to work with the wavenumber k.
More in-depth numerical experiments will appear in a second report.

2 Reduction to time-harmonic Schrodinger equation via Liouville
transform
In this section, we first describe the Liouville transformation and then describe how the theory of long-

range scattering for Schrédinger equation can be applied to the resulting problem. Let us introduce the
transformation. Denote by Loz the original operator

. -1
Eorigu = —-V- (P Vu) - ﬁ u, (21)
which gives rise to the original problem (|1.1)),
Eorig Uorig = forig . (22)
One applies the change of variable
w = p /2 Uorig - (2.3)
The new unknown w solves the conjugated problem
Lu = p" forig, (2.4)
with conjugated operator £ defined as
1/2 1/2 w?
L= p V2 Lo pt? = —A - +a(x). (2.5)
This is a Schréodinger operator with potential
q(z) = p'2Ap~YV2 | zeR3 (2.6)

For algebraic derivation of this, see Prop. 24] in Appendix [A]

This transformation was used in [30] to study the Calder6n’s inverse conductivity problem with an
inhomogeneous conductivity, see also [3, p.10] or [2 Section 7.2.2 p.100]. More recently and in the context
of helioseismology, the approach to work with the Schrédinger equation is employed in [29, Eqn 1.4] for
inversion in time-distance helioseismology, and in [40] for helioseismic holography. While our potential
decays slowly at infinity, in [29], the conjugated problem is a perturbation of —A by a potential of compact
support, and the scattering theory for this type of potentials can be found in e.g. [I2, Chapter 8]. This
assumption is also implied in [40], since only the Green kernel of the free Laplacian is employed there. In
spherical symmetry, the Liouville transform is more or less the usual ODE technique to remove first-order
derivatives. It is in this form that is mentioned in [I3], see Remark [2| however the remaining work of [I13]
uses the original equation; see further discussion on this point in Section [6] and Remark

Inria



Outgoing solutions in helieoseismology 7

2.1 The conjugated potential
We study in more details the potential q (2.6). Denote by 0, the radial part of the gradient

T

Op = —-V. (2.7)
||
We also define the function 5
P
alz) = — . (2.8)
p(x)
We can write the potential q as (cf. Proposition of Appendix .
3| Vol 1A
az) = 4’pH —gl
P P (2.9)
2 Or 1 /3| Vszp||> Age .
_ ) dol) o) | 1 AlVenl?_ Awpy
1 2 ol T EEP2@ T 20

where S? denotes the unit sphere. Spherical symmetry (i.e. with all coefficients depending only on r = |z|)
is an important assumption in many applications, including helioseismology, which in this context is called
the 1D-background model cf. [I3] Sect 2.2 or 1.5D problem cf. [I5], Sect 6.1]. In this case, the background
density and sound speed are radial, i.e. p(z) = p(|z|) and c(z) = c(|z|), thus so is a(z) defined in (2.8).

In helioseismology, the quantity ﬁ is called the density scale height denoted by H(r), cf. [I3, Eqn 12],

Jr) 1
alzx) =olr) = — = . 2.10
(@) =al) = -0 = (210)
The potential q simplifies to,
a?(r) o (r) a(r) 1 4 H(r)

= = 1 — 2H' . 2.11
a(r) 4 + 2 + r 4 H?(r) ( (r) + r ) (2.11)

In addition, the quantity q(r) c?(r) is called the cut-off frequency,

2
20y . () AH(r)

wi(r) = TH? (1 — 2H'(r) + . . (2.12)

2.2 The long-range behavior in Model Atmo

In order to investigate the invertibility by means of potential scattering theory, two important elements
have to be kept in mind: the growth/decay of a potential at infinity and its local integrability. We restrict
ourselves to cases that are applicable in helioseismology, and use as a basis of generalization the potential
q resulting from the model S + Atmo, cf. [5], in particular its decay at infinity (in the atmosphere) and
the local integrability (in the interior of the Sun). In this model, the interior of the Sun is described by p
and c following the model S [10] while the atmosphere is described by an exponentially decaying density
and constant sound speed, called ideal atmospheric behavior or simply the Atmo model, cf. [13, Sec. 2.3].

Concretely, in terms of the scaled radius r = % with Rg the radius of the sun,

r , r< R, cs(r) , r<R,
p(r) = rs(r) - and c(r) = s(r) ) (2.13)
ps(Ry) e~ (r=Ha) 5 Ry Coo , >R,
with
ps > po >0 , cg >cog > 0. (2.14)

The extension into the atmosphere is achieved by continuing density p to be exponential decay at the
same rate at end of model S, while the sound speed c is smoothly extended to a constant c.,. For C!
continuity, we require that

d _
CS(Ra) = Co EPSL":Ra = _aoopS(Ra) = O = H(}?a)‘

RR n°® 9280



8 Barucq & Faucher & Pham

In Figure |1, we plot the radial profile of the density and velocity using with R, = 1.000699,
Coo = 6.867 kms™!, and a, = 6663.62. In Figure 2, we plot the corresponding a from . We
observe that the profile of density and velocity in the Sun decreases rapidly below the surface of the Sun
which is indicated at scaled radius » = 1. It results in a sharp increase in «, cf. Figure 2| which, in
addition, shows an oscillatory pattern when we zoom.

10° : i — ]
107 | % p(Ra)
S0 1 z |
— P
1076 | E
%X p(Ra) E ]
107 E= : \ \ \ L £ | \ L
0 02 04 06 0.8 1 1.000399 R, Tmax
scaled radius scaled radius
(a) Profile of density: global (left) and zoom near R, (right).
F ‘ 7
B ] 3.9 — ¢
I ] 10771 % c(R,) ||
10° | E (Ra)
° B ]
= P 1 3.85 | i
104 % ¢(Rq) J 10
E=— T | | | = | |
0 0.2 04 06 0.8 1 R, Tmax

scaled radius scaled radius

(b) Profile of velocity: global (left) and zoom near Rq (right).

Figure 1: Profile of density and velocity in the model S4+Atmo on 7 < ry.x = 1.001. The interior of the
Sun, r < R, = 1.000699, is described by model S [10] and extended into the atmosphere by (2.13).

—

6,000 || - 6.600
X «o(R,) ’
4,000 |- -
3 6,400
2,000 + —
2
U . L] Us \ 0,200 :
0 0.5 1 0. 0.002 0.004 1.0004 R, Tmax

scaled radius scaled radius

scaled radius

Figure 2: Profile of the inverse of density scale-height o from in the model S+Atmo shown on the
whole interval r < 7.y (on the left) and zoomed (on the right) near R,. This plot shows that « is
positive and is constant for r > R,. In addition, near r = 0, « is strictly positive, which means that the
resulting potential q not only has a Coulomb-type potential but also a weak-singularity at r = 0,

cf. and (2.10).

We next consider the form of the conjugated L in each region.

e In the atmosphere i.e. r > R,, a(r) =
simplified to,

(o, hence o/ (r) = 0, while ¢ = c¢o. The potential q is

o? Qoo

Yoo | %o
4+7“’

We write the conjugated operator into a normalized form, which reflects that in addition to the energy

q(z) = [ > Rq .

Inria



Outgoing solutions in helieoseismology 9

level (0*" term), there is also a perturbation by a Coulomb potential,

2 2
V2p 12 = A (Y G Yoo >R,. 2.15
P Longp (-%)+ = k2R e
energy level Coulomb potential
e In the interior, i.e. |z| < R,, we simply have
2 2 !
Y2, -1/2 A _ w™ as(r) o/ (r) a(r) 21
P »Corlgp ) + 4 + 9 + r ( . 6)

In this region, it is the integrability of the potential that matters. The last term potentially carries a
singularity; however under the assumption that « is continuous, this term remains integrable in R3,
ie., it is L*(R?).
Before further discussion, we need to give the definition of long-range versus short-range potentials.
Definition 1 (long-range). A long-range potential Vi, is a C3-function that decays slower than |x|~1 at
nfinity,

0"V (x)| < CA+z))~7lel | §e(0,1], 0<m<3. A
Definition 2 (short-range). A short-range potential Vs decays strictly faster than |x|=1, in particular
V@) < CU+[a)™0 . de(0,1]. A

2.3 Generalization

The results in this report are applied to a generalization of model S+Atmo under the following assumptions.

1. Background density p is decreasing globallyﬂ so that the inverse density scale height («) is non-
negative.

2. Background sound speed ¢ and density p do not oscillate at infinity and have limiting scalar values,
denoted by

oo = lim a ; ol :=lim a ; cx:= limc. (2.17)
r—00 r—00 r—00

We define the normalized wave number k? which gathers contributions at zero-th order and the
limiting value s of the potentials,

w? a? al
K= 0 - =2 _ -2 2.18
c2 4 2 (2.18)

3. In the atmosphere, background density p and sound speed c are extended in a way so that the
conjugated operator is a perturbation of —A — k? by at most a Coulomb potential and a short-
range one, as shown in . However, it suffices for the current application to assumeﬂ that c is
equal to a constant c,, > 0 outside of a compact set.

With these assumptions, the conjugated operator (2.5) can be put into the following normalized form,

2 2 /
w a « afx) 1 1
1/2 —-1/2 _ [es) 0 2
P2 Loigp™ 7 = =& = (=) + | - Wiz - =)
% x| G -
energy level Coulomb-like
2 potential compactly supported
perturbation pi(x)
(2.19)
2 9 2 / 1 (3| Vepl?2 A
+ (047 T Qe O(OO) s2pP - s2pP
4 2 4 2 |z|2 4 p%(x) 2p(z) )
short-range perturbation short-range perturbation
P2(7) pa(x)
3In fact, we only need p to decrease outside of a compact set, see Remark E
1
4However, the same result can be obtained for the case where -~ is short-range cf. Remarkor even long-range,
c cZ,

cf. Remark @

RR n°® 9280



10 Barucq & Faucher & Pham

In the next section we will construct the resolvent for £ in the presence of and without attenuation. The
latter case is done by means of long-range scattering theory. After some preparation, the results for £
are given at the end in Subsection The resolvent is given in for v > 0 and for v = 0 in two
approaches, cf. and , while the asymptotic expansion and radiation condition, each of which
can be used to characterize the uniqueness of the constructed solution, are stated in (3.87) and .
The corresponding results for the conjugated problem are interpreted for the original o in Section

Remark 1. In the frequency domain, the scalar wave equation is obtained from the original vectorial
equation modeling small perturbations from a background described by Euler equation, cf. [15, Eqn 2-3]
also [40, Eqn 3.1],

—(wo +iF+iv-V)2E — %V(pc2 V&) + gravity terms = f. (2.20)

Here, in addition to the sound speed c and density, there is also the effect of the background flow v, and £
is the source. If one neglects gravity terms and second-order terms in vy and v, upon taking the divergence
and under the assumption of slow variations of v, ¢ and v compared to the wavelength, one obtains the
simplified scalar equation, cf. [15, Section 2.2 Eqn 5-7],

w?

1
ﬂ2iwov-VﬂV~(V(pcﬂ)) — V-t (2.21)
c c p
in terms of unknown

u = cV- €.

To solve (2.21)) using a FEM discretization, [15] works with another unknown, [15, Eqn 63/

This is also the unknown used in [5] and [13]. In terms of this unknown, the equation (2.21) becomes,
cf. [15, Eqn 64]

2 ort, 1
- 21“’0v.v(“9> ~- V. (vumg> = V-f.
pe c p

pc

In absence of flow i.e. v = 0, this is our starting equation , which is also the one considered in
[3, Eqn 2.1] and [13, Eqn 1]. In [40], another type of unknown is employed (following Lamb 1909 and
Deubner and Gough 1984),

u = pil/Quorig = ,01/2C2V‘§,

which solves, cf. [0, Eqn (3.3)],

—Au— w—2u+p1/2Ap*1/Qu BBl NEPAVIS vl (L A VAL VR 3 (2.22)

2 pl/2c P12 ¢
This amounts to working with the Liouville change of variable (2.3). In the absence of flow, this reduceﬂ
to the Schrodinger equation (2.4)—(2.6) studied in the current work. AN

Remark 2. In the radial case, Liouville transform reduces to the usual technique in ODE to remove the
first order derivatives. There are two equivalent approaches.

e One first applies the Liouville change of variable p~/2 Uorig = U, then carries out separation of vari-

ables. One next eliminates the first order derivatives in the ODE in the radial variable r, which in
2

this case only contains 20, (the first order term of the radial Laplacian). The final unknown is w with

u=r"tw. In relation to the original unknonwn, w = rp*1/2u(m-g. The details of the computation are
listed in Section [4)

5There is although a difference with [40, Eqn (3.3)]. We start with the same source f (in 40, Eqn 3.1] and (2:20)),
however our source in the reduced equation (2:22) is p!/2V - f, while in [40, Eqn (3.3)] is p'/2c2V - f.
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Outgoing solutions in helieoseismology 11

e FEquivalently, starting from the original equation in 3D (2.2)), one first does a separation of variables,
and then eliminates the first order terms in the resulting ODE (in the variable r), which in this case is
(% —i—aoo)d%. This amounts to doing all-at-once the change of unknown w = rp_l/Qumg. The details of
the computation are listed in Appendiz . This approach is also mentioned in [13, Eq. (8)], however
was not exploited to construct radiation boundary conditions, see further discussion in Section [§ and
Remark [27, A

3 General discussion of well-posedness

In this section, we construct the resolvent of the conjugated operator £ (2.5). There are three main parts
to the discussion:

1. in the first part (Subsection [3.1)), we study the existence and uniqueness of solution for problem of the
form

(—A+ Ojf) + p(z) — k2> u = f (3.1)
and (@) )
<—A+ o) - CW) w=7. (3.2)

These arise from the normalized form of the conjugated operator £ discussed in previous section.
When Imk? # 0, we obtain well-posedness in H!(R?), for the variational problem and , by
using basic analysis tools such as ellipticity and coercitivity, and Lax-Milgram theory for sesquilinear
forms. These results are stated in Theorem [I] and [2] respectively.

Although the well-posedness results for variational solutions are sufficient for applications (in particular
for consideration with finite element discretization), for problem , in Subsection we will also
state stronger results given by Kato and Kato-Rellich’s perturbation theory for self-adjoint operators.
Much stronger and further-reaching, these results describe the invertibility of the problem in terms of
the spectrum of the operator. We will only cite important theorems following mostly e.g. [I7]. Under
necessary assumptions, with p,, = mingcgs p < 0, we will show that [p,,, +00) and thus Rt := [0, c0)
is contained in the spectrum, see Figure |3| and It is also noted that criterion of being in H!(R3)
defines the physical solutions in the presence of absorption.

2. In the second part (Subsection , we state results from short-range and long-range scattering for
—A +V — X\ with real potential V' which is either short-range or long-range, respectively. Solution as
Im k2 — 0 are obtained as limiting of solutions off the spectrum, in a process called limiting absorption
principle (LAP). In the current convention, the physical solutions, called ‘outgoing’ are obtained by
approaching the spectrum from above, i.e. Imk? — 0. These solutions are shown to satisfy radiation
condition, which are then used to define them uniquely. There are three important elements:

e the existence of the above limit in certain function spaces as one approaches the spectrum, which
gives the existence of ‘outgoing’ solution.

e These solutions satisfy certain radiation condition.

e Their uniqueness under the radiation condition is intimately connected to the absence of positive
eigenvalues.

To show the LAP for short-range potentials, perturbation theory with respect to —A (the Agmon-
Jensen-Kato approach) can be used. This however excludes long-range potentials, and theory has to be
redone, and is replaced by e.g. the long-range scattering theory by Ikebe and Saito. Since the theory
is extremely technical and elaborate, we will only state the main results, following the exposition of
[39]. For radiation conditions, we will follow the exposition of [43].

3. In the third part (Subsection [3.3]), we put together the results of the first two to obtain the resolvent
of conjugated operator L. Slight adaptations have to be made due to the dependence on frequency w
2

w
of the term — and the singularity at zero of Coulomb-type potential % The construction of the
¢
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12 Barucq & Faucher & Pham

resolvent is given in (3.69) for v > 0 and for v = 0 in two approaches, cf. (3.71) and (3.84), while the
asymptotic expansion and radiation condition are stated in (3.87) and (3.88).

3.1 Well-posedness of variational problem in the presence of absorption
3.1.1 Recall of basic analysis tools

This subsection serves to recall some basic notions and facts (e.g. ellipticity and coercitivity) needed for
the well-posedness of a generic variational problem (off the spectrum) in Subsection [3.1.23.1.3

for ¥ € H*, find u € H so that

d(u,v) =L(v) , YveH. (3-3)

With the superscript * denoting the dual (i.e. the space of bounded linear functional on #H), we have
written

H = H'R? , V= L[*R% , H* = HY(R®*.
H-ellipticity A sesquilinear form d is continuous if there exists d > 0,
d(u,v) < dlfuls ol (3.4)
and is H-ellipticity if, cf. [37, Eqn (2.43)]),
JoeC,lol=1,¢>0 : |Reod(u,u)| > c|ulmws. (3.5)
Given H-ellipticity of a sesquilinear form c, we have

cllul3, < [Re(od(w.w)| < |od(uu) < |d(u,w). (3.6)

For a continuous and H-elliptic sesquilinear form, the solvability of the variational problem follows
from Riesz representation theorem, since (3.5 and imply that c defines an inner product on H with
a norm that is equivalent to ||-||3). Or, we can also apply Lax-Milgram cf. [37, Lem 2.1.51]. In addition,
if £(v) = a(u,v) for all v € H, then

cllul, < (@)l < U llulls

With ¢ the constant from ([3.5)), we obtain the bound for the unique solution u € H.

1
lullze < = [l€ll2e - (3.7)

‘H-coercitivity If a continuous sesquilinear form d : H x ‘H — C satisfies the Garding inequality,
Re (d(u,u) + (Tu, u)p+n ) > min {[Rek?|, 1} ||ull3,, (3.8)
with T': H — H* a compact operator, we have Fredholm alternative, cf. [19, Thm 5.3.10]. This means
e cither for each ¢ € H*, variational problem associated to d has a unique solution, or

e there exists a finite-dimensional kernel space N' = {u € H ‘ d(u,v) =0, Vv € H}, and there exists
solution to the inhomogeneous problem (3.3) with right-hand side ¢ € H* if and only if #(u) = 0 for
ueN.

Hardy inequality Due to the presence of the Coulomb potential, we will also need Hardy inequality,
cf. [43, 1.4.2]

2
4
/|u($g| de < —— | |Vu(@@)[’dz , weH'(RY),d>3. (3.9)
re 2] d—2 Jpa
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Outgoing solutions in helieoseismology 13

3.1.2 Well-posedness result version 1

For k? € C with Im k? # 0, we consider the variational problem on R? corresponding to problem

(A + a(2) + p(z)k2> u = f, (3.10)

]

under the following assumptions.

Function «(x) and p(x) are nonnegative, bounded and measurable functions, i.e.

0 <alz) <ay < oo , 0<pl) < pu < . (3.11)

Remark 3. Note that in the current form and with the assumption o > 0, the potential V(z) =

ale) 4 p(z) is allowed to be singular at the origin. A

||

Define sesquilinear form

a: HxH — C

3.12
a(u,v) = / (Vu) - (Vv)dr + / (7k2+@+p(x)) uvder. (312)
RS R3 |z
The variational problem associated to (3.10) reads
For £ € H* , find u € H such that
(3.13)

a(u,v) = Lv) , YveH.

Below, we will establish H-ellipticity of a when k? € C\ RT under hypothesis (3.11]).

Proposition 1. The sesquilinear form a (3.12)) with assumptions (3.11]) has the following properties.
o The mapping a: H x H — C is continuous.

e When k? € C\RT, a is H-elliptic with constants in (3.5) given by

Ié; 5 [Tm k2| _ 6Rek?+ 4
Rek®>0 : o=, c= 2 — KL ih g—g4ilc 7O

5] Bl [k* + 1 Im k? (3.14)
Rek? <0 : o:=1, c=min{|Rek?|, 1}.

As a result of this, when k> € C\ RT, the variational problem (3.13)) has a unique solution u € H,
satisfying estimates

k2 +1i
|II t2ll| . RBelé 20
m
lulse < Cllllse , with €= 1 . (3.15)
—_— Rek? <0
min k2, 1) T

Remark 4. In the language of spectral and perturbation theory, a potential V = a‘gﬁ) + p(x) with « and
p satisfying hypothesis is in the Kato-Rellich class (L*(R3) + L*°(R®)). With such a potential
V, operator Hy = —A + V(x) with domain D(H) = H*(R3) is self-adjoint, thus has real spectrum.
In addition, if V is positive (which is the case under the current assumption ), then the spectrum
o(Hy) C [0,00). To further determine the structure of the spectrum in [0,00), we need more hypothesis
on the behavior of V' at infinity. For example, if in addition, V — 0 as |x| — oo then Kato theory gives
that o(Hy) = 0ess(Hy) = [0,00). This is the case if we assume additionally in that p — 0 as
|z| = 0. See further discussion in subsubsection[3.1.4) A
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14 Barucq & Faucher & Pham

k3 + iy
kg
Ck:2 k8_17

Figure 3: Under hypothesis (3.11)), for k? € the highlighted region in blue C \ R*, Prop |1|states that
the variational problem to (—A + V(z) — k?)u = f with f € H* has a unique solution u € H.

Proof. Continuity: Under the assumption that a(z) is bounded and using Hardy’s inequality (3.9)) in
dimension 3,

| < 2 Vully,

u(z)
|z

%
to bound

<2ay HVUHV H”(J")Hv’

u(z)
|z

lo()ll,

[ 2 i@ < au \
R v (3.16)

||

and thus obtain the bound defining the continuity of a in H x H,

la(u, v)] < [Vully [Volly + (K] + [[plloc) [ullv [l + 2l |Vl (o],
) (3.17)
< (1 121+ par + 20000 ) e ol
Ellipticity: The real and imaginary of a(u,u) are given by
Rea(u,u) = / |Vul|? dz + / (—Rek2+w> [ul® da ;
R3 R3 ||
Ima(u,u) = —/ (Tm k?) |u|? dz .
R3
In this case, we immediately have the bound
Rea(u,u)| > / Vul2de + |Rek2|/ Wde > min{[Rek?|, 1} [[ul. (3.18)
R3 R3

Re k? > 0| For § > 0, consider a complex number 3 = 1 +ifs, 2 € R,

Re Ba(u,fu))
= (1 Rea(u,v) — B2 Ima(u,v)

= 51/ |Vul?de + / (BgIka—,81Rek2>|u\2da: +
R3 R3

N

fu(ofa) +llp) | oy
R3 ||

Using the fact that a(z) > 0 and p(x) > 0, we obtain the lower bound

Re (ﬂa(u,v)) > 51/ |Vu|? dx +/ (521mk2—61Rek2)|u|2dx.
R3 R3
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Outgoing solutions in helieoseismology 15

We will choose 1, 82 so that each integrand in the above sum is positive, e.g.

Rek? + 46
pr=0 , B2 = ARek +4 e (3.19)
With this choice,
Re (Ba(u,v)) > 5/ |Vul|* dz + (5/ lu?de = §|ull3 .
R3 R3

For the second to last inequality we have used that a > 0. In this way, combined with (3.18)), we have
shown the H-ellipticity of a with constants given in (3.14)).
O

Remark 5. We cite the result of [24], Prop. 14.1 p.47] which gives the meromorphic continuation of the
resolvent. Consider R(w) = (—A+V —w)~L. The resolvent R(w) : H=2 — L? is a holomorphic operator
function for w € C\ ([0,00) UX) where ¥ is a discrete set in [Vp,0). In a neighborhood of every point w,
then the resolvent admits the Laurent expansion

R(w) = - + R]'(OJ),

W — Wy

where P; is an orthogonal projection in L? with a finite-dimensional range and R;(w) : H™% — L? is
holomorphic. The range of P; consists of eigenfunctions

(—A+V —-w)yY = wjv¥y , € RangeP;.

3.1.3 Well-posedness result version 2

We extend the result of Proposition [1] by allowing p to have a negative lower bound, and let w? be
perturbed by a function which is constant outside of a compact set. We consider

N ) BN S R
(o G o= gy v = 1 (320)

We impose the following assumptions:

e The function a(z) is bounded nonnegative measurable,

0 < afz) < ay < . (3.21)

e The function p(z) is bounded and measurable. In addition, it is allowed to take on negative values
but on a compact set, outside of which p is positive.

p(z) = pe(z) + pi(2),
with pm < pe(z) < py < 00, Supppc.CB, —00 < pm <0, (3.22)

and 0<p; <pp-

e The function c(z) is bounded, strictly positive, and is equal to a constant c,, > 0 outside of a
compact set B,

0<cm <clx) <cpyr<oo , Supp(l—ce)c(z) C B. (3.23)

The associated sesquilinear form is given by

a: HxH = C
a(u,v) = /}RS(Vu)'(V@)d:E +/

R3

(3.24)
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16 Barucq & Faucher & Pham

The associated variational problem associated to (3.20) reads

For £ € H* , find u € H such that

3.25
a(u,v) = Lv) , YveH. (3:25)

We recall the Sobolev space notations H, V and introduce H{(B) for a compact subset B,
H = H'(R®),V = L*R® , H{B) := {ueH|SuppucB}. (3.26)

We will show that if w? € C\ ([0,00) U S) for a discrete subset S of (—p,y,0], the variational problem
(3.25) has unique solution. Compared with Theorem |1, for which p,, = 0, the difference here is in the
interval [p,,, 0] where there will be discrete eigenvalues.

Proposition 2. Under assumptions (3.21)—(3.23), sesquilinear form a (3.24) has the following prop-
erties.

e The mapping a: H x H — C is continuous.
e When w? € C\ [pmc3;, o0), a is H-elliptic. When w? < p,,ci,, the constants H-ellipticity

constants in (3.5)) are

R 2
oc:=1 and c¢:=min {_ezw + Pm s 1} , (3.27)
v

while for Rew? > p,, c3,, they are

0 Im w?
oi=7 and c:=x = =155 )
w2 +icy (1= pm)l

18] I&]
where for § > 0, B is defined as,

(3.28)

w? + ic, (1 —pm)
Im w?

B =9

As a result of this, when w? € C\[p,, ¢4, , o), the variational problem (3.25)) has a unique solution
u € H with estimate

lw? +1ic2, (1 — pm)]
|Tm w?|
[ulw < Cllpx , with C= . (329
! Rew? < p,, 3,
2 ) m
min{—RceT‘*’ +pm, 1}
M

, Rew? > ppc3,

o For w? € [pmc3;, 0], the Fredholm alternative holds for variational problem (3.25).

In fact, one can make a more precise statement: apart from a discrete set (possibly infinite)
S C [pm€3y, 0], A(w?) is invertible. In addition,

wreS | NwW? = {ueV|Aw*)u = 0} is finite-dimensional.

Remark 6. In the case of constant wavespeed c, the perturbation theory provides more precise results. In
particular, with Hy := —A—i—%—f—p(m), if we impose in addition that p — 0 as |x| — 0 (which means that
pi — 0in (3.22)) ), then S is the discrete spectrum o q4;s(Hy) and [0, 00) is the essential spectrum o ess(Hy ).

This means that in the case S is infinite, its only limiting point is 0. In this case, V = Oélgj) + p(x) is

called a Kato-potential (B.2)) (i.e. of type L*(R™) + L?(R™).). A
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Outgoing solutions in helieoseismology 17

Cpe

Figure 4: Illustration of results of Prop [2 Under hypothesis (3.21)—(3.23)), for &2 € C\ (S U [0,0)), the
variational problem to (—A + a|§;m\) +p(z) — % u = f for f € H* has a unique solution u € H .

Here py, := mingeg p(x), ¢y := max,er (), and the set S represents a discrete (possibly infinite) set
in the interval [—pj,,0).

Proof. Continuity statement: As before, with «(z) bounded, we bound the term involving ﬁ of
a(u,v) using (3.16)), and thus obtain the bound defining the continuity of a in H x H,

w?|
la(u,v)| < [Vully [Voly + ( + par ) v llolly + 2an |[Vull,, o],
w2 m (3.30)
w
< (14 5+ llar + 2aar) fulle ol
Ellipticity statement: We develop the real and imaginary parts of a(u,u)
Re w? «
Rea(u,u) = / \Vul*dz + / (— 7+p(a:)) lu|? dz + / — |u|? da;
R3 R3 c*(z) R® |2|
1 2
Ima(u,u) = f/ r;170‘)|u|2dac.
rs ()
Rew? < p,, 3, ‘ Since ¢, > 0, this condition can be written as
2 2 Rew? 2 2
—Rew® + ppcyy >0 & — 2 + pm >0 &  pp,ci > Rew”. (3.31)
M

Since py, < 0 and c2 > 0, this also implies that
Rew? < 0 < —Rew? > 0.

In addition, since

0 < (@) <ciyy » p@) > pm,
we have ) )
—Rew —Rew
_ _— m 0.
() + plx) > 2 + pm(z) >

Under the current hypothesis (3.31)), the lower bound is strictly positive. Together with the fact that
a > 0, we obtain the H-ellipticity for a,

_ 2
|Rea(u,u)| > / |Vul|? de —|—/ (ﬂ + pm) lu|? da
R3 R3 Cur
(3.32)
. Rew? 9
2 min § — C2 + Pm 1 ”uHH
M
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18 Barucq & Faucher & Pham

‘Re w? > pmcar and Imw? # 0 ‘ Consider a complex number 5 = 81 +1if8s, f1 > 0, B2 € R,

Re (6 a(u, v))
= f1 Rea(u,v) — B2 Ima(u,v)

I 2 _ R 2
— Bl/ |vu|2 dr + / (52 m w . ﬁl e w +Blp($))|u|2 dr 4 / 61 g|u|2 dr .
R3 R3 c2(x) rs |7

Using that a > 0, p(x) > pm, and 81 > 0.

I 2 R 2
Re (pa(u,v)) > m/RBWusz T /R (52 m“’cg<xf1 4 ﬂlpm) WPde.  (3.33)

For § > 0, we define 35 as

Imw? — B; Rew?
iy S AR | B =5 e =
M

Bi(Rew? — c2,pm) + CM(S
Im w?

(3.34)

This also means that
BoImw? — B; Rew? = C?w(; — C?\451 Pm -
Since ¢3;, >0, § > 0, 31 > 0 and p,, < 0, with 35 as defined by (3.34)), we have

BeImw? — B Rew? > c3,0.

This means that

BoImw? — B; Rew?

2
M

BoImw? — B; Rew? >0 and > 4.

As a result of this,

BoImw? — B Rew? - BoImw? — B Rew?
c2(x) c3,

We use this to further bound the right-hand-side of inequality (3.33)),

Imw? — Rew?
Re (5 a(u, U)) > 51/ Vul|*dz + / (62 - =2 (mfl B Pm) Ju|® da

6 / |Vul|? dz + 5/ lu|? da .

Re <6a(u,ﬂ)) > (5/Rs|Vu|2dx + §/R3|u\2d:v = 5|l (3.35)

Upon choosing 81 = §, we have

With this choice and (3.34) for Ss,

Rew — 2 Pm + c2 w? + ic? (1 _pm)
B =294 (1 + i Imf‘zﬂ M =5 Ime2 : (3.36)

The above results, combined with (3.32) have shown the H-ellipticity, Re (a a(mu)) > c||lully with

constants given by (3.27)—(3.28).

Coercitivity statement For the proof, we consider w? with
Imw? =0 , pmci; <Rew? <0. (3.37)
We decompose a as

a(u,v) = a(u,v) + (Mu,v)y
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Outgoing solutions in helieoseismology 19

where
a:HxH - C
w? a(x) (3.38)
a = - (Vo) d — vdr.
a(u,v) /Ra(Vu) (Vu)dz + /RS( 20@) + 2] +pl(a:))uv x
and M : H — H* is the multiplication operator by p.
(Mu, vyyr g = / Peuv dx .
R3
Denote the associated operators to a and a by
~ 2 ~
Aw?) == —A- C;‘;x)#)";%m(x) LAWY = AWR) + My (3:39)

The sesquilinear form a (3.38)) is H-elliptic in this case. In fact, for — Rew? > 0, using the assumption
that a > 0 and p; > 0,
—Re w?
Rea(u,u) > / |Vu|?>dz + / wwzdﬂc > min{|Rew?|, 1} ||ul3, .
R3 R3 CwMm

This also means the operator -(w2) (3.39) is invertible with [l(wQ)_l : H* — H is bounded, which
restricts to a bounded operator A(w?)~!:V — H. In particular, for f € V,

A flln < C I £l < ClIfllv-

On the other hand, under the current assumption pc is compactly supported in B. We have the
compactness of the embedding i : H}(B) < V, cf. e.g. [23] Theorem 3.7| or [24, Thm 7.2], with H}(B)

defined in ((3.26)).

Weaker version: We have M is a compact mapping,

My = drzms) s (HIRY)Y O tHiB) o L2®3) ©  Muirs) L HI(B) -

continuous embedding compact embedding continuous
As a result, a satisfies the Garding inequality,
Re (c(u,u) + (Mu, u)p+3 ) > min {|Rew?|, 1} [jul3, .

From here, we obtain Fredholm alternative for variational problem ([3.25) under the current assumption,
cf. subsection B.1.11

Stronger version: Since A(w?)~!:V — # is bounded for Rew? < 0, this means that

Q™ = {#€C|Rez<0}
is in the resolvent set p(A), and the function
Q- — L(V,H) is analytic
N (3.40)
w o AW

Decompose by the operator A(w?) as

AW sy = AW)usy + Musy = (IdV—>V + My .y A(w2)§l—m> AWy .

=K(w?) V=V

Hence, A(w?) : H — V is invertible if (Id + K(w?)) : V — V is. From (3.40), the mapping K (w?)
is analytic on Q™. In addition, it is compact, being as a composition of continuous mappings with a
compact one,

K@)vsy = immoy o My_mp © AWyl

compact embedding continuous continuous
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20 Barucq & Faucher & Pham

As a result, we can apply the analytic Fredholm theorem, cf. [34, Thm VI.14, p.201], to Id + K (w?). The
proof is finished by recalling that, in the ellipticity statement, we have shown that when w? € Q™ \ [p., 0],
a is H-elliptic, thus A(w?)~! : H — H* exists and is bounded, and restricts to a bounded map A(w?)~! :
H—=V.

O

Remark 7. With minimal modifications, the condition on the global positivity of a can be relaxed to just
being positive outside of a compact set but still finitely bounded below. For example with 0 < x <1 a
cut-off function x = 1 in || < 1 and |x| > 2, we can replace « in the proof with (1 — x)a and p. by
Pc + x «. The lower bound p is then p,, = inf, cgs p. + x a.

3.1.4 From the perspective of spectral theory and perturbation theory

We have shown that the operator —A+V (x) —k? : H — H* is invertible and with bounded inverse which
restricts to bounded map (—A + q(z) — k?)~! : V — H. In the language of spectral theory, this means
the spectrum of —A + q(z) is contained in [0, 00). Spectral theory goes beyond this result and provide
more precise description of the spectrum. In particular, perturbation theory studies perturbations that
preserve some property of the spectrum of the unperturbed operator. In the case of Schrédinger operator,
one studies the spectrum of Hy = —A + V(z) as a perturbation of the spectrum of o(—A). One precise
question is to determine the type of potential that would preserve first the self-adjointness and then the
essential spectrum of —A. Here, we focus on potentials that vanish at infinity, i.e. V' — 0 as |z| — oo,
as opposed to potential that grows at infinity as in the case of the harmonic oscillator, e.g. V = c|z|?.
More basis facts and definitions are recalled in Appendix [B] here we summarize the important results
for Schrédinger operator. Note that the potential of operator under assumption is Kato
potentials (i.e. of type L*(R") + L*(R"),, see (B.2)). An important example of the Kato class is the
Coulomb potential, cf. [I7, Example 14.8]. We defer further discussion for this case in Remark

e As a result, cf. [I7, Theorem 13.7], —A 4+ V, with V a real Kato-Rellich potential, is self-adjoint on
domain D(A) = H?(R3).

O'(Hv) c R , U(HV) :Udis(A) |_| Uess(HV);

Oess(Hy) = {)\ co(A) | I{uy DA, |lul| =1, up >0, (A= Nu, > O},
where L denotes the union of disjoint sets.

e More descriptions of the essential spectrum oess(Hy ) are obtained if decay at infinity is imposed for
v,

Theorem 3 ([I7, Thm 13.9] ). Assume that V is real and A-bounded with relative A-bound < 1, and
that V(x) — 0 as ||z|| = 0. Then Hy = —A +V is self-adjoint on D(H + V) = H*(R") and

O'ess(HV) = U(_A) = [O’OO)

e By Theorem 14.9 [I7], all real Kato potentials are relatively A-compact. As a result, cf. [I7, Cor.
14.10], for such a potential
Oess(—A+ V) = 0ess(—A) = [0,00).

3.2 Construction and uniqueness of solution on the spectrum — Limiting
Absorption Principle

The following discussion will use the weighted spaces L2 (R?), which consist of 1 € L2 (R3) with finite

loc
norm,

10+ 12l (@) [ ey < o0-

Theorem 4 (Weighted Sobolev embedding [24, Thm 2.5 p. 5]). For sy > sy and o1 > o9 then embedding
HZ' C H3? is a compact operator.
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3.2.1 Short-range real-valued potentials

For H := A + V(z) where V(z) only contains short-range perturbations. The outgoing resolvent is
constructed based upon perturbation technique and uses the Born’s splitting

H—k* = Hy— K +V = (Ho—k*) (1d + Ro(k*) V).

For the rest of the discussion of short-range, we follow the exposition in [24]. The theory is also discussed
in [39, Chapter 6 p.231].

The free resolvent The free resolvent can be constructed by using Fourier transform, cf. [24] Lemma
9.1]. Denote by Ro(A) := (—A — A\)~1. We have

U(_A) = Ucont(_A) = [0,00)

Ro(A\) : H=2 — L? is holomorphic for A\ [0,00), cf. [24, Lemma 9.1 ii.]. By using limiting absorption
principle, one obtains the limit Ro(Ag £ i0), for A\g > 0. Note that +i0 stands for the limit when
approaching from above the spectrum ([0, 00)) and —i0 from below. This also gives the limit Ro(A\g £10)
as a bounded map between L2 — L2 forﬁ o > 0. In particular, for ¢ € L2 with o > 1, cf. [24] p.72],
we have

| Ro(k§ £i€)v — Ro(kg £1i0) ¢ |,. — 0, €>0.

In addition, by [24, Thm 18.3|, with o > %, the function

{AeC:ImA>0}\0 — L(LZ, H?,) is continuous
A= Ro(N).

Construction of the perturbed resolvent off the spectrum (k* € C\ [0,00)) Given the free
resolvent at A and the invertibility of 1+ Ro(A)V in L?(R3) for 8 > 0 cf. [24, Prop 10.3], then R(\) can
be constructed as a bounded map between L?(R3) by using the Born splitting, cf. [24, Theorem 10.5 p.
33),

RO = (1 + ReW) V)™ Ro(N). (3.41)
The invertibility of Id +Ro(\)V is obtained by Fredholm theory, by first showing its compactness, cf. [24]
Lemma 10.2], and then by showing that for A € C\ [V{, o), the only solution in L? to (H — X)) = 0 is the

trivial one, cf. [24, Prop 10.3]. Note that, for the compactness, we only need some decay. In particular,
we require for A € C\ [0, 00), if V satisfies

V(z)eC(R?) , sup (1 + |$|2)ﬁ/2 V(z)] < c0o , B>0, (3.42)
T€R3

then Ro(k?)V and VRo(k?) are compact in L?(R?), cf. [24, Lemma 10.2]. By definition, a short-range
decay requires 8 > 1. The resolvent is then extended as a meromorphicﬂ function to [Vp,0), cf. [24, Prop
14.1).

Construction of the perturbed resolvent on the spectrum k2 > 0 : We will take limit as A
approaches the spectrum of the Born splitting (3.41]), the result of which is given in [24, Theorem 19.2].
Here more decay requirement has to be imposed on the potential, i.e.

V(z) €eC(R?) , sup(1+|z2)2|V(z) <0 , B>1. (3.43)
z€R3

Since one will need to show [Id+Ro(Ag + ie) V)™ — [[d+Ro(Ao + £i0) V)=, This requires the
following ingredients.

6Note that o cannot be zero since [0, c0) is continuous spectrum (thus lack of the existence of bounded inverse in L?).
"In fact, the function C\ ((0,00)UX) — L(H2,L2) , A+~ R()) given by (3.41) is holomorphic. Here ¥ C [Vp,0) is
a discrete set.
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1. Limiting absorbing principle for the free resolvent, see discussion above.
2. The invertibility of Id +R (X £10)V is obtained by Fredholm theory as follows.
e One first shows the compactness of R(A+i0)V. By [24, Lemm 19.1], for § > 1 and kg > 0, we haveﬁ
Ro(kg £i0)V : L2, — L?_ is compact for o € (3,8 —1).

e Injectivity, if (1 + Ro(A£i0)V : L2 — L2 for kg > 0. We can apply Fredholm since Ro(\ & i0)V
is compact. This means for invertibility we need injectivitiy, i.e. that for k > 0, the problem

(_A_kg—'_v(x))quo ) 7/) € Lz(R3)v

only has trivial solution ¢y = 0. This is given by applying Agmon’s theorem which gives the decay
of eigenfuntion, cf. [24, Theorem 20.2] and then Kato’s theorem giving the absence of the positive
eigenvalues, cf. e.g. [24, Thm 15.1] or [39, Thm 1.1].

Theorem 5 (Kato). If the operator H = —A +V is defined with V satisfying
()] < CA+z)~" , p>1,
or V' continuous real function satisfying

lim |z|V(z) = 0,

2|00

then H does not have positive eigenvalues. That is if Hy = A\ with A > 0 and v € L? then ¢ = 0.

As a result, one obtains the convergence of
1+RoA£ie)V)™ = 1+ ReA£iO)V)™' | €>0,e—0,
in the norm £(L2 _, L% ) and that, for o > 1/2, cf. |24, Thm 19.2|, the mapping
{AeC|ImA>0}\ (Zu{0}) — L(L2,L%,) is continuous
A — R(N).

Uniqueness and asymptotics of solutions They follow from the properties of those given by the

free resolvent. In particular, the solution given by R(Ag £ i0) is determined uniquely by the radiation
condition cf. [39, Eqn 6.1.9 p. 233]

lim |0,u(z) T iXNY2u(x)|dS, = 0. (3.44)

T—00 |I|:T

The uniqueness statement can be found in [39, Theorem 6.1.7 or Theorem 6.1.4 p 233]. That the
limiting solution satisfies the radiation condition is shown in [39], Theorem 4.4 and Cor 4.5], by using the
asymptotics property of the free resolvent.

Remark 8. One has another definition of outgoing solution. For u € L? (R3), u is ko-outgoing solution
if

u = —Ro(ki +10)f
outside of some compact set for f € L2(R3) with o > 1/2, cf., e.g., [31, Definition 3.1].

8 rr: : 2 2
This can be seen as follows. We first decompose the mapping from L=  — L%  as

4
L2_ — Li/

Ro(A+i0)
- —

H?,, —L%.

Requirements have to be imposed on o, ¢/ and 3, for the first two mappings to be continuous and the last one to be
compact.

— The first mapping, under assumption (3.42)), the multiplication operator by potential V' is continuous if ¢’ + o < 3.

— The free resolvent on the spectrum Rg(A 4 i0) is continuous ¢’ > 1, cf. [24, Thm 18.3 i

2 b
— The embedding i is continuous if o/ < o.
This means

l<o'<o , d+0<B = B>1.

This explains why we need 8 > 1, equivalently that V' is a continuous short-range potential.
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3.2.2 Long-range real-valued potentials

We have seen in the previous discussion that in order to use perturbation theory with respect to —A to
obtain the limit on the spectrum of the resolvent of the Hy := —A + V', one has to require that V' decays
faster than |z|~! at infinity. This requirement is needed to obtain the compactness of the Ro(\ + +iV),
which is a key ingredient in perturbation theory. The machinery has to be redone for slower decaying
potentials, e.g. the work of Tkebe and Saito, or by Mourre’s commutator method, cf. [39, p. 428| for the
review of literature of LAP. We consider the equation of the form,

(A + V(z) — Nu = f. (3.45)

Define the resolvent at A when it exists

R(A) i= (-A+V(z) —\)"h

Assumptions: Real potential V' is a bounded function, and for sufficient large |z|, admits a repre-
sentation as a sum -
V=Vv+W , V=V, (3.46)

where Vg is a short-range potential with
Ve = O(z|™") , ps>1 , J|z|— o0, (3.47)

and Vi, a long-range one differential in |z,

Vo = O(lz|™) , 9.V =0(z|"" ") , ;>0 , |z|]—o0. (3.48)

Using commutator estimates, it is shown, cf. [39] that the same radiation conditions as that for the
short-range case, cf. (3.44)), can be used to define uniquely a solution to (3.45)),

lim |0,u(z) T iXNY2u(x)|dS, = 0. (3.49)

r—00 | =r

Theorem 6 (Uniqueness - [39, Thm 11.3.7]). Assume that potential V satisfies (3.46)—(3.48)). If u € H?

loc

is a solution of —A + V(x) — XN)u = 0 and u satisfies one of the radiation condition (3.49), then
u = 0.

Note that also by commutator estimate technique and the notion of H-smooth of Katﬂ the absence of

positive eigenvalue is shown, in another word, the positive spectrum of —A 4 V' is absolutely continuous,
cf. [39, Thm 11.1.1 and Cor 11.1.2].

Theorem 7 (Existence by LAP - [39, Thm 11.3.6 — 11.3.7]). Assume that potential V' satisfies (3.46])—
(3.48), f € L2, and o satisfies
1 L+p

<o<3 | o<p—3 , o< 7 - (3.50)

N

Define the set
Q = {)\:(k+ie)26(C | 0<c<k<c , 0<e<l1}.

9For V admitting a long-range potential, we cite [39, Corollary 11.1.2]. Tt uses Kato’s ‘smoothness’, cf. [39, Eq. 0.5.2 p.
30]. For a K-bounded operator G : H — C

sup  ||G(R(A+ie) — R(A—ie))G*|| < oo.
AEX ,e>0
The main result is [39, Prop 0.5.3 p.30] which gives that if there exists an operator G that is K-smooth on Borel set X C R
with KerG = {0}, then the spectrum of K is absolutely continuous on X .
To apply to the case of Shréodinger equation: it is shown in [39) Thm 1.1] if @ is the operator of multiplication by
1+ r2)*"'/2 with
% <o < %min{ps,l + o1}

then Q is H-smooth, and if Ker G is trivial then H is absolutely continuous on X.
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Then the function

u : Q — L?_(R") is continuous.
z = u(z):=R(2)
Thus u(z) has boundary value along the cut [0,00), denoted by u(Ag £10), A\g > 0. This is a solution of
(—A + V — )\Q)’LL = f
In addition, it satisfies the following estimates
[u(@)- < Clfllos
- . (3.51)
[ur(z) — INu(2)lo-1 + (IV7u@)]lo-1 < C|lfllos

where C' does not depenﬂ on z € Q. In particular, the limiting solution satisfies
up(Xo £i0) F iAPu(Ao£i0) € L2, , A >0.
As a result of this, it satisfies the outgoing (incoming) radiation condition (3.49).

For other discussion of resolvent estimate in weighted L2 spaces for LAP, we refer to the introduction
of [42, p. 859-862].

Theorem 8 ([I4, Theorem 3.4]). Assume that potential V' satisfies (3.46)—(3.48)). In addition, the long-
range part Vi, is C> with
0"V < e (@ +]z)) P se(0,1] , 0< |8 <3,

With Mo > 0, for f € L2, o > &, ther |, with R(A) = (-A = A+ V)71,

. . eié@o) . -
(RO +10)f)(@) = /20" = an () + oflal ™).
. (3.52)
) ] el (@) z B
(0 R(Ao +i0)f) () = im'/2g/" a2t () + ellel ™),

for some ay,a_ € L*(S?) as |x| — co. Here, the phase ¢(x,\) is an evact or approzimated solution to
the eikonal equation

Ve (z, N[* + V() = A (3.53)

Remark 9 (Sharp LAP). We first note that in sharper form of LAP, the weighted L2 spaces are replaced
by the Agmon-Hérmander space B and B* its dual (with respect to L*(R®)). The space B consists of
functions f such that

1/2 0 1/2
1l = ( /|I|§|f<:c>dx> > (2" / ngwlgmlf(w)ﬁdx) < 0. (3.54)

Denote by B’ its dual space with respect to L?. Its norm is given by [39, Eqn. 6.5.2], with an equivalent

form,
) 1/2
lglls+ := sup (/ Ig(fﬂ)2d8> : (3.55)
rzl \ T Jz|<r

10Tn fact, the constant C' does not depend on A from compact subset of (C\ {0}) N (C \ [0, 00)).
1We also have similar for the incoming solutions

—i¢(z,N)
(RO=i0)f)(@) = a'/2A7H4 Zf—a (20 + oflal ™)
(8 RO —i0)f) (z) = in/2A1/4 %T’A)a_(%) + o(lz|™Y).

Inria



Outgoing solutions in helieoseismology 25

Note that, cf. [39, p. 235],
L} c®BcCli,cl’cl?,c® clL, , o>1/2. (3.56)
Under the same assumption in cited Theoremm the resolvent estimate (3.51)) can be replaced with
IR llsm: <C , TmA#0. A

In the above cited theory, the potential V' is assumed bounded. However, it can be allowed to develop
some singularity. We comment on this extension in the following remark.

Remark 10 (Scattering with long-range singular potential). Due the existence of a Coulomb-like potential
a(z)
[T )
need results for mild singularity. For this purpose, we will cite results of [£2] which is for a more general
problem: the magnetic potential. We will only need what is called the electric potential there, and set
the magnetic potential to zero in the assumptions and results of [[9]. We first use [{2, Assumptions

1.5,1.20-1.22], the real potential is decomposed into a short and bounded long-range one,

where a is a continuous bounded function, we need to allow for singularity in V. However, we only

V =W +Vs, (3.57)
with assumptions,
Vs, Vi, € Li,.(R?) | /(VS + W) |ufder < B/|Vu|2d:1c , O<v<l, (3.58)
and for some ¢ >0, 7o > 0 and >0
VL] c .
m + (V)4 + V5] < W ) for x> ro;
= 0W@) =0 if |z < ro; (3.59)
c
|VS| S |1'|Tﬁ s f07'|$|§7"076>0.

Here ()4 is the positive part. Note that there is a switch in sign convention compared to [[2]. Setting the
magnetic potential to be zero, for a fited X > 0, and all \g > X, theorem [{Z, Thm 1.7] gives that there

exists a unique solution u € H}, (R3) of the equation

(A +V + M)u = 0,

satisfying estimate

dx + sup lul?dor < CN)|Iflls, (3.60)

[V-Eul?
x| r>0 R? Jjp=r

|
and radiation condition with 0 < § < 1 with § < p (here p is in (3.58))

/ Vu — iV X iu
|z|>1 ||

The solution is given as a limit of the sequence R(A\o +10)f as e — 0T in H}. . Here B and its dual B*
are the Agmon-Héormander spaces defined in (3.54)—(3.55)). Note that ||| and ||-||s+ are denoted in [12]
respectively by N1(-) and || - ll1. A

Nolluld. + [VulZ. + /

2 dx

AT ) < OISz

2426

(3.61)

Remark 11 (L?-type radiation condition). The solution obtained by limiting absorption principle can be
shown to satisfy a Sommerfeld-type radiation, which in turns defines its uniqueness. For more discussion
of other forms of radiation condition see the introduction of [33, p.5]. We cite a result by Saito [36]. For

V = plong(x) +pshorta
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where Pshort 15 a short-range potential, and piong a bounded real function in C2(R?\ {0})
07p(x)| < |z~ o] <2,

the solution given by limiting absorption principle satisfies radiation condition of the form,

J.

where 0 < 6 < 1 is a fized constant. Here, the phase ¢(x,\) is an exact or approzimate solution to the
etkonal equation

2 dx
_ .62
05 2] < 400, (3.62)

Vu — i(Vo)u

[Vap(@, N)? + prong(z) = A.

In more recent results by [33, [43], the radiation condition is given in the form,

2d
/ Vu — iVeus| & < 4oo, (3.63)
RS |z |
where
V(i) 5 Ve , x—o00.
For more discussion of other forms of radiation conditions, see the introduction of [36}, [71 [35]. A

3.3 Application to the conjugated operator

The goal of this section is to obtain the resolvent of the conjugated operator £ := p/2 Loq p~ /2, cf.
[2.5). At the complex wave number w? introduced in (1.2)),

w = go(l +iv)wy , where wy€R" and 7€ R,

where go is the branch of square root, cf. (4.11b)). The normalized form (2.19) of £ is

a(x
L= -A— Kk + |(x) + p2(z) + ps(z) + w’pi. (3.64)
The involved potentials are

B 1 1 N Orp
p1 = Cz(x) Cgo ’ — p )

R T Y

P2 = 7 2 4 2
- 1(3|VS2P|2 B Aszp)

lz> \ 4p%(x) 2p(x)

Here, we work under the assumption that the potentials do not oscillate and have constant limits at

infinity defined in (2.17)),

oo = lim a ; ol := lim O,a ; co = lim c.

T—>00 r—00 T—00
In addition, p; is smooth and compactly supported, while ps and p3 are short-range potentials. « is
positive and bounded in L?(R3). The normalized wavenumber of the conjugated operator is defined in
(12.18])

kZZi,aﬁfaoo .
2 1 5 (3.65)

from the complex frequency w. When there is no attenuation, i.e. when v = 0, the normalized wavenum-
ber reduces to

w? a? a!
ki =0 - == _ —x= (3.66)
0 2 4 2
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We introduce the following family of potentials,

Vo = 28 o)+ ops(a):
L (3.67)

Vg = Vo + P1 -
We also consider the following family of operators parametrized by complex numbers 5 and A,
Lgy = —A — X + V3. (3.68)

We denote its resolvent by
Rs(N) = (Lga) " when it exists.

Note that the conjugated operator (3.64]) is
L = L2y , where k is defined by (3.65) .

Our goal is to consider
L1 = Re (k).

Construction of solution for k? € C\ [0,00) Recall that when Imw # 0, Prop [2] gives that
R.2(k?) € LAR?) |, w?eC\[0,00)UX, (3.69)
where ¥ is a discrete set in [ac, 0), with

a:= inf Vj , ¢ := supc.
z€R3 z€R3

Construction of solution for k? € (0,00) It remains to define the resolvent at real parameters, i.e.
2
mw% (kO) .
We first make a remark regarding the real potentials V and V2 for fixed w3.

Remark 12. Potential V} contains both short-range and long-range contribution. The presence of
the Coulomb-like potential is dealt with by using the results of [{2] discussed in Remark . We discuss
briefly how potential satisfies the required assumptions of this theory. Using a cut-off functio@
X € CX(R), we first rewrite the Coulomb-like potential as

Oﬁl) + ><(fﬂ)‘g

S5~ (- x(@) .

to separate out the singularity behavior at the origin and the slow decay at infinity. The compactly

supported part x(x) %, which contains the Coulomb singularity, will be absorbed into the short range

one, and leaves the slow decay at infinity to the long-range part of the potential. In particular,
Vo = Vo + Vo . Vi = (1—x(@) = (3.70)
x

It can be verified that potential V& and V3 satisfy assumptions (3.58) with p in (3.58) equal to 1. On
the other hand, the real potential V2 is only different from Vy by a compactly supported term which is
smooth, we can use the same decompositions:

alz
Vg = VE VLV = W = 0@ 5
with V:;g and Vfg also satisfying (3.58)). A

12 An example of x is x = 1 for |z| < 1 and x = 0 for |z| > 2, and smoothly continued in between 1 and 2.
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Approach 1 | For each fixed w2, Remark [12| allows us to apply Theorem 1.7 of [42] to operator
-A + ng ,

which gives that the mapping

Q — L(B, B")
—1 is uniformly continuous.
Aom (—a+ Vg - A

Here
Q:={AeC | 0<cg<Red<ey , 0<ImA<1}.

In particular, the boundary limit as Im A — 0 exits which gives a definition at A = k3 for
-1
Rz (k) = (— A+ Ve — (K+ 10)) . (3.71)
In addition, for f € B, %w(z](k%)f defines the unique solution u € HL _(R3) to
(A+V,z—=MNu = f , with A= k2, (3.72)

satisfying radiation condition (3.61) at A = k3,

/mzl

and asymptotic expansion (3.88) listed below.

2

T dx
Vu—lko—u W

2] < oo , 0<do<l. (3.73)

Remark 13. In this approach, p1 does not have to be compactly supported, it only needs to decay no
slower than a long-range potential.

Approach 2| The difference here is to work solely with operator —A — V; and its resolvent Rg(A)

and use perturbation theory. The result is achieved in two steps.

Step 1 By Remark we can apply Theorem 1.7 of [42], cited in Remark which gives that

Q —  L(B,B*)

\ ALV M- is uniformly continuous, (3.74)
— —A + Vo — A)”

and thus has boundary value as Im A — 0F. It defines a bounded inverse at A\ = k2,
-1
Ro(k3) = (— A+ Vo — (K +iO)> € L(B,B") , o>1/2. (3.75)

In fact, with ¥’ denoting a discrete set in [a,0), we have the definition of

Ro(\) € L(LA(R?)) , for AeC\([0,00)UY’) with Rel>0;

(3.76)
Ro(N) € L(B, B*) , for Ae (0,00).

In addition, for A > 0, Ro(\)f defines the unique solution to (—A 4+ Vy — AN)u = f satisfying radiation
condition (3.61)).

Remark 14. Note that the results in[I0 gives the sharp form of LAP in the Agmon-Hérmander spaces B
and its dual B* (3.55). The current (weaker) result in weighed L? space is obtained by using the inclusion

of spaces (3.56)). AN
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Step 2 It remains to take care of the compact supported perturbation w?p;. We write —A — Vs — A
as a perturbation of —A — V5 — A

-A—-Vg - X = (Id +ﬂp1mo(>\)>(—A—VO — )\)

(3.77)
This leads to the Born splitting
-1
Re(A) = [ Id + BRo(N) p1> Ro(A) . (3.78)
Remark 15. Note that when w € AC\ ([0,00) UY/) with 8 = w? and A = k? defined in (3.65)), using the
Born splitting (3.78)), we reobtain R,z (k%) in (3.69). A

We focus on the case when 8 = w?,
-1
Rz(A) = (Id +w?Ro(N) Pl) Ro(A) -

Given the existence of g (A) in Step 1, cf. (3.76), it remains to justify the existence of the inverse of
Id + W(2] iRo(kg) P1
We proceed as follows.

ubsubsection 3.2.1} in particular Ingredient 2 and Footnote

e Using the same argument for (—A — k2
( ), the mapping

) in
we obtain that, for ¥ > 2 and o € %

w Ro(k*) p1 = LA — L%, is compact .

o

Note that we have used Remark [14] which translates the fact that Qg (k3) € L£(B, %*) into Ro(k3) €
L(L%,L? ) for ¢’ > 3. Elliptic regularity gives that Ro(k3) € L(L2,, H*~¢’) for ¢’ > 3, which is
one of the mgredlents needed, cf. Footnote [§

e We now have a Fredholm operator, and we next verify for injectivity. We show that the homogeneous
problem

(Id + wi Ro(w? + i0) p1) Y =0, (3.79)

only has trivial solution in L? , for ¢ € (3,9 — 1). With the current o, solution ¢ has the following

properties.
— We can rearrange (3.79) to rewrite ¢ as an outgoing solution with right-hand-side g := p; v,
Y = —wy Ro(wg +i0) g € L2,

Since p; is of compact support, g € L2, for all o/ € R. As a result of this, 1 satisfies a priori estimate

(3.60) and radiation condition (3.61)) with 0 < 6 < 1 (here p in (3.58]) is chosen to be 1)

/|wzl

Since g € L?, for all o/ € R, this means 1 satisfies condition (1.28) of [42] for some § > 0,
Vo — ko

/|le ‘xl

By the second result of [42], Theorem 1.6], solution 1 satisfies condition (1.27) there,

—I\F 1/)‘ < ng/(1+\x|)1+5|g\2da;. (3.80)

1+|x| -

2 dr

R

< 0. (3.81)

liminf/ <|w2 + k§|¢|2>da(as) 0, as|z] oo (3.82)
|z|=r
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— Solution 9 of (3.79) also satisfies
(A +Vp — k) (Id + wp Ro(wg + i0) pl)w = 0.
After rearrangement, this means v is a solution of the homogeneous equation

(—A + V2 — kg)y = 0. (3.83)

By Remark[12] we can then apply the first result of Theorem 1.6 of [42] which gives that 1) = 0 since
1 is solution of (3.83)) and satisfies the radiation condition (3.82]).

With these ingredients, for wy > 0, we have the convergence

—1 —1
(Id + w? E)%O(kQ)m) — (Id + wd mo(kg)m) in the norm £(L?,, L%,),
and we use the Born splitting to define
-1
() = (104w Mol 21 ) (). (3.84)

as a bounded map in £(L2, L? ) for o > 1/2.

Properties of outgoing solution Using the same argument as above, we can use the left Born splitting
to obtain

-1
Rp() = i) (1 + o)) (3.85)
Note that Id + w3 p1 Ro(k3) is compact and bounded in L2. This allows us to write

where

-1
g= (Id + wh p1 mo(%)) I

with f € L2, g € L2. From the property of g (k2), the solution QRg(k3) g satisfies radiation condition
7 which is of the form of . As a result, the defined resolvent also defines a solution to
and satisfies the radiation condition . The uniqueness of such a solution is guaranteed by [42]
Theorem 1.6], employed in Approach 1. In another word, we arrive at the same solution given by ,
which is defined uniquely by the radiation condition at A = k3,

2

x dx
Vu — ikg — — < 0<d<l1. 3.86
Josa [ = Yo R < = (350
In addition, it has the asymptotic expansion, for f € B,
i¢(z,ko)
—1/4 € x _
(g ()f) @) = 7%k —m—ar () + ollal™);
. (3.87)
2 . 1/241/4 el #led) o -1
(0r Rz (k) f) (2) = im'/2xg TaJr(m) + o(lz|7),

for some ay,a_ € L?(S?) as |z| — oo. and the phase ¢(x, \) is an exact or approximate solution to the
the eikonal equation
IV oz MIIP + Voz(z) = k5. (3.88)

Remark 16. In the second approach, the same reasoning still applies if p1 is a short-range potential. In
particular, the compactness of Ro(k*)py : L2, — L* foro € (%,19 — %) with ¥ > 2 still holds true for
p1 short-range.
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4 The reduced problem in radial symmetry with constant o and
constant c

In this section, we extend the Atmo model to the whole domain and consider Equation (1.1) with the
wavespeed ¢ constant, and density p exponentially decreasing, i.e.

plx) = ce =12l Wwith constant Qoo > 0. (4.1)

This means « (2.8)) is now constant thus d,« = 0 and o, = 0. In this case, as shown in Section 2} cf.
(2.15), the potential q (1.5)) of the reduced operator simplifies to

a? as
=g+
The conjugated equation (1.4) simplifies to
a? 2 a
Lu = g where £=—A+T’° - = +t— g=p"?f. (4.2)
\q,_c/
—Kk2

2
See also Remark The constant f—; — O‘T"’ is called an energy level. Here k is a choice of square root of

this value. The choice of square root is discussed in subsection

We carry out the following tasks.

1. We introduce the fundamental kernel ®y(x,y) given by [18] in (4.70) and (4.74) and show that it is
indeed a fundamental solution to (4.2)), i.e. a distributional solution of

Q
(fAm - k2 + ﬁ) q)k(xay) = 5(x7y)
This is carried out in the proof of Prop [I5] We also obtain the asymptotic expansion and radiating

property for @, and |Z—| - Vy®(z,y) when y stays in a bounded set and |z| — oo, cf. Prop Prop
[[2] and Prop [13}

2. The kernel of the resolvent

-1
R(K2) = (—A —K aw)
|z
is given by ®y(z,y). This defines outgoing solutions in the presence and absence of absorption, cf.
Prop [I71 We show that the constructed resolvent and solution satisfy a Sommerfeld-type radiation
condition associated with wavenumber k, cf. Prop This radiation condition and other equivalent
variants are shown to characterize the solution uniquely, cf. Prop

3. Additional results are obtained such as a Rellich-type uniqueness theorem, cf. Lemma[20] the expansion
of general solutions to the homogeneous equation in spherical harmonics, cf. Prop 21} and the exact
outer Dirichlet-to-Neumann map, cf. Prop The last result is used in Section [f] as a reference
radiation boundary condition.

Separation of variables Decompose the solution « and right-hand side g of (4.2)) in basis of spherical
harmonics,

U(T, g, (b) = u?"(r) an(gv ¢>),

M8
™~

o~
I

0 m=—/

NE
™~

g(r,0,¢) = g¢'(r) Y7'(6,9),

~
I

0 m=—/
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with )
e :/ / o(r,0,6) Y7(0, ) sinf dé do.
0 0

Then uj" solves

d? 2d a 0e+1)
B B 2 htcC) mo_ g, 4.3
( dr? rdr + T + 72 ) e 9e (4.3)
Define unknown w by
ud = r . (4.4)
Then w solves ) ( )
d «@ {6+ 1
—— —k? == = 7 4.
( 72 + . + 2 )w T gy (4.5)

We next introduce the change of variable

z = 2e'2kr. (4.6)
The function W defined by
w(r) = W(z:=2ikr), (4.7
satisfied]
d? 1 % L (e+3)? z 1 z
L vl le. 4.
(7 —a+ 2=+ )W = e () o e (48)

When the right-hand-side is zero, equation (4.20)) is a special case of the Whittaker equation,

1
4

ko E—u?
+o+ i )W:O . xeC,puecC, (4.9)

2w + (

studied by Whittaker and Watson, cf. [20, (1.4)]. In our case, the index p is of the form p = ¢+ % and

o We first give a brief description of the solutions to (4.9)).

R = oK -

4.1 Notations
Choice of square root branch We consider the following Argument branches,
Arg, : C — (—m,@w] ; Argy, : C — [0,27m). (4.10a)

The first one is the usual Principal square root branch, cf. [27]. Denote by g; and go the two branches
of square root corresponding to the above arguments,

1.
g1(2) = |2 /2631 A 2) (4.11a)
1,
g2(2) = |2|' /22t Are2(®) (4.11b)
They have the following properties in terms of the sign of the real and imaginary part,

Re gi(z) > 0 while Im go(z) > 0. (4.12)

13This can be seen as follows. Under the current assumption, ¢ and aeo are constant, hence
orw = 2k, W , —0%w = 4k?I2W.

We divide by 4k? the last three terms in ([&.5). This gives —1/4 in (&.20). On the other hand, ﬁ X the last two terms in
(4.5) gives the corresponding last two terms in (4.20) since

Qoo 1 oo 1 e+1) 1 41 Lo+ 1)?

ro4k2 2 2k r2 4k2 22 22
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The complex frequency With wy > 0, using the square root branch gs, we define
w=go(1 +iy)wg , woeRT yER. (4.13)
With the above convention, we have (see also Remark ,

Imw > 0. (4.14)

The complex wavenumbers and parameters Using the square root branch go, we define k as the

square root,
2 2 2 2
w a w a )
k:=92<—°°>:gg(°—°°+12°°w3);

2, 4 cZ, 4 2 (4.15)
aOO .
no= g 5 X = An
Under the square root branch ,
Imk>0 . (4.16)

To denote the dependency on -, we will also write

k~/77777X'y-

Remark 17. We have defined in (4.13]) and (4.15) w and k respectively by using the square root branch
g2 ([.11b). However, if v > 0, which is the case in our application, Imw? > 0, and Imk? > 0. As a
result, from the discussion in Appendiz[J]],

Arg (K*) = Argy(k*) , Arg(w?) = Argy(w?) , >0

W2 w2 (4.17)
= 91((}7) = 92(07) . 1K) =ga(k?) , v>0.
A

The real wavenumber and parameters We will reserve the subscript 0 for the corresponding
wavenumber and parameters above at v = 0,

2 2
w «@ @
ko — 0 _ Zx : - = . =i . 4.18
0= g <c§o 1 > M= g ¢ Xo=ino (4.18)
However, one has to pay attention to signs when taking the limit of k and as v — 0, under the current
choice of square root branch. We have the following one-sided limits, when o > a%,
Coo

ky = ko o My = M0 . Xy X0 , as y— 07
(4.19)

ky = =ko , ny = =m0, Xy @ —Xx0o , as y—=>07.

wo (6759 . . . . . .
However, for — < ——, these one-sided limits coincide, i.e. lim,_,o+ ky = lim,_o-.
Coo 2

4.2 Whittaker functions

Here, we introduce the Whittaker functions which are solutions to the Whittaker equation introduced in

@9,

d? 1 k- w2
Wt (—+ i)W =0, 4.20
dz? + 4 + z + 22 (4.20)
Solutions to (4.9)) are obtained from those of the Kummer’s equation
d? d
Pl + (b— z)au —au = 0. (4.21)
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In particular, if Y(a, b; 2) is a solution to (4.21)), then X, ,,, defined as

11
Xopu(z) = €27 22" YA +p—r, 1+ 2u; 2), (4.22)

satisfies (4.9). Below we will give self-contained definitions for the Whittaker functions. However, for
completeness of discussion, we also include the full definitions of the Kummer functions in Appendix

4.2.1 Definition of Whittaker functions
We will need the following functions.
e Gamma function I’

IT(z) ::/ e s lds |, Rez>0.
0

For Rez < 0, I'(2) is defined by analytic continuation. It is meromorphic, with no zero, and simple

poles of residue % at z = —n. We note the special values

r(1)=1 , nl=Cn+1),

and recurrence relation
IN'z+1) = 2I'(2).

e The diagamma function 4 is defined as, cf. [32 (13.14.8) p.334],

P = . 2#£0,-1,-2,...

e The Pochhammer’s symbol, cf. [32] 5.2(iii)], is
((l)o =1 ;
(a)r == ala+1)(a+2)...(a+k—1);
(a)k = Fg’*a(j;)k) ) a 7é 07 _17 _27
(—a)p = (=D*a—k+1).

(4.23)

To obtain the expression of the Whittaker functions, we use relation (4.22)).

e The first Whittaker M ol (2), cf. [32, Eqn 13.14.6] is obtained from the Kummer function (also
FotTg
confluent hypergeometric function) M(a,b; z) or 1 Fy(a,b; z) defined in (D.1) as

11
M, ,.(2) = e 2722TH M(l+u—li 14+2u; 2)

_ k (4.24)
I A i
(T+2u) k!

1,
2

I
)
|
o=
N

1
M, . (2) is analytic in &, and meromorphic in p such that 2p4 # —1, -2, -3, ... Due to the factor z2th,
it is a multi-valued function, the principal branch of which uses that for log, —m < Argz <, i.e.

1+ 1+ .
ZTH = eTu(lnlzlJ’"Arg(z)).

e For p = 0+ %, ¢ € Z, we have to use limiting value (D.5]), which gives rise to the (Buchholtz)
Whittaker M_, ,(z). It is defined from the Kummer function M (D.4),

1z My (2)
— 2+:U' . — KK
M u(z) == e 2%z M +p—k,1+2u;2) T+ 20" (4.25)
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It is defined in particular for all x and pu, in particular, for p = ¢ + % with ¢ € Z. When ¢ € Z and
¢>—1then 20 +2>0thus20+2 ¢ Z~,

_ 1 -2 MU+1—k,242(;2) 1019 49
M&H%(z) = z""e T2+ 20 , £=-1,0,1,2,... (4.26)

On the other hand, for £ € Z and ¢ < —2, then 2¢ + 2 € Z~, we have to use the limiting value given by
(D.5) with n = —2¢ — 2 and a = ¢ 4+ 1 — & in this formula. With some simplification, we obtairﬂ

(2)

=z e% (—l—kK,=20;2z) , L=-2

MN,€+%(Z) - M Zfé

(4.29)

oo
272

(k—20—1)! k!

(k+20+ 1) Kk

=3,
(C+1— K)o 2F i (C+1—k) 2F
k=—26—1

Il
(]

k=0

e The second Whittaker function W is obtained from the Tricomi confluent hypergeometric function

U. ci. (07 (O10).

11
Wen(z) = e 22227 UL+ p—k, 142u; 2). (4.30)
For 1+ 2u ¢ Z, we can use to define W,
P(2) r(-20)
W - M, (2) + ———) M (2),
) = TS M) + T T Ml .

, T <Argz<mw, 1+2u¢7Z.

Otherwise, we have to take the limiting value of the above expressiorﬂ We restrict ourselves to the
case where u = { + %, {e€Z. For £ =0,1,2 then 1 +2u =20+ 2 > 1, W is defined from the limiting
value of U in, c.f. [32, 13.14.8],

1 20+1
W () = — e 2%yt . Z 20+ 1)! (k—1)! Lk
)\ =

ity 20+ 1) T(—L - 204+1-k) (k=0

o0
€+1 k 4.32
Z 2 [lnz + Yp(l+1—rk+k) — p(l+k) — p20+2+k)] ), (432)
2£+2k/{3'
k=0
leZ,k—0—-1+#0,1,2,...
4From (D.5)), we obtain the limiting value in terms of n and a,
_z . M{+1—k,b; 2) _z
— 3 MET - —R D58 41— 5 et .
MN,ZJr% (2) z' e thQriM 0 z e z M(a+n+1,n+2;2) (4.27)
K o K
_ A+1,—5 nt1 (a) \@nt14k 27 (a)k 2 4.98
=e Z (n+1+k) K kzzn;l(kfnfl)!k! (4.28)
We then express a and n in terms of ¢, k with
n+l = -20—-1 ; n+2 = =24
L+14n+1 =4£4+1-20—1 = — ; k4+n+1 =Fk—-20—-1;
=4+1—-k = —Ln—k ;o a+n+1l =404+1—-k—-20—1 = -4 —kK.

2
On the other hand,

11 1
M (2) = e 2722772 M(%féféfﬁ,lJrQ(fff%);z) = e 2727 M(—t— K, —20; 2).

n,flfé

15In fact, in [§], instead of introducing the value of U and the limiting value of U(a, b; z) at b € Z, the Whittaker W, (2)
and W_, ,(eF1™ 2) are defined by relation and l-b respectively, cf. [8, Eqn 18a—18b]. The value of W at u such
that 1 4+ 2u € Z is assigned the limiting value of (4.31), which is calculated (by the Bernoulli-de I'Hospital’s rule, cf. [8]
Section 2.5 p.20].
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For | = —1,-3,..., then 2¢ +2 < 0, then using (D-10) with n = —2¢ — 2, and simplification'%]

1
W o 1(2) = e 2°27 U (4 -k, —20;2) = W 1(2). (4.33)
Ii,f+§ H’7Z7§

Remark 18 (Analytic continuation). In the above discussion, we have defined Whittaker functions W
and M for z with Argz € (—m,ww|. We call this the principal branch of the Whittaker functions. To
extend to z with argument outside of the principal branch, analytic continuation is used in conjunction
with the semi-circuital relations [27, p.297]

M, u(ze57) = eH2OF2N (o) (4.34)
M_, . (zeF™) = eFig (1+20) M, . (2) .
Using , this gives extension for W,
i I'(2u) +iZ(1-2 I'(—2p) +iZ (142p)
Wli, (Zeim) — S\ 4y 'u)M—n,— (Z) b e i #M,m (Z) 4.35
- - S Y S o). (435)
AN

Remark 19 (Limiting behavior at « = 0). When « = 0 thus k = 0, we obtain the Bessel equation, and
in this case, the Whittaker functions become the spherical Bessel functionﬁ. Following cf. [27, p.20],

we have
. T 1 _z z
Wo,u(i2) = —\/2> 33 ¢ g (1+21) H,(f) (2) ;
Jr N (4.36)
.. T2 iT(+2p) ) [ F
Wo(—i2) = Y= 52 (20420 g = .
01/"’( ) 9 i 2
LT LT
When 7 := 2kr, cf. [.6)), and p={+ 3, then eTig(+2m) — oFig(+l)
-1
. ﬁ 1, 2 1 2
Wou(izkr) = 3= 2kr)2 i7"V HY ) (kr) =~ (kn);
2 (4.37)
VT 3 M i
Wou(—i2kr) = —(2k7“)2 i HY ) (k) = —h, (k7).
’ 2 £+2 2
A
16This is seen as
1
w 1(2) = e 27 Ul —r41,20+42; 2)
n,l+§
1 1
—e 2 (4 1 -2 — 241,20 24 2;2) = e 272U (4 — K, —20; 2).
On the other hand,
1 1
W}.i . 1Jr1(z) =e 27U (— -1 — k4 1,2(—0— 1)+ 2;2) = e 272U (—L — Kk, —20; 2).
17 The spherical Bessel functions y, are solutions to (f% — %% 14 [(“'1) )y = 0, while general Bessel functions
d
are Y, are solutions to 7g — %— -1+ )Yy = 0. The spherical Bessel functions of the first kind are denoted by jy,

second y, and third hél) and hf), cf. [32) 10.47.3710.47.6]

. 17 _ 1z oMy )
je(z) = \/ian%(z) = (_1)2\/2,23{7@7%@ ;ohy (=) = \/Qz e+2(z)'

They can be defined explicitly, cf. [32] 10.49.1-10.49.7]. In particular, for a specifically defined series ax (¢ + %) cf. [32]
10.49.1],

0
n e ak(C+ D)
N
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4.2.2 Properties of Whittaker functions near zero

These limiting forms can be found in [32] 13.14.16-13.14-19]

1
W = — O(z Inz);
vz (4.38)
Weo(z) = —17(1nz + (3 —K) + 2’7) + 0(z*% Inz),
F(E — K/)
where ~ is Euler constant. In general,
W, = — ) o37H 4 O(z27RH) | Repu>1, 1, 4.39
‘,I‘"(z> F(%‘FM*/{)Z + (Z ) e'u—Q 'LL#Q ( )
Foru:é—k%, {=1,2,..., then
o ree+ny o, 1—¢ 1 1
Wm%M(Z) = Titri-n)” + 0(="") , Rep=g3,pn#3. (4.40)
The expansion for the derivative is given in Prop. [30]in Appendix [C}
Inz P(—kK) + 2y 1
W/ = O(z1 — 0. 4.41
5,1/2(2) F(*KZ) + F(*H) + F(l 7 H) + (Z IlZ) y R ( )
As for the Buchholtz function, we have, as z — 0
Mi2(0) = 0 5 lim M u(2) = 1. (4.42)
4.2.3 Asymptotic properties of Whittaker functions at infinity
Asymptotic expansion at infinity, [32, 13.19.3] for the Whittaker function W is given as
1 > (1 — 1_ ., -
Won(z) ~ e270 Y G+n ’“‘)’“;2 PRk vk Arg] < 3r . (4.43)
k=0 ’
Its derivative has the asymptotic expansion,
1
W (2) = e 3728 ( —14 0(\z|*1) . JArgz| < 2r—6, 2> oo. (4.44)
)
The radiating property satisfied by W 1 is given as,
)
1
65227”( C () + AW l(z)) = 0(l2]™). (4.45)
K,g K5

The proof for these statements is given in Prop. [30] in Appendix [C] See also Figure [BHg| for numerical
illustrations.

For the Buchholtz Whittaker, cf. Proposition [29] we have,

1 e 1 _ —%z . e(l*lﬁ)‘n’i -
Meate) ~ bt (g £ 06) b (T s o)
Argz € (—im 3n)
and
/ %z —k 1 _ 7%’2 . 16(1—N)7ri B

Argz € (—im, 2nm).
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We write out explicitly the dominant factor describing the oscillatory behavior of W for the case
where z = 2ikgr and k = +in. More details on the following statements are in Appendix Define

o(t) == kt —nlog(2kt) + iFn , teR" K np=2%=. (4.48)
Here log uses the Principal Log branch. We also note that e’”i2eig kr = 2e_gikr has argument
[—7/2,7/2].
e For v = 0 and 2> > “s=. This gives k3 > 0 : By Convention 1, cf. Appendix Wing.u(2iko ) is

incoming, while W_j,, H(e*i“Q ikg ) is outgoing. The highest order term in their asymptotic expansion
at infinity is given by,

Wino,u(2ikor) ~ exp ( — 1Pk, (t)) e o,

Incoming
(4.49)
W o_ine.u(e7™2ikor) ~ exp (i ko (t)) .
Outgoing
On the other hand, M_j,, ,,(—2ikor) has both the incoming and outgoing part,
. . 1 _
Meigul=2ikar) ~ expl(-is,() (g + Oltkar) ™))
T (4.50)
. e —K)T1 _
+ exp(ipk, (1)) (F(l‘*‘“) + O((kor) 1)) :

Note that the argument of the variable is —7/2, and thus satisfies the argument requirement of (4.46)).

e For v >0,
Wi, 1(2iky 7)) ~ exp ( — i(pkv(t)) e T,
¢ L*([1,00))
(4.51)
W_inmu(efi’TQik,Y r) ~ exp <i Pk, (t)) .
€ L*([1,00))
When é%.: > %=, we have limits,
Wli%i Wiy, u(e7™2iky 1) = W_ipy (7™ 2iko 7). (4.52)
Outgoing
The Buchholtz function M_j;, ,(—2iker) has both an L? bounded and non bounded part,
1
M_iy, u(—2ikr) ~ exp(—ipk(r)) (F(l ) + O((kr)_1)>
(4.53)

6(1 —k)7i

i O((kr)_l)) .

+ explisanlr)
e For v <0

Wig, u(2iky 1) ~ exp(—iapkv(t)) e2m
¢ L3([1,00))

W_inwu(efi”Zik,y r) ~ exp (i Pk, (t)) .

€ L%([1,00))
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