J. Haggerty, X. Wang, A. Dickinson, C. O'malley, and E. Martin, Segmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skin, BMC medical imaging, vol.14, issue.7, 2014.

T. Azevedo-tosta, L. Neves, and M. Do-nascimento, Segmentation methods of H&E-stained histological images of lymphoma: A review, Informatics in Medicine Unlocked, vol.9, pp.35-43, 2017.

K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position, Biological Cybernetics, vol.36, issue.4, pp.193-202, 1980.

Y. Lecun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard et al., Backpropagation applied to handwritten zip code recognition, Neural Comput, vol.1, issue.4, pp.541-551, 1989.

D. Cire?an, A. Giusti, L. Gambardella, and J. Schmidhuber, Deep neural networks segment neuronal membranes in electron microscopy images, Proceedings NIPS'12, 2012.

J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, CoRR, 2014.

V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for image segmentation, CoRR, 2015.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, Lecture Notes in Computer Science, vol.9351, issue.3, pp.234-241, 2015.

D. Komura and S. Ishikawa, Machine learning methods for histopathological image analysis, CoRR, 2017.

H. Zhang, M. Cisse, Y. Dauphin, and D. Lopez-paz, mixup: Beyond empirical risk minimization, ICLR, 2018.

D. Magee, D. Treanor, D. Crellin, M. Shires, K. Smith et al., Colour normalisation in digital histopathology images, MICCAI Workshop, 2009.

J. Vicory, H. D. Couture, N. E. Thomas, D. Borland, J. S. Marron et al., Appearance normalization of histology slides, Comput Med Imaging Graph, vol.43, pp.89-98, 2015.

S. Hauberg, O. Freifeld, A. Boesen-lindbo-larsen, J. Fisher, and L. K. Hansen, Dreaming more data: Class-dependent distributions over diffeomorphisms for learned data augmentation, 2016.

L. Perez and J. Wang, The effectiveness of data augmentation in image classification using deep learning, CoRR, 2017.

C. , N. Vasconcelos, and B. Vasconcelos, Increasing deep learning melanoma classification by classical and expert knowledge based image transforms, CoRR, 2017.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, NIPS'12, pp.1097-1105, 2012.

Y. Xu, R. Jia, L. Mou, G. Li, Y. Chen et al., Improved relation classification by deep recurrent neural networks with data augmentation, Proc. COLING, pp.1461-1470, 2016.

E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, Color transfer between images, IEEE Comput. Graph. Appl, vol.21, issue.5, pp.34-41, 2001.

F. W. Billmeyer, Color science: Concepts and methods, quantitative data and formulae, 2nd ed., by gunter wyszecki and w. s. stiles, john wiley and sons, new york, Color Research & Application, vol.8, issue.4, pp.262-263, 1982.

M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T. Woosley et al., A method for normalizing histology slides for quantitative analysis, pp.1107-1110, 2009.

A. M. Khan, N. Rajpoot, D. Treanor, and D. Magee, A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution, IEEE Transactions on Biomedical Engineering, vol.61, issue.6, pp.1729-1738, 2014.

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Wardefarley et al., Generative adversarial nets, pp.2672-2680, 2014.

A. Bentaieb and G. Hamarneh, Adversarial stain transfer for histopathology image analysis, IEEE Transactions on Medical Imaging, vol.37, issue.3, pp.792-802, 2018.

M. Tarek-shaban, C. Baur, N. Navab, and S. Albarqouni, Staingan: Stain style transfer for digital histological images, CoRR, 2018.

E. Decenciere, S. Velasco-forero, F. Min, J. Chen, G. Gauthier et al., Dealing with topological information within a fully convolutional neural network, ACIVS, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01877624

Y. Yuan, M. Chao, and Y. Lo, Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance, IEEE Transactions on Medical Imaging, vol.36, pp.1876-1886, 2017.

M. D. Zeiler, Adadelta: An adaptive learning rate method, CoRR, 2012.

M. Berman and M. B. Blaschko, Optimization of the jaccard index for image segmentation with the lovász hinge, CoRR, 2017.

F. Mahmood, D. Borders, R. Chen, G. N. Mckay, K. J. Salimian et al., Deep adversarial training for multi-organ nuclei segmentation in histopathology images, CoRR, 2018.

L. Hou, A. Agarwal, D. Samaras, T. M. Kurç, R. R. Gupta et al., Unsupervised histopathology image synthesis, CoRR, 2017.