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Collaborative Network Monitoring by means of
Laplacian Spectrum Estimation and Average
Consensus

Thi Minh Dung Tran*and Alain Y. Kibangou'

Abstract

This paper concerns collaborative monitoring of the robustness of net-
works partitioned into sub-networks. We consider the critical threshold
of a network and the effective graph resistance (Kirchhoff index) of a sub-
graph characterizing the interconnection of sub-networks, that are parti-
tioned from the given network as robustness metric. In which, the critical
threshold depends only on the two first moments of the degree distribution
while the Kirchhoff index can be computed with Laplacian eigenvalues.
Therefore, we show how to estimate jointly the Laplacian eigenvalues and
the two first moments of the degree distribution in a distributed way.

1 Introduction

Interacting systems can be naturally viewed as networks modelled by graphs,
whose vertices represent the components of the system while edges stand for
the interactions between these components. The efficiency of a network can be
evaluated through its functional robustness and structural robustness. The for-
mer usually stands for robustness against noise while the latter is related to the
network performance despite changes in network topology (node or edge failure)
[1]. Structural robustness has been an important topic in various domains: in
distribution networks (e.g. power or water distribution networks), breakdowns
can prevent service to customers; in communication networks, equipment fail-
ures may disrupt the network and block users from communicating; in contact
networks, removing nodes (persons) by means of vaccination can prevent epi-
demic propagation.

Various structural robustness measures can be found in the literature. For
instance, dozens of papers have studied on network robustness by considering the
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size of the largest connected component (i.e. the largest set of nodes such that
there exists a path between any two nodes) and stated that the larger the size of
this component is, the more robust the network is. The existence of this giant
component is characterized by the two first moments of the degree distribution
of the network [2]. The removal of several nodes can break the network into
several isolated components. The more nodes we remove, the higher are the
chances that we damage a network. Therefore, it is worth asking how many
nodes do we have to delete to fragment a network into isolated components?
This leads to the definition of a critical threshold which depends only on the
two first moments of the degree distribution [3].

In [4], the concept of natural connectivity as a spectral measure of robust-
ness was introduced. It is expressed, in mathematical form, as the average
eigenvalue of the adjacency matrix of the graph representing the network topol-
ogy. The Laplacian spectrum can also be used to compute robustness indices.
For instance, the second smallest eigenvalue of the Laplacian spectrum, which
is also known as algebraic connectivity [5], is well-known as a critical param-
eter that influences on the performance and robustness of dynamical systems
due to its main role in the connectivity of the graph [6]. Moreover, the overall
Laplacian spectrum can be used to estimate the number of spanning trees and
the effective graph resistance (Kirchhoff index) [7], which constitute also some
robustness indices.

Theoretically, effective resistance between two vertices in a graph is defined
as the electrical resistance between these two vertices when a resistor of unit
resistance is placed along every edge and a potential difference is applied between
the two vertices. Thus, the Kirchhoff index of the graph is the sum of the
effective resistances over all pairs of nodes. The smaller the Kirchhoff index is,
the more robust network becomes. It has been pointed out that adding an edge
strictly decreases the Kirchhoff index and hence increases the robustness [8].

By considering consensus networks, functional robustness (i.e. robustness to
noise) was defined as the expected dispersion of the network state from consensus
[9]. It was shown that a greater Kirchhoff index is associated with a greater
dispersion from consensus due to noise. A smaller Kirchhoff index indicates
that the expected dispersion due to noise is not significant, meaning a greater
functional robustness. Thus, Kirchhoff index allows considering both functional
and structural robustness issues at the same time [1].

Furthermore, in order to improve structural robustness, advanced control
strategies have been proposed from the robustness analysis approach. For in-
stance, Bevrani et al. in [10] proposed a robust frequency control strategy in an
islanded Microgrid (MG) to reduce the influence from the renewable sources,
load change, wind power fluctuation, etc. In this study, a H., and p- synthe-
sis robust controls was developed to enhance the secondary frequency control
performance. A robust controller via u-synthesis was again employed in [11]
to reduce the frequency deviation in the presence of significant uncertainties.
In [12], the authors have utilized the H,, control technique to design controller
that are robust to the changes of the network and system nonlinearities in power
sharing task. Moreover, optimization approaches, e.g., the Hopfield fuzzy neu-



ral network and combined particle swarm optimization (PSO) with fuzzy logic
[13, 14] have been applied to reduce the frequency deviation. In these references,
proposed control strategies and optimization approaches showed effectiveness in
reducing effect of variation or uncertainties in networks.

In this paper, rather than to design a control strategy to improve system
robustness, the purpose of our work is to focus onto observing interconnection
within the network. In particular, we aim to monitor the critical threshold of
the large network and the collaboration between the sub-graph’s super-nodes of
corresponding sub-networks partitioned from the large network by a robustness
index (Kirchhoff index) to see whether it can survive in case of an attack or
a failure before starting the operations of a system. Precisely, we consider
evaluation of the two first moments of the degree distribution of the network
and the Kirchhoff index of the given sub-graph by using data propagated in
the network. According to the Kirchhoff index definition, estimation of the
Laplacian spectrum is the key ingredient of the method to be developed. In
this way, we can protect the system, improve its performance by avoiding the
interruption during the operations as well as enhance the benefits technically
and economically.

In the recent literature, three main approaches have been considered for
the decentralized estimation of the Laplacian spectrum: Fast Fourier trans-
form (FFT)-based methods [15, 16], local eigenvalue decomposition of given
observability-based matrices [17], and distributed factorization of the averaging
matrix Jy = %11T [18]. In the latter paper, a convex optimization problem
was formulated and solved through an ADMM-based method. This method re-
quires to run an average consensus protocol until its convergence and then use
the average value and the transient measurements of the consensus protocol to
solve the convex optimization problem. In this study, we extend the result in
[18] by devising a method which allows estimating the average degree and the
nonzero distinct Laplacian eigenvalues in decentralized way at the same breath.
Here, an ADMM algorithm is employed to perform the factorization of the av-
eraging matrix and to compute the average degree of the network concurrently.
Then, set of non-zero Laplacian eigenvalues is obtained through the Laplacian
eigenvalues retrieving algorithm. Consequently, a Brand-and-Bound linear pro-
gramming (LP) is deployed to obtain the multiplicities of the gained eigenvalues
to deduce the whole Laplacian spectrum. The Kirchhoff index is then estimated
by a function of obtained Laplacian spectrum.

To simplify, we restrict our study to networks performing noise-free in the
assumption that the global network topology (Laplacian Matrix) is unknown in
a-priori. A dominant contribution of this paper is the possibility of implementing
this monitoring scheme in a distributed manner.

The remainder of this paper is organized as follows: in Section 2, we state
the problem under study. In Section 3, we recall the Laplacian-based robust-
ness metrics and show how they can be linked with a polynomial allowing to
factorize an averaging matrix using the Laplacian matrix. In Section 4, the
proposed method for solving simultaneously the average consensus problem and
the estimation of the Laplacian eigenvalues is described. The performance of



the proposed method is evaluated in Section 5 by means of simulation results
before concluding the paper.

2 Problem setting

We consider a large network G*(V*, E*), which is organized into M sub-networks
Se, £=1,2,--- , M, [19]. We define N} = {j € V*: (i,j) € E*} and its cardi-
nality |NV;| as the set of neighbors of node 7 and its degree in G* respectively.
Each sub-network is monitored by a super-node i which knows the number N, of
agents in the sub-network and the associated average degree xy. Node i € Sy is
a super-node if it has at least one neighbor in a different subset, i.e. 3¢* # £ s.t.
N;(Se # 0. We consider that two sub-networks are connected if there exist
edges linking at least two agents of these sub-networks. If two sub-networks are
connected then their super-nodes are linked as illustrated in Fig. 1. The two

Figure 1: Network partitioned in 6 subsets. Super-nodes are depicted in black.

first moments of the degree distribution are therefore given by

I I
<h>= e Y WL <R = s SN M
=1 i=1

The critical threshold f. is defined as the fraction of nodes to be removed such
that the network is completely disintegrated. Independently of the degree dis-
tribution, it is given by .
Je=1- EES (2)
<k>
A high value of f. means that a higher fraction of nodes have to be removed
to disconnect the giant component of the network. If f. = 1, meaning that we
have to remove all of its nodes to fragment this network.

Let G = (V, £) be the undirected graph representing a network with N = |V|
super-nodes, which are black nodes in Fig. 1. We denote by N; = {j € V :
(i,7) € £} the set of neighbors of node i in G = (V,£). The cardinality of this
set, |[NV;|, defines the degree of the node.




Assumption 1 : The subgraph, generated by super-nodes, G = (V, &), with
E C E* and V the set of super-nodes, is connected.l

G captures the interactions between the partitions of G*. Therefore, the large
network is considered to be robust if the partitions are strongly linked each
other and if the critical threshold f. is high enough. As a consequence, the aim
of nodes in G is to monitor the robustness of G* by estimating the Kirchhoff
index of G and the critical threshold f. of G*.

We denote by d; the cardinality of super-node i in G (its degree) and by L €
RN, the Laplacian matrix of G, which has d; as diagonal entries while the off-
diagonal entries are zero (if (¢, j) ¢ E) or —1. We denote the Laplacian spectrum
by sp(L) = {A", A5, . .., )\Tgif}, where the different Laplacian eigenvalues
are in increasing order 0 = A\; < Ay < ... < Ap41 since G is connected and
superscripts stand for multiplicities m; = m(\;), while A = {Xo,..., Aps1}
stands for the set of the nonzero distinct Laplacian eigenvalues. Hence, m; =
1,m; € ZT.

These eigenvalues can be used to evaluate the network robustness. Under-
standing whether a network is robust can help to protect and to improve the
performance of the network efficiently. By the way, it is also used to design
new networks that are able to perform well when facing with failures or attacks.
There is a lot of robustness measures developed in the literature. However, we
are interested in the average degree and Laplacian-based measures, the Kirchhoff
index (a.k.a. effective graph resistance) as [8]:

RL:NZ@. (3)

One thing to remark here is that the graph is more robust according to the
smaller Ri,.

The aim of this paper is to devise a distributed algorithm for collaborative
monitoring of network robustness through estimation of the two first moments
of the degree distribution and the Laplacian eigenvalues. As a result, Ry, will
be inferred to assess the performance of the given network.

3 Kirchhoff index and Averaging matrix factor-
ization

For each node i € V, let x;(t) denotes the information state of node 4, which is
a parameter of interest i.e. frequency, voltage, velocity, temperature, and so on
at time-step t. Define x(t) = [x1(t), x2(t),...,xn(t)]T, where N is the number
of super-nodes in the network G = (V,€). It has been shown in [20] and [21]
that the average consensus value can be obtained in D steps as follows:

7 =x(D) = [] Wix(0) = %11%(0) for all x(0) € RV, (4)



where W; = Iy + oL, where Iy is an N x N identity matrix and a; being
parameters to be designed. In [20], the solution was given by oy = —ﬁ, At
being a nonzero Laplacian eigenvalue. The uniqueness has been proved in [22].

Lemma 1 [22] Let Ao, -+ , Ap41 # 0 be the D distinct nonzero Laplacian eigen-

values, then, up to permutation, the sequence {a;}i=1,... p, with a; = ﬁ,
1 = 1,2,--- D, is the unique sequence if it allows getting Jy = %11T =
D
HZI(IN —o;L) = > Lt = P(cg, 1, ,cp; L) with
=0
1, ift = 0.
ct = (—1)t2:1,<j<m<to¢io¢j---oz,g7 ift=1,...,D—1. (5)
()P, e, ift=D.

Therefore, in order to implement the proposed method, the network and sub-
networks should be known. Meaning that, the number of the components N,
in a sub-network should be known by adding a learning mechanism as a con-
figuration step. Practically, most systems where communications are involved,
learning sequences are used for communication channel identification or for syn-
chronization. In [23], the authors have proposed a method using random walks
to estimate the global properties of large connected undirected graphs such as
number of vertices, edges, etc.. In this paper, we do not dig into this field. In-
deed, we assume that a large network G*(V*, E*) is already partitioned into M
subsets as described in [19] and all super-nodes know its subset’s agents num-
ber N; and the average degree dy of its sub-network. On the other hand, we
relax the the initial condition that D - number of distinct Laplacian eigenvalues
should be known by considering the h-th polynomial P(cg, ¢y, ,cp; L) where
h =N —1 instead.

It is now well-known that this polynomial is minimal if and only if o; = )\%,
i=2,3,---,D+ 1 [20]. We will denote by P* this unique polynomial with
minimum degree. Moreover, any polynomial P(.) such that P(.,L) = Jy is
divisible by P*(.) [18]. It can be stated that the distinct Laplacian eigenvalues
can be derived by solving the averaging matrix factorization presented in the
next Section. One can easily show that N|c¢i| < Ry, with the equality holding
only if the Laplacian eigenvalues are all simple. However, Kirchhoff index is a
function of the whole Laplacian spectrum. In the other words, the multiplicities
must be obtained to get Ry, by solving the next optimization.

Proposition 1 Consider a connected undirected graph of N vertices with degree
sequence {d;} and Laplacian matriz L, having D distinct nonzero eigenvalues
A e RP. Letm € Z+"*" be the vector of the corresponding multiplicities and
be obtained by solving the linear integer programming (6):

min ATm, (6)
mecZ+ Dx1
s.t. Am=1b (M)

m ezt



AT SN di
where A = [IT} and b = { ]\71:—1 11]. Then the effective graph resistance is
given by (3).

Proof: As stated previously, the roots of the polynomial of minimum degree
such that Jy = P*(cg,c1,- - ,cp; L) are the inverses of the D distinct Laplacian

eigenvalues. In order to compute the effective graph resistance Ry, , we need
to compute the multiplicities of the eigenvalues. We know that Zi’i{l mi\; =

Eﬁil d; [24]. Multiplicities m can then be obtained by solving the following

optimization problem:

N
. Dx1
min  Afm — g d;, s.t. 1"m=N-1, mezt""".
mez+Px1 1

i—

Since all multiplicities are positive integers, the problem above can be rewritten
strictly equivalently in linear programming form as (6) where M is the constraint
set.

The problem (6) can be efficiently solved using the Branch-and-Bound method
[25].

Algorithm 1 Multiplicities estimation
o Inputs: Number of agents N, d;, A.
e Output: m
1. Initialization:

(a) H = {} set of multiplicities, Fyest = {} function value of feasible
solution, V- = {} set of nodes, that the program will visit.

(b) k<« 0;
2. Calculate m using (6)

o [f the stopping criteria is satisfied, then stop. FElse, calculate Upper
Bound (UB) - the function value of the rounded-up feasible solution,
then set Fyesr < UB.

o Hy <+ m[0].

e Order of variables in Hy to be branched on.

3. While Hi < 0, select an ordered variable ™m; to be branched on and H, +
Hi\{rh;}-
(a) k+ k+1;
(b) Create 2 new nodes for 2 new sub-problems.
(c) m! < argmin ATm, s.t me My + MU {m; < |m;]} .
(d) m? < argmin ATm, s.t m € My < MU {m; > [m;]}



o Ifm! (or m?) is a vector of integers, H < m!(or m?) then stop.
o [f there is infeasible solution, then prun the corresponding node.
o Compute UB; (or UB3).
(e) If UB1(UBg) < UBy(UBy), then pick m' (or m?) is the next node
to create 2 new sub-problems and V < V U m2(m!), and M <+
M, (Ms,).

4. Return step 3a.

From this, we have obtained the whole Laplacian spectrum sp(L), we can
calculate the robustness index, and predict the efficiency of the given network.
In what follows, we show how to estimate the coefficients of the polynomial
P(;;L) in a distributed way, without the full knowledge of the network. The
problem is now equivalent to distributed estimation of Laplacian eigenvalues.

4 Distributed estimation of Laplacian eigenval-
ues and computation of the average degree

Given an initial condition x(0), it is well-known that with the protocol
x(t+1) = (I — aL)x(t), (7)

where x(t) = (z1(t), z2(t),...,zn(t))" and a is appropriately chosen step-size

[26], x(t) converges to Z1, T = + g:lxl(()) In what follows, we show how

i
transient measurements can be used to find the polynomial P(.;L).
Since D is not known, we look for a polynomial P(cp,c1,- -+ ,cp; L), with
large enough degree, such that Jy = P(co,c1, -+ ,cn; L). Weget 21 = Jyx(0) =
h

> aq(t) = Qe, with Q = (q(0) q(1) - q(h)) € RV**H and q(t) =
=0
Lx(0). Note that q(¢) can be constructed recursively as follows:

alt) = (o) 'x0) - 3 ) () a(h), 0

k=0

t . . .
where i stands for the binomial coefficient.

Therefore, the vector ¢ of the polynomial coefficients {¢;} can be obtained
by solving the linear system of equations

Qc = 71. (9)

Lemma 2 Consider a connected undirected graph G = (V, E) with D+1 distinct
Laplacian eigenvalues, an initial condition x(0), its average value T, and Q €
RN+ byilt by using (8) with the transient measurements of (7). Assuming
that Q has no all zero column, Equation (9) has at least one solution if h > D.



Proof: Assuming that Q has no all zero column guarantees that (9) is well
posed. In order to study the existence of solutions, we study the rank of the
augmented matrix ( Q 71 ) We know that the average value z1 results in the
linear combination of at least the D + 1 first columns of Q (see [18]). If h > D,
augmenting Q with Z1 does not increase the rank. Since rank(Q) < h + 1,
the system of equations has infinitely many solutions. And, a unique solution
is obtained for h 4+ 1 = rank(Q). B

As stated in [18], the polynomials whose coefficients vector c is solution
of (9) are divisible by P*(.). Therefore, from such a solution, a leave-one-out
procedure can be devised to find the roots of P*(.), which are the inverse of the
Laplacian eigenvalues. Such a procedure will be described in Section 4.1

Solving (9) requires the knowledge of the whole matrix Q and the average
value Z. In addition, to set properly the degree of the polynomial an upper-
bound of D must be know. In the sequel, we will set h = N — 1, since 1 < D <
N — 1, and solve the problem in a distributed way, where each super-node has
accessed to a submatrix Q; € R TDXN corresponding to a selection of rows
of Q. We will assume that Q; is full row rank'. The idea is to estimate the
polynomial coefficients vector ¢ in a distributed way. We adopt the following
formulation:

mmE Z le: —cjl> st Qici=2z1, i=1,---,N, (10)

i=1jEN;

where c¢; stands for the local version of c¢. This problem can be efficiently solved
if Z is known [18]. In what follows, we assume that the N first transient mea-
surements of (7) are used to compute both the coefficients ¢ of the factorization
of the averaging matrix and the consensus value Z.

Assumption 2 The super-nodes in a subset Sy know the fraction €; of nodes
in the set and the two first moments of the degree distribution of the set, i.e the
average degree d; and the second order moment ds.

Each super-node i € Sy initializes (7) with z;(0) = slf/[d;’f, where My stands

for the number of super-nodes in Sy.

Assumption 3 The scalars Ejf/if, {=1,2,---, M, are not all equal.

With these assumptions, x(0) is not proportional to 1 in order to guarantee
that Q has no all zero column. It can be checked by running a max and a
min consensus which converge in finite-time. If the max and the min values are
different then the assumption is fulfilled. One can note that the consensus value
will be the average degree divided by M. With these assumptions, we propose
to solve the following problem:

ﬁ N
TS 30 oY R RS DICE

i=1 jeN;
s.t. Qic; = Zi1, (11)

1Each super-node i has a corresponding (di + 1) x N matrix. It can select appropriately
the maximum number s; < d; 4+ 1 of rows to get a full row rank matrix Q;



where (3 is an adjustable scalar parameter (0 < 8 < 1) and Z; is a local estimate
of the average value. ADMM is employed to solve this convex optimization prob-
lem due to its easy-to-implement aspect and also its well-studied convergence
properties in [27, 28, 29, 30].

By introducing the auxiliary variables {z;;, u;;}, the problem (11) is now
reformulated as follows:

. B+ 2, 1=B<~ )
L 52 Z lei — ¢4 JFTZ(%‘*%‘(O)) ;
i=1 jEN; i=1
s.t Ty =y, i=1,...,N, jeN,.
Ci = 2z
z;; = sign(t) U,t:(),...,h:Nfl
c; € Ci(z,).

1 if ¢ is even,
—1 iftisodd
of node i: C;(7;) = {c € RY| Q,c = 7;1}. With this scheme, the numerical
tractability of the combination of the two convex optimization problems can
be overcome, [31, 32]. Now, with some dual variables v and y, the augmented
Lagrangian is defined as:

where sign(t) = and C;(Z;) denotes by the constrained set

LP1P2 ()_(,C,;I,7Z7U7y) = LPl (C7Z7y) + LPz (}_(7/‘1’711)'

where:

N
B
Ln(e¥) = 53 ch—cg||2+2 P e, — 24

i=1j€e JEN;
+ > yiTj(Cz' - zi5),
JEN;
N
_ 1-p Pz
LP2(XHU'3'U) = T Z( - xl + Z /”LU

i=1 JEN;

+ Z Vi (Ti — pij),

JEN;

where p1, p2 are penalty terms assumed to be constant.
The iterative solution is described below:

e The average consensus value Z; minimization:

Zilk + 1] = argmin L, (Zi[k], pij[K], vij [k]). (12)

10



e The polynomial coefficients ¢; minimization:
¢; = argmin L, (c;[k], zi; k], y;; [K]), (13)
cilk + 1] = Qc, @z, k1) [€1] (14)

where Q¢ (z,(k+17)[-] stands for the projection onto the constraints set
Ci(z;[k + 1]) of the vector in argument.

e The auxiliary variables p;; minimization with the constraint j;; = pu;;:

pijlk + 1] = argmin Ly, (Z;[k + 1], piz[k], vi;[K]). (15)

The auxiliary variables z;; minimization:
z;j[k + 1] = argmin L,, (¢;[k + 1], 2i; k], y;; [k]). (16)
e Lagrange multipliers update:

vilk +1] = wvizlk] + p2(Zi[k + 1] — piz[k + 1]). (17)
Yij [k + 1] = Yij [k] +p1 (Cz[k + 1] — Zij [k + 1]) (18)

Solving the sub-optimization problems (12) and (13), we respectively get:
(1= B)zi(0) + p23 e n, Hijlkl — 3 je N, vij K]

Gilk+1] = T Bt pads ; (19)
3
& B ljen, St P12 jen, Zij — 2jen, Yij
’ d;(B+ p1) '

Then, solving the following the constrained optimization problem to obtain
the estimated coefficients c;[k + 1] = Q¢, (z,[k+1))[€i[F + 1]]. Since the constraint
is linear, we can apply the following equation to find out a feasible ¢;[k + 1]:

cilk+1] = 7,k + JQi1 + (Iy — QiQ))e&i[k + 1], (20)

with Q; = QY (Q,QF)~'. Next, solving the sub-optimization problems (15)
and (16), in the same way, yields

zilk + 1]+ 3;[k + 1] | vig[K] + vsilK]

ijlk +1] = : 21
pijlk + 1] 5 T (21)
1 .
ziik + 1] = ci[k + 1] + ;yij [k], respectively. (22)
1
Then, we project z;;[k + 1] on the sign constraint as:
Llk+1 if mod(t,2) = 0.
zfj[k—i—l] = m.ax(O,z”[ +1]) 1 mod(t,2) =0 (23)
min(0, z{;[k 4 1])  if mod(t,2) # 0.

The details of the derivation of update equations (19), (20), and (21) are given
in Appendix A

11



Since the constraint set C;(Z;) relies on the consensus value z;, hence the
parameter [ can be chosen so that the optimization procedure can initially give

more weight to the average consensus problem and then to the factorization
one. Then, ( is defined as

1—e 7k

) = 15e=n

0<vy<1) (24)

to keep it in the range [0, 1] and to increase the importance of the factorization
progressively while decreasing that of the average consensus.
The corresponding ADMM algorithm is then described as follows:

Algorithm 2 ADMM-based joint estimate of average degree and polynomial
coefficients of the factorization of the Laplacian matriz

o Inputs: Number of super-nodes N, transient measurements of the average
consensus protocol x;(p), it =1,2,--- N, p=0,1,--- ,N — 1.

o Qutputs: scaled average degree T; and polynomial coefficients vectors c;.
1. Initialization:

e Penalty parameters p1, p2, and y; vectors of random initial values for
ci[0] e RV*L i=1,...,N.

e Each agent i forms a full row rank matriz Q; with the available
transient measurements and compute Q; = Q' (Q:Q1) 1, Qi1 and
In — Q:Q;.

o k+ 0
2. Update Process:
(a) Calculate B[k] using (24).

(b) Each agent i sends a message including its local value Z;[k], and local
coefficients vector ¢;[k] to its neighbors.
Then, each agent i carries out the update process.
(¢) Update equations:
o Calculate T;[k + 1] by (19)
Calculate ¢;[k + 1] by (20).
Calculate pij[k + 1] by (21).
Calculate z;j[k + 1] by (22), (23).
Update the Lagrange multipliers v;j, y;;[k + 1] using (17), (18).
o k+—k+1;

(d) Return to 2a or stop the iterations if a stopping criterion is reached.

12



This ADMM method is guaranteed to converge for all tuning parameters
under mild condition [28]. The convergence analysis for distributed quadratic
programming has been studied deeply in [27, 33] and results therein can be
applied to our method. ADMM usually has a very good convergence speed
when its parameters are appropriately chosen. There exist some works dealing
with penalty parameter selection for accelerating the convergence rate of ADMM
[27, 34].

4.1 Laplacian eigenvalues estimation from the averaging
matrix factorization.

Let P;(co,c1,-++ ,en—1;-) be the polynomial built with the coefficients vector
c; obtained with Algorithm 2. By computing the inverses of the roots of the
P;(co,c1, - ,en—1;), that is called set A, we obtain a set A of values which
includes the D nonzero Laplacian eigenvalues. Our objective is then to find
the smallest subset of roots of P;*(cg, ¢1, -+ ,cn—1;-) such that the factorization

of the averaging matrix is still valid. Recall that the factorization is valid if
N—1

Jn = P*(co,c1,- -+ ,cn—1;L) meaning that z; = > ¢:q;(¢). We state the
=0

following proposition:

Proposition 2 Let A be the set of roots {a,} of the N** order polynomial with
coefficients vector c. o, is repeated my, times in A. We denote by Q; N—m,, the
sub-matrix of the N —m, columns of Q; and by Cn, the coefficients vector of the
(N —my,)-th degree polynomial with roots in A\ {a,}. The estimated Laplacian
etgenvalues at super-node i are given by:

1
A; = {a_Qi,N—mn,éocn =rl, a,¢€ A} : (25)

Proof: The proposed process is a leave-one-out testing process. Indeed, if one
inverse of the Laplacian eigenvalue is left out from A, the factorization process
is no longer valid, i.e. Q; N—m, Ca, # 1. B

n [35], the authors have proposed a leave-one-out method to retrieve the
non-zero Laplacian eigenvalues.

4.2 Estimation of the critical threshold

With the algorithms described above, we get the Laplacian eigenvalues, with
their multiplicities, and the average degree. We can therefore compute the
effective graph resistance. In order to compute the critical threshold we need to
compute the second order moment of the degree distribution, or a scaled one as

done for the average degree. For this purpose the finite-time average consensus

protocol [20], initialized with Qd ,¢=1,2,--- M, can be used in order to get

the second order moment of the degree dlstrlbutlon in a number of steps equal
to the number of nonzero distinct Laplacian eigenvalues. The overall process
for collaborative network monitoring includes five main steps as summarized

13



Find x(¢), t = 0,1, -+, N — 1 from the average consensus
protocol (6) and form Q;, i =1,---, N.

! v

Run Algorithm 1 to find the average degree  and
the coefficients ¢ of the Nth degree polynomial P(.)

! v

Compute the roots of P(.) and find the polynomial
of minimal degree P*(.) from the roots of P(.), Q; and Z.

Y v

Deduce A the Laplacian eigenvalues as the inverse of
the roots of P*(.). Compute the multipilities m by
solving (4) and compute the Kirchhoff index (3)

Run a finite-time average consensus initialized with the
second order moments of the subsets. And then deduce the
criticial threshold (2).

Figure 2: Functional architecture of the proposed collaborative network moni-
toring scheme.
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in Fig. 2. The two first steps need the collaboration between the super-nodes
while the two subsequent steps are purely local using consensus values of the
average degree and of the polynomial giving rise to the factorization of the
average matrix. The last one needs also collaboration to compute the second
order moment of the degree distribution.

5 Simulation Results

In this section, we consider a large network G*(V*, E*) partitioned into 6 dis-
joint sub-networks. Here, the network can be social network, power system
network, molecular network, etc.. Each sub-network has only one super-node.
These super-nodes interact to each other by a new graph G(V, &), showed in
Fig. 3. The parameter of each super-node can be various to estimate the Kirch-

E )
GEo®o

Figure 3: A new network constituted by 6 super-nodes

hoff index. However, with the purpose of the critical threshold estimation , it
is chosen to be each average degree of each sub-network, dy. It can be easily
executed by a finite-time average consensus protocol in [20].

The parameters of each super-node are given as in Table 1.

Table 1: Parameters of given super-nodes

Super- 1 2 3 4 5 6
node
fraction 1/12 | 1/12 | 1/6 | 1/12 | 1/6 | 1/6
of nodes
€¢
average 10.08 | 9.12 3.6 2 3.18 | 2.76
degree dy
Let define the initial information state at time ¢t = 0: z;(0) = %, =

1,2,---,6 and M; = 1 , hence x[0] = {0.84,0.76,0.6,0.1667,0.53,0.46}.

5.1 Original topology

One thing to note is that, in [18], the authors have carried out the comparison
between ADMM-based method with two other methods to infer that ADMM-
based method is the fastest method. Therefore, in this section, we just focus
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on the performance of the proposed procedure and the choice of v to reach the
better solution.

The set of nonzero distinct Laplacian eigenvalues is A = {2,4, 6} and we will
compare with the output of the Algorithm 2 to validate the Algorithms.

According to proposed Algorithm 2, the super-nodes have to achieve agree-
ment on the values of the polynomial coefficients ¢; and that of the average
consensus value Z, which is also the first order moment of the degree distribu-
tion, simultaneously.

5 5
o 1008 //\\ — -
© 13644 P
-
5 -5
10° 10t 102 10° 10t 102
Iterations Iterations
10 5
~ 40277 | = o \
-3.2197 \>*\ -
-10 -5
10° 10t 102 10° 10t 102
Iterations Iterations
2 0.1
0.8513} f—— \
< /\ I7e) \
© o
007021 B
-2 -0.1
10° 10t 102 10° 10t 10?
Iterations Iterations

Figure 4: Nodes trajectories for the estimation of the coefficients ¢;.

Fig. 4 and Fig. 5 depict the trajectories of the nodes for the estimation of the
coefficients ¢; ;,t = 0,..., N — 1, and that of the consensus value z. Moreover,
the average consensus value is obtained much more faster than the common
values of the coefficients c¢;.

Fig. 6 describes the performance in terms of the mean square error between
the estimated values and the actual values for the polynomial coefficients c; and
the average degree T; as:

where Z, ¢ stand for the actual average consensus value and actual polynomial
coeflicients respectively.
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Figure 5: Nodes trajectories converging to the average of the initial condition.

Fig. 6 indicates the performance in terms of MSE., MSE, with respect
to the variation of B(k). As can be seen from this Figure that when ((k) is
near to 0, the convergence speed of the average consensus problem is shown to
converge faster. However, when §(k) tends to 1, the performance in terms of
MSE,. becomes faster. Table 2 depicts the results obtained for three values
of . The choice of this parameter affects mainly the convergence speed of the
algorithm. The Kirchhoff index is obtained after deploying Proposition 2 and
Algorithm 1. Moreover, with the same choice of penalty parameter p = 0.1 and
threshold (stopping criterion), all of the solutions of the polynomial coefficients
¢t give the same assessment of the network robustness. Regarding to the speed
of the convergence, v = 0.1 seems to be the good choice in this example. We
can see that, with v = 0.1, the procedure is implemented with the fastest rate.

After achieving the Laplacian spectrum sp(L), we can calculate the critical
threshold f. of the graph by applying a finite-time average consensus protocol
again to define the second order moment of the degree distribution (1).

6 _
1 €gd2
<k®>= N = 347
1
fo= 1- 37— ;= 081
0.5595

One thing to remark here is that a high value of f. means that a higher
fraction of nodes have to be removed to disconnect the giant component of the
network. If f. = 1, meaning that we have to remove all of its nodes to fragment
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Figure 6: Mean square error between the estimated values and actual values
with respect to ¢; (MSE,.) and Z; (MSE,).

Table 2: The achievement of the proposed algorithms with respect to the vari-
ation of ~y

v 0.0  ]0.06 0.1 | 05
A {2,4,6}
c 1 1.0003 [ 1.0008 [ 1.0609

-0.8386 | -1.3564 | -1.3644 | -0.9959
5.0498 | 4.3846 | 4.0277 | 2.4466
-4.4667 | -3.5514 | -3.2197 | -2.0079
1.2162 | 0.9421 0.8513 | 0.5405
-0.1015 | -0.0777 | -0.0702 | -0.0450

Tterations| 1104 215 143 235
m {1,2,2}

Ri 8

I 0.81
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the large network.

With this topology, the network G*(V*, E*) is robust since the sub-graph
G(V,E) is so-called strongly connected as well as the f. is high enough. How-
ever, the f. obviously depends only on the two first moments of the degree
distribution, then if the topology of the sub-graph G(V, £) is changed, then the
robustness of the large network have to be assessed again. Since, My = 1, the
we can neglect the influence of the modification of the sub-graph’s topology on
the f.. Now, let see the change of the robustness index in unexpected cases in
the same context.

5.2 A Vulnerable topology
Figure 7: A tree-topology of 6-super-node network

Fig. 7 shows the case that just one arbitrary communication link is removed,
then the connection of the large network is breakdown into independently sub-
networks.

Theoretically, the Laplacian spectrum of this kind of topology is {0,0.2679, 1, 2, 3,3.7321}.
Now, let see how the proposed procedure works via Table below.

Table 3 is obtained after executing the proposed procedure.

Table 3: The achievement of the proposed procedure in the sense of a-tree
topology

¥ 0.1

A {0.2679,1, 2, 3,3.7320}

ct {0.9999; —5.8278; 9.3245; —5.9943; 1.6651; —0.1665}
m {1,1,1,1,1}

R 35

The performance of the proposed Algorithms is described by Fig. 8 and
Fig. 9. As can be seen that if the robustness index is smaller than 35, then
the connection of the graph is still acceptable to ensure the performance of the
system. We can see it in the next case.
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Figure 8: Nodes trajectories for the estimation
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Figure 9: Nodes trajectories converging to the average of the initial condition.

Figure 10: Network topology losts 5 links
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5.3 Lost-five-link topology

Run the procedure and calculate the robustness index. Table 4 illustrates the
result of the monitoring procedure. Theoretically, the eigenvalue of this topology
is {0,1,1,3,3,4}.

Table 4: The achievement of the proposed procedure in sense of a-circle topology

¥ 0.1

A {1,3,4}

e | {1,—1.1519,1.7715, —2.6268,1.1561, —0.1490}
m {2,2,1}

Ry 17.5

And, we can see from the Table 4 that, the new robustness index is still in
the safety zone (Ry,j35), that mean all nodes are still connected. The closer
to 35 Ry, is, the less robust the large network is. However, if this topology is
continuously lost one more link, then, it becomes a vulnerable topology. Then,
it is necessarily to be considered to be improved.

6 Conclusion

In this paper, we have proposed a collaborative scheme for monitoring a large
network which is already organized into sub-networks. Schematically, the pro-
cess is divided into five main steps. The first two steps require the collabora-
tion between super-nodes of corresponding sub-networks. Precisely, an ADMM-
based algorithm is to perform the factorization of the averaging matrix and to
compute the average degree of the network concurrently. In more detail, the
factorization of the averaging matrix results on the estimation of a polynomial
whose set of roots includes the inverses of Laplacian eigenvalues. Then a linear
programming allows estimating the multiplicities of the Laplacian eigenvalues
which are used for the computation of the Kirchhoff index. Through estimating
the second order moment of the degree distribution, the critical threshold can
be inferred. The proposed approach can easily be extended when one desires to
estimate also the degree distribution of the overall network. In the future works,
we intend to consider imperfect data exchanges for a more realistic scenario.

A Derivation of update equations

A.1 Update of the average value (19)

Setting to zero the derivative of L with respect to Z;:
JL,, _ _
25 = (1= 0)(@i —2:(0)) + > v+ > pa(Ti — pij) =0
K3

JEN; JEN;
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& (1= 0+ padi)Zi = (1= 0)ai(0) + p2 > paj — >, vij

JEN; JEN;
_ (1= 0)zi(0) + p2 2 e N, Hislk] — 22 e N, viilK]
== a:l[k:—l—l]: 170+p2d'

A.2 Update of the polynomial coefficients (20)

Setting to zero the derivative of L,, with respect to c;:

0
3121 :HZ(Ci_Cj)+ Zyij+ Zpl(ci_zij)zo

JEN; JEN; JEN;

0> jen, Ci P jen: Zij — 2jen: Yij
di(0+ p1)
In order to compute the projection,we know that:

<:>(A:i:

Qc,[¢i] = arg min %”c2 — &2
c;€RN i=1,...,N
st Qe =31, Q€ RN,

The Lagrangian is defined as follows:
1 . _
L(e,y) = gllei = &l* + ¥ (Qiei — 2:1).
Following the KKT (Karush-Kuhn-Tucker) condition, we have to solve:
VciL(Ci,y) =0.
VyL(ci,y) =0.
Let solve (27) first:
ci—&+Qly=0 & ¢=¢-Qly
Then, we substitue c¢; into (28):
Qici —zl=0& Q& —Qfy) =zl
© Q& -QQly=u1ey=(QQ]) Qe — 1)
Now, we substitute (30) into (29), we get:
e =& — Q(QQ)) Qe — 71)
& o=&-Q/(QQ) Qe+ QN (Q,Q)) 1l
e ¢ =(Iy-Q (QQ) Q)& + Qf (Q,Qf) 'zl
or equivalently,
cilk + 1] = Qi(@i[k + 1]11) + (T4 — QiQ)eé: [k + 1],
with Q; = Q7 (Q,Q) ™"
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A.3 Update of the auxiliary variables (21)

Setting to zero the derivative of L, with respect to y;;, and taking into account
the constraint p;; = pj;:

OL
P2 = —vjj —vji — pa(Ti + Tj) + 2p2p1i5 = 0
Optij
o gl 1) = FEE BB bl
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