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Full Order Observer with Unmatched Constraint: Unknown
Parameters Identification

M. Fouka, L. Nehaoua, H. Arioui and S. Mammar, Senior Member, IEEE

Abstract— This paper concerns both state estimation and
parameters identification for linear system with unmatched
unknown parts. It deals with a full order delayed unknown
inputs observer (DUIO), in which, the time delay concept is
investigated to define a new augmented dynamic system includ-
ing delayed state and output vectors. This estimation approach
allows to recover the matching condition which can appear in
the observer design problem. The resulting observer has been
improved, from the restrictive decoupling condition point of
view to guarantee the estimation of state and parameters with
asymptotic convergence. Finally, a simulation example based on
parametric identification is provided to highlight the feasibility
of the suggested method.

I. INTRODUCTION

The growing need of safety and reliability in many active
research areas: control design, process identification and fault
detection, has given rise to serious open questions related
to estimation problem which can bring undesirable effect
on the fulfillment and performance of controlled systems.
Throughout the last half century, estimation theory has
continuously evolved since the state Luenberger’s observer,
for linear systems [1], to recent state and unknown input
observers (UIO) for nonlinear systems [2]. It is commonly
known that a physical system may include unknown parts
and subjected to various intrinsic parameters and external
perturbations. Designing a virtual sensor for these systems
has got significant consideration.

In [3], a reduced-order, minimal-order and full-order ob-
servers for a class of nonlinear singular systems have been
presented, where the necessary and sufficient conditions for
the existence of the observer are established. A finite-time
state observer for linear time invariant systems, is presented
in [4] under the condition of strong observability and the
knowledge of an upper bound of the unknown inputs. A
new formulation of such observer, by introducing high order
sliding mode, is exposed in [5] where, the sufficient and
necessary conditions of strong observability and detectability
are formulated in the terms of the system relative degree
with respect to unknown inputs. In addition, an extensive
use of polytopic and Takagi-Sugeno representation is un-
dertaken, which gives rise to an ease transposition of the
over-mentioned observation techniques for nonlinear systems
[6]. In [7] the author presented an observer-based fuzzy
adaptive event-triggered control studied for a class of pure-
feedback nonlinear systems. Fuzzy logic systems are adopted
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to approximate unknown smooth functions and a fuzzy state
observer is designed to estimate unmeasured states. We
appreciate the contribution provided in this paper. This paper
is considered as a reference on observer design for general
nonlinear systems.

Withal these approaches, several open topics need more
thorough investigations as for structural constraints [8]. In
almost real systems subjected to unknown inputs, param-
eters and/or disturbances, the matching condition does not
hold every time [9]. Overall, research on the problems of
mismatched rank condition can primarily be decomposed
into two categories: the first one deal with compensation
strategies for the effects of unknown model uncertainties and
external disturbances, based on motion control systems [10].
The disturbance observer-based control is a practical method
in a closed-loop system to compensate matched disturbances.
However, it is sensitive to mismatched ones. Alternative
methods are proposed based on control framework for pertur-
bation attenuation with unsatisfied matching condition [11].
However, the unmatched unknown part is supposed to be
constant, which is restrictive and not always satisfied in real
systems. Another set of research is devoted to estimation
problem with unmatched unknown inputs [12], considering
auxiliary outputs, derived from high-order differentiators of
outputs. The effectiveness of using high order sliding mode
to overcome the restriction of the matching condition has
been proven for various applications mainly for mechan-
ical systems [13]. Nevertheless, to our best knowledge,
the convergence of this approach jointly with a parametric
identification algorithm needs more deep exploration [14]. In
this context, the observer matching constraint is a challenging
issue. The main idea of this paper is to propose a new
design for the unknown input observer (UIO) to handle
the case where all unknown inputs are not decoupled. Our
aim is not only to estimate unknown inputs, as in the case
of classical UIO, but also to simultaneously identify some
system’s parameters of interest. The main contributions are:

• An observer-based parametric identification is proposed.
• The proposed observer allows the simultaneous identi-

fication of a set of constant parameters without using a
third-party classical identification algorithm.

• A more relaxed method to satisfy rank condition since
it uses time delayed states rather than a third-party
differentiators which add more restrictive condition to
ensure convergence.

• The proposed observer gives a general framework to
define a step by step algorithm for DUIO observer.



The remainder is organized as follows. In the next section,
a class of systems and the problem statement are introduced.
A technical concept based delayed states and outputs vectors
is given in section III, to define an augmented model.
Section IV, is devoted to the main contribution of the paper,
namely the delayed unknown inputs observer design and
the convergence analysis. In section V, the effectiveness of
the proposed observer is highlighted via simulation results
involving a robustness test. Finally, some concluding remarks
are given in section VI.

II. PROBLEM STATEMENT

Consider the following continuous Linear Time-Invariant
(LTI) system with a part affine to unknown parameters:{

˙̄x(t) = Āx̄(t)+ B̄ū(t)+ D̄ȳθ

ȳ = C̄x̄(t) (1)

where x̄(t) ∈Rn is the state vector of the system, ū(t) ∈Rnū

be the input vector and ȳ(t)∈Rnȳ the measured output vector,
and θ ∈ Rnθ represents the constant unknown parameters
θ̇ = 0. The matrix D̄ȳ = D̄(ȳ) ∈ Rn×nθ represents a time-
varying dynamics of the plant. The matrices Ā ∈ Rn×n, C̄ ∈
Rnȳ×n and B̄ ∈Rn×nū are considered constants. Without loss
of generality, one consider that rank(C̄) = nȳ and rank(D̄ȳ) =
nθ , ∀ȳ ∈ ∆, where ∆ defines hyper-rectangles:

∆∆∆ =
{

ȳ, ˙̄y ∈ Rnȳ | ȳimin ≤ ȳi ≤ ȳimax , ˙̄yimin ≤ ˙̄yi ≤ ˙̄yimax } (2)

The observer design approach is based on the existence
of the left inverse matrix, called decoupling matrix, to
make possible the reconstruction for the unknown input
[4]. In other words, this condition imposes that the number
of unknown parameters must be less than the number of
system’s outputs. The rank condition is given as following:

rank(C̄D̄ȳ) = rank(D̄ȳ) (3)

Also, we have (C̄D̄ȳ) ∈ Rnȳ×nθ and (D̄ȳ) ∈ Rn×nθ . By com-
puting the rank of each part we have:

rank(D̄ȳ) = min(n,nθ ) = nθ (4)
rank(C̄D̄ȳ) = min(nȳ,nθ ) = nȳ (5)

If nθ > nȳ then the rank condition is not fulfilled which is
the case of the original system: rank(C̄D̄ȳ) 6= rank(D̄ȳ).
To overcome this restriction, the original system must be
augmented by introducing auxiliary outputs. Almost methods
use differentiators to get a successive time-derivatives of the
original system’s outputs. In our method, a more relaxed
approach is proposed by taking the time- delayed outputs of
the original system’s to fulfill the previous rank condition.

Throughout this paper, let us adopt the matrices notation
∗ȳ = ∗(ȳ(t)), ∗ȳ, ˙̄y = ∗(ȳ(t), ˙̄y(t)), and ∗τi = ∗(t− τi), ∗ȳτi

=
∗(ȳ(t−τi)), where τi is a constant delay. 0p×q is null matrix
of p lines and q column and Ip×q stands for an identity
matrix of p lines and q column and R represents the set of
real numbers.

III. AUGMENTED STATE SPACE

This section concerns the modelling transformation to
break out with the rank condition related to mismatched
unknown part. An augmented system is considered by in-
cluding delayed states and outputs dynamics. Considering
delays τi (1 ≤ i ≤ m), the output vector ȳ and ȳτ exist, an
augmented model is constructed with a new state, input and
output vectors x(t), u(t) and y(t):

x = [ x̄T x̄T
τ1

x̄T
τi

... x̄T
τm ]T

y = [ ȳT ȳT
τ1

ȳT
τi

... ȳT
τm ]T (6)

u = [ ūT ūT
τ1

ūT
τi

... ūT
τm ]T

where τi is the ith time delay, and i represents the number of
sub-systems to add. The parameter m is an integer computed
using the following condition:

nθ

nȳ
−1≤ m <

nθ

nȳ
(7)

where m represents the number of set of auxiliary outputs to
add in order to recover the unmatched condition.
The augmented state-space system is given by:{

ẋ(t) = Ax(t)+Bu(t)+Dyθ

y =Cx(t) (8)

where,

A =


Ā 0n · · · 0n
0n Ā · · · 0n

...
...

. . .
...

0n 0n · · · Ā

B =


B̄ 0n×nū · · · 0n×nū

0n×nū B̄ ... 0n×nū
...

...
. . .

...
0n×nū 0n×nū · · · B̄



Dy =


D̄ȳ

D̄ȳτ1
...

D̄ȳτm

C =


C̄ 0nȳ×n · · · 0nȳ×n

0nȳ×n C̄ · · · 0nȳ×n

...
...

. . .
...

0nȳ×n 0nȳ×n · · · C̄



where, A ∈ R((m+1)×n)×((m+1)×n), B ∈
R((m+1)×n)×((m+1)×nū), Dy ∈ R((m+1)×n)×nθ and
C ∈ R((m+1)×nȳ)×((m+1)×n). System (8) is a straightforward
generalization to satisfy the matching condition.

A. Geometric conditions of rank matrices
Considering the original system’s defined in (1), such that: nȳ < n

rank(C̄) = nȳ and rank(D̄ȳ) = nθ

nȳ < nθ → rank(C̄)< rank(D̄ȳ)
(9)

Therefore,

rank(C̄D̄ȳ)≤min(rank(C̄), rank(D̄ȳ)) = nȳ < nθ (10)

In this case, the observer rank condition is not satisfied,
rank(C̄D̄ȳ) 6= rank(D̄ȳ). The original system is augmented
with both the model dynamics and m additional delayed
state vectors, defined so that the observer matching condition
is met. Therefore, the system’s dimension, with respect to
equation (7), is as follow: rank(C) = (m+1)nȳ

nθ ≤ (m+1)nȳ < (m+1)n
rank(Dy) = min((m+1)n,nθ ) = nθ

(11)



Also:

rank(CDy)≤min(rank(C), rank(Dy)) = min((m+1)nȳ,nθ )

⇒ rank(CDy)≤ nθ (12)

One can notice that the matrix rank(Dy) = rank(D̄ȳ) = nθ

keep the same number of column because of: dim(θ) = nθ

is constant on the original and augmented models. Knowing
that the decoupling matrix CDy has non collinear rows, such
that (nθ ≤ (m+1)nȳ). The idea is to enhance the rank of the
decoupling matrix in the augmented model such that nθ ≤
(m+1)nȳ, to fulfilled the matching condition imposed by the
observer, it implies:

rank(CDy) = min((m+1)nȳ,nθ ) = nθ = rank(Dy) (13)

B. Observability Analysis

The state and parameter reconstruction problem is closely
linked to the problem of observability, as shown in [15].
Therefore, we recall some important definitions about strong
observability and strong detectability of systems with un-
known parameters. Consider the following system with x(t)
is the state vector, u(t) is the known inputs vector, θ the
unknown parameters vector and y(t) is the measurements
vector: {

ẋ(t) = f (x(t),u(t),θ)
y(t) = h(x(t),u(t),θ) (14)

Definition 1: [16] For every initial condition x(0), any
known input u(t) and any couple of unknown parameters
(θ , θ̄ ), the system (14) with two different trajectories x(t)
and x̄(t) is called:
• state and unknown parameters strongly observable: if

y(t,x(t),u(t),θ)= y(t, x̄(t),u(t), θ̄) implies that: x(t) =
x̄(t) and θ = θ̄ .

• state and unknown parameters strongly detectable: if
y(t,x(t),u(t),θ)= y(t, x̄(t),u(t), θ̄) implies that: x(t)→
x(t) and θ → θ as t→ ∞.

Definition 1 concerns the state and parameters observabil-
ity or detectability. The unknown parameters observability
(detectability) relates to the possibility of reconstruct the
unknown part uniquely infinite-time (asymptotically) having
as information the known inputs and outputs.

Assumption 1: Augmented system (A,Dy,C) is assumed
to be uniformly strongly observable (Definition 1).

IV. OBSERVER DESIGN

The problem of Full Order Delayed Unknown Input Ob-
server (DUIO) design can be stated as follows:{

ż(t) = Ny,ẏz(t)+Ly,ẏy(t)+Gyu(t)
x̂(t) = z(t)−Hyy(t) (15)

where, x̂ and ŷ are the estimated state and the output vector,
respectively. The matrices Ny,ẏ ∈ R((m+1)×n)×((m+1)×n),
Ly,ẏ ∈ R((m+1)×n)×((m+1)×nȳ), Hy ∈ R((m+1)×n)×((m+1)×nȳ)

and Gy ∈R((m+1)×n)×((m+1)×nū) are parameter varying, well-
posed to satisfy a stable asymptotic convergence of the esti-
mation error dynamics. The proposed estimation approach is

taken under the fulfilled matching condition in the augmented
model.

Definition 2: The DUIO observer is called asymptotically
stable if the observer error x̃(t)= x(t)− x̄(t) converges to zero
when t→∞ : lim

t→∞
x̃(t) = 0. Indeed, the continuous-time error

dynamics satisfies ˙̃x(t) = Ny,ẏx̃(t) when the matrix Ny,ẏ has
all the eigenvalues inside the unit circle (i.e Ny,ẏ Hurwitz).
Assume that there exists a matrix Py defining as Py =
I(m+1)×n +HyC. Now, from the augmented model (8) and
DUIO (15), one can easily prove that the state estimate error
x̃ = x− x̂, is given by:

x̃ = Pyx− z (16)

The derivative of the state estimation error yields:

˙̃x = Ṗy,ẏx+Pyẋ− ż

= Ny,ẏx̃+(Ṗy,ẏ +PyA−Ny,ẏPy−Ly,ẏC)x

+ PyDyθ +(PyB−Gy)u (17)

Obviously, if the ordinary differential equation of esti-
mation errors is defined as ˙̃x(t) = Ny,ẏx̃(t) with, Ny,ẏ is
a Hurwitz matrix. Therefore the designed estimator can
proceed to ensure asymptotic estimates for system states.
Let us now establish the following specified conditions for
the asymptotic convergence:
(i) Ṗy,ẏ +PyA−Ny,ẏPy−Ly,ẏC = 0.

(ii) PyDy = 0
(iii) PyB−Gy = 0.

Substituting these conditions into (17). The estimation
error dynamics will be reduced to:

˙̃x(t) = Ny,ẏx̃(t) (18)

The observer gains that satisfy the convergence conditions,
can be obtained by the following steps:
• Knowing that Py = I(m+1)×n +HyC, condition (ii) leads

to:

PyDy = 0⇔Hy =−Dy
[
(CDy)

T (CDy)
]−1

(CDy)
T (19)

• After computing Hy, one obtain:

Py = I(m+1)×n +HyC (20)

• From condition (iii), one has:

Gy = PyB (21)

Note that the matrices Hy, Py and Gy are determined
from the model matrices Dy and C.

• From condition (i), Ny,ẏ can be expressed as:

Ny,ẏ = Γy,ẏ−Ky,ẏC (22)

where,

Γy,ẏ = Ṗy,ẏ +PyA, Ky,ẏ = Ny,ẏHy +Ly,ẏ (23)

Therefore, the dynamical estimation error becomes:

˙̃x(t) = (Γy,ẏ−Ky,ẏC)x̃(t) (24)



A. Polytopic form

The Takagi-Sugeno (TS) representation is undertaken [6],
giving rise to an ease transposition of the over-mentioned
time varying matrices. It will be assumed that, the premise
variables y, ẏ ∈ ∆∆∆ are real-time accessible. The 2nȳ non-
linearities related to y, ẏ ∈ ∆∆∆ are captured via membership
functions ηi(.), which have the convex-sum property in the
compact set of the state space:

r

∑
i=1

ηi (y, ẏ) = 1, 0≤ ηi (y, ẏ)≤ 1 (25)

While r = 22nȳ is the number of the sub-models.
The TS representation is considered only for defining

the Linear Matrix Inequality (LMI) at the end, in order to
compute the observer gains. Then, one obtains the polytopic
exact forms:

Γy,ẏ =
r

∑
i=1

ηi(y, ẏ)Γi , Ky,ẏ =
r

∑
i=1

ηi(y, ẏ)Ki (26)

where, Γi and Ki are constant matrices. From this repre-
sentation, the gain matrices Ly,ẏ and Ny,ẏ can be defined as:{

Ny,ẏ = ∑
r
i=1 ηi(y, ẏ)Ni, Ni = Γi−KiC

Ly,ẏ = ∑
r
i=1 ηi(y, ẏ)Li, Li = Ki−NiHi

(27)

Consequently, the polytopic transformation of the known
matrices leads to the following state estimation error dynam-
ics:

˙̃x(t) =
r

∑
i=1

ηi(y, ẏ)(Γi−KiC) x̃(t), i ∈= 1,2, ...,22nȳ (28)

B. Convergence analysis

The stability analysis of the estimation problem has high-
lighted significant connections with Lyapunov theory. The
following theorem is given to define the LMI conditions of
the existence of the observer.

Theorem 1: The full order delayed unknown input ob-
server (15) for the augmented model (8), guaranties the state
estimation convergence, if there exists a symmetric positive
definite matrix Q ∈ R(m+1)n×(m+1)n defining a Lyapunov
function V (x̃) > 0, such that V̇ (x̃) < 0, ∀x̃(t) 6= 0. Hence,
the following linear matrix inequality holds:(

−Q 0
0 ΓT

i Q+QΓi−CT Ri
T −RiC

)
< 0 (29)

Proof 1: The observer gains are selected so that Ni is
a Hurwitz matrix, based on the stability analysis of the
Lyapunov theory. Now, consider that there exists a positive
definite matrix function Q = QT > 0 ∈ R((m+1)×n)×((m+1)×n)

such that a quadratic Lyapunov function is defined to analyse
the asymptotic convergence of the dynamical error, as follow:

V (x̃) = x̃T Qx̃ (30)

Taking time derivative of V (x̃) along the error dynamics
yields:

V̇ = x̃T

(
r

∑
i=1

ηi(y, ẏ)
(

Γ
T
i Q+QΓi−CT Ki

T Q−QKiC
))

x̃ (31)

Note that V̇ < 0, implies that the estimation error x̃(t) tends
to zero asymptotically for any initial value x̃(0). It follows
that the bilinear matrix inequality (BMI) holds:

Γ
T
i Q+QΓi−CT Ki

T Q−QKiC < 0, Q = QT > 0 (32)

One note that the inequality (32) is bilinear with respect
to the unknown matrices Q and Ki. The solution of this
matrix inequality is quite different. To solve this problem,
one can consider the following change of variable: Ri = QKi.
Therefore, the following linear matrix inequality holds:

ΓT
i Q+QΓi−CT Ri

T −RiC < 0 (33)

Thus, from the Lypunov stability theory, if the LMI condition
(29) is satisfied, the system (15) is exponentially asymptoti-
cally stable. This completes the proof of Theorem 1.

C. Parameters estimation
In this subsection, the unknown parameters are identi-

fied by considering the derivatives of the output vector of
equation ŷ = Cx̂. By algebraic inversion of the derivatives
equation, one can reconstruct unknown parameters vector θ̂

from the estimation of the state vector and output derivatives,
as follow:

θ̂ =
[
(CDy)

T (CDy)
]−1

(CDy)
T ( ˙̂y−CAx̂−CBu

)
(34)

However, the feasibility of this inversion is conditioned by a
convenient selection of the time delay to fulfil rank condition.
Then, parameters identification is done in two steps. In the
first step, the state vector are estimated from the equation of
DUIO (15) while, the parameter vector is identified in the
next step, by substituting output derivatives in the inversion
model (34). Where, the parameter estimation error is defined
as:

eθ = θ − θ̂ =−
[
(CDy)

T (CDy)
]−1

(CDy)
TCAx̃ (35)

From (35), it is easy to show that the convergence of θ̂

towards θ is ensured from the asymptotic stability of state
estimation errors x̃(t) under suitable persistence excitation.

Let us reformulate the excitation conditions ensuring pa-
rameter convergence of the estimates θ̂ towards θ .

Definition 3: The Persistent Excitation Condition is ob-
tained if there exist c1i j , c2i j and c3i j for i, j = 1, ...,q, such
that for all t the following inequality holds [17]:

c1i j I ≤
∫ t0+c3i j

t0
D̄ȳτi

D̄T
ȳτ j

dt ≤ c2i j I ∀i, j = 1, ...,q

The design procedure of the DUIO observer can be
summarized in the following design Algorithm 1.

V. MOTIVATING EXAMPLE

In this section, an example is proposed to illustrate the
estimation performance of DUIO observer. Consider the
following matrices for the LTI system (1):

Ā =

 −30 12 −20
−50 −13 0
10 2 −14

 , B̄ =

 1.5
0
2

 , (36)

C̄ =

[
1 0 0
0 1 −2

]
, D̄ȳ =

 y2 0 0
0 0 y1
0 y1 y2

 , θ =

 θ1
θ2
θ3





Algorithm 1 Observer design procedure
1: procedure DUIO
2: Check if system (A, Dy, C) is observable or detectable. If

so, go to Step 3; Otherwise, stop.
3: Check the decoupling conditions :
4: if rank(C̄D̄y) = rank(D̄y) ∀y ∈ ∆∆∆ hold then:
5: m = 0, go to step 11.
6: end if
7: if rank(C̄D̄y) 6= rank(D̄y) then:
8: Find the minimum integer (m)← according to (7).
9: Find the augmented matrices A,B,C,D in (8), go to the

next step;
10: end if
11: Compute matrices Hy in (19), Py in (20) and deduce the

matrix Gy in (21).
12: Compute the matrix Ṗy,ẏ and deduce Γ = PyAy + Ṗy,ẏ in

polytopic form (23 and 26).
13: Solve the LMIs in (29) for the variables Q,Ri such that Ni

is Hurwitz.
14: Compute Ki = Q−1Ri which gives the matrix Ky,ẏ.
15: Deduce Ny,ẏ = Γ− Ky,ẏC and Ly,ẏ = Ky,ẏ − Ny,ẏHy from

equation (32).
16: Construct observer (15) and get the estimations of state x̂(t).
17: Estimate the parameters θ̂ by a simple dynamic system

inversion in (34).
18: end procedure
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Fig. 1. Input-Estimation Errors- Parameters convergence. The con-
vergence is compared with RMS = (0.0731,0.2165,0.0150), MSE =
(0.0053,0.047,2.236.10−4).

For this given example, it is easy to verify that observer
existence rank conditions is not fulfilled for the original
system (36): rank(C̄D̄ȳ) = 2 6= rank(D̄ȳ) = 3, ∀(y1,y2) 6=

0 10 20 30
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0

1
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-6
-4
-2
0
2

0 10 20 30
-0.05

0

0.05

Fig. 2. State Estimation: Actual state (red) their estimates (blue)

(0,0). It means the output vector is less than the unknown
parameters: (nȳ,nθ )=(2,3).
The original system is augmented with m = 1 delay in equa-
tion (8). Taking time delay τm leads to dim(y = [ȳ, ȳτm ]) =
4 > dim(θ) = 3. One get: Cy =

[
C̄,0;0,C̄

]
, Dy =

[
D̄ȳ; D̄ȳτm

]
.

Therefore, the rank condition is fulfilled: rank(CDy) =
rank(Dy) = 3. The design of the DUIO observer has been
achieved by considering the optimization problem under LMI
constraints. Thus, the solution of theorem (29) is computed
by using the procedure Yalmip of the Matlab LMI Toolbox
[18]. Due to space limitation the observer gain are not
given. Since asymptotic convergence, unknown parameters
are estimated from model inversion 34 assuming that all
the states are available (either measurable or estimated).
The initial condition are: x̄0 = x̄τm0

= [0,0,0]T , ˆ̄x0 = ˆ̄xτm0
=

[0.75,−3,0.15]T , τm = 0.5(sec).

A. The noise-free case

The first case is studied to illustrate the estimation per-
formance and to corroborate the theoretical results obtained
through the convergence analysis carried in the above sec-
tions. In this case, the input vector u(t), state estimation
error x̃(t) and the convergence of the estimated parameters,
compared to nominal values are presented in Fig.1. the
variations noted in the proximity of the time origin are due
to the initial conditions of the observer which have been
arbitrarily chosen. Fig. 2 compares the states reconstructed
by the DUIO observer with the corresponding states of sys-
tem. The observer states starts from the initial condition and
converge to the system state, the quality of the reconstruction

is highlighted under RMS =

√
∑

n
i=1(x(i)−x̂(i))2

n and MSE =

mean(∑n
i=1(x(i)− x̂(i))2) to illustrate the convergence in the



estimated states. The simulation results show that, the DUIO
observer rapidly and accurately estimates the state of the
model even if initial conditions are not the same. Moreover,
parameters estimations lead to a peaking phenomenon in
which initial estimator error can be prohibitively large, then,
these parameters converge to true value after peaking has
subsided. As a consequence, with small initial conditions,
observer converge quickly to brings the estimated state’s
error to zero in small time.

B. The noisy outputs case

During the design process of the observer, no perturbation
was considered. In order to simulate practical situations, one
considers the system affected by noise to test the robustness
of the estimation approach. The outputs issued from the
simulation of system are corrupted by additive noise bounded
by a ratio around of 5%. Figure (3) shows the error in the
estimated state, and the parameters convergence, both figures
exhibit noisy case. Notice that the unknown parameters in
figure 3 are estimated with a good way even if we considered
perturbed measures. One can remove the noise effect in
parameters with a simple low-pass filter. Simulation result,
shows that the DUIO observer is robust enough to handle
the noisy case.
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Fig. 3. The noise-corrupted case

Summarizing this section, the estimation approach gives
a solution even if the decoupling matrix is not of full
rank in the original system. It can be appreciated that the
observer performs as expected and the state errors reach
zero asymptotically. This result proves the reliability of the
approach to reconstruct unmeasured states and identify the
unknown parameters.

VI. CONCLUSIONS

The paper shows some significant features, to discuss
how a failed decoupling condition, can be recovered using
augmented model and time delay concept, with a specific
characterization of the system matrices. Based on these
last, a step by step algorithm is developed to design the

DUIO observer. Different from existing results, the pro-
posed observer gives a general framework for observer-
based parameters identification with arbitrary relative degree
with respect to unknown parameters. The simulation results
are quite promising to prove that the estimation approach
provides an interesting solution for state reconstruction and
parameters identification.
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