S. P. Cuellar-bermudez, I. Aguilar-hernandez, D. L. Cardenas-chavez, N. Ornelas-soto, M. A. Romero-ogawa et al., Extraction and purification of highvalue metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins, Microb Biotechnol, vol.8, issue.2, pp.190-209, 2015.

M. A. Gomaa, A. Abed, and R. , Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products, J Appl Microbiol, vol.121, issue.4, pp.919-931, 2016.

H. El-arroussi, R. Benhima, I. Bennis, N. El-mernissi, and I. Wahby, Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress, Renewable Energy, vol.77, pp.15-19, 2015.

A. Maadane, N. Merghoub, T. Ainane, H. El-arroussi, R. Benhima et al., Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content, Journal of biotechnology, vol.215, pp.13-19, 2015.


G. Markou and E. Nerantzis, Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions, Biotechnol Adv, vol.31, issue.8, pp.1532-1542, 2013.

V. Mimouni, L. Ulmann, V. Pasquet, M. Mathieu, L. Picot et al., The potential of microalgae for the production of bioactive molecules of pharmaceutical interest, Curr. Pharm Biotechnol, vol.13, issue.15, pp.2733-2750, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01248050

A. K. Minhas, P. Hodgson, C. J. Barrow, and A. Adholeya, Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids, p.546, 2016.

K. Skjånes, C. Rebours, and P. Lindblad, Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process, Crit Rev Biotechnol, vol.33, issue.2, pp.172-215, 2013.

R. Slade and A. Bauen, Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects, Biomass and Bioenergy, vol.53, pp.29-38, 2013.

L. Doron, N. Segal, and M. Shapira, Transgene Expression in Microalgae-From Tools to Applications, Front Plant Sci, vol.7, p.505, 2016.

M. D. Guiry, How many species of algae are there?, J. Phycol, vol.48, issue.5, pp.1057-1063, 2012.

R. Zhang, W. Patena, U. Armbruster, S. S. Gang, S. R. Blum et al., HighThroughput Genotyping of Green Algal Mutants Reveals Random Distribution of Mutagenic Insertion Sites and Endonucleolytic Cleavage of Transforming DNA, Plant Cell, vol.26, issue.4, pp.1398-1409, 2014.

H. Cerutti, X. Ma, J. Msanne, and T. Repas, RNAmediated silencing in Algae: biological roles and tools for analysis of gene function, Eukaryot Cell, vol.10, issue.9, pp.1164-72

E. J. Kim, X. Ma, and H. Cerutti, Gene silencing in microalgae: mechanisms and biological roles, Bioresour Technol, vol.184, pp.23-32, 2015.

O. Kilian, C. S. Benemann, K. K. Niyogi, and B. Vick, High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp, Proc Natl Acad Sci U S A, vol.108, issue.52, pp.21265-21274, 2011.

Y. Kasai, K. Oshima, F. Ikeda, J. Abe, Y. Yoshimitsu et al., Construction of a self-cloning system in the unicellular green alga Pseudochoricystis ellipsoidea, 2015.

, Biotechnol Biofuels, vol.8, p.94

P. D. Weyman, K. Beeri, S. C. Lefebvre, J. Rivera, J. K. Mccarthy et al., Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis, Plant Biotechnol J, vol.13, issue.4, pp.460-470, 2015.

F. Daboussi, S. Leduc, A. Maréchal, G. Dubois, V. Guyot et al., Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology, Nat Commun, vol.5, p.3831, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01528413

H. Gao, Y. Wang, X. Fei, W. Da, and M. H. Spalding, Expression activation and functional analysis of HLA3, a putative inorganic carbon transporter in Chlamydomonas reinhardtii, Plant J, vol.82, issue.1, pp.1-11, 2015.

I. Sizova, A. Greiner, M. Awasthi, S. Kateriya, and P. Hegemann, Nuclear gene targeting in Chlamydomonas using engineered zincfinger nucleases, Plant J, vol.73, issue.5, pp.873-882, 2013.

L. Cong, F. Ran, F. A. Cox, D. Lin, S. Barretto et al., Multiplex Genome Engineering Using CRISPR/Cas Systems, Science, vol.339, issue.6121, pp.819-823, 2013.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, issue.6096, pp.816-821, 2012.

P. Mali, L. Yang, K. M. Esvelt, J. Aach, M. Guell et al., RNA-guided human genome engineering via Cas9, Science, vol.339, issue.6121, pp.823-826, 2013.

F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott et al., Genome engineering using the CRISPR-Cas9 system, Nat Protoc, vol.8, issue.11, pp.2281-2308, 2013.

A. Chavez, J. Scheiman, S. Vora, B. W. Pruitt, M. Tuttle et al.,

R. , A. J. Collins, J. J. Church, and G. M. , Highly efficient Cas9-mediated transcriptional programming, Nat Methods, vol.12, issue.4, pp.326-328, 2015.

L. A. Gilbert, M. H. Larson, L. Morsut, Z. Liu, G. A. Brar et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes, Cell, vol.154, issue.2, pp.442-451, 2013.

L. A. Gilbert, M. A. Horlbeck, B. Adamson, J. E. Villalta, Y. Chen et al., , 2014.

, Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell, vol.159, issue.3, pp.647-661

I. B. Hilton, D. Ippolito, A. M. Vockley, C. M. Thakore, P. I. Crawford et al., Epigenome editing by a CRISPRCas9-based acetyltransferase activates genes from promoters and enhancers, Nat Biotechnol, vol.33, issue.5, pp.510-517, 2015.

S. Konermann, M. D. Brigham, A. E. Trevino, J. Joung, O. O. Abudayyeh et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex, Nature, vol.517, issue.7536, pp.583-591, 2015.

L. G. Lowder, D. Zhang, N. J. Baltes, J. W. Paul, X. Tang et al., A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation, Plant Physiol, vol.169, issue.2, pp.971-85, 2015.

P. Perez-pinera, D. D. Kocak, C. M. Vockley, A. F. Adler, A. M. Kabadi et al., RNA-guided gene activation by CRISPR-Cas9-based transcription factors, Nat Methods, vol.10, issue.10, pp.973-976, 2013.

M. E. Tanenbaum, L. A. Gilbert, L. S. Qi, J. S. Weissman, and R. D. Vale, A protein-tagging system for signal amplification in gene expression and fluorescence imaging, Cell, vol.159, issue.3, pp.635-646, 2014.

M. Araki and T. Ishii, Towards social acceptance of plant breeding by genome editing, Trends Plant Sci, vol.20, issue.3, pp.145-149, 2015.

C. N. Kanchiswamy, M. Malnoy, R. Velasco, J. S. Kim, and R. Viola, Non-GMO genetically edited crop plants, Trends Biotechnol, vol.33, issue.9, pp.489-491, 2015.

N. M. Butler, N. J. Baltes, D. F. Voytas, and D. S. Douches, Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases, Front Plant Sci, vol.7, 1045.

S. N. Char, A. K. Neelakandan, H. Nahampun, B. Frame, M. Main et al., An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize, Plant Biotechnol J, 2016.

Z. Feng, Y. Mao, N. Xu, B. Zhang, P. Wei et al., Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis, Proc Natl Acad Sci, vol.111, issue.12, pp.4632-4637, 2014.

J. Gao, G. Wang, S. Ma, X. Xie, X. Wu et al., CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum, Plant Mol Biol, vol.87, issue.1-2, pp.99-110, 2015.

W. Jiang, H. Zhou, H. Bi, M. Fromm, Y. B. Weeks et al., Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice, Nucleic Acids Res, vol.41, issue.20, p.188, 2013.

W. Qi, T. Zhu, Z. Tian, C. Li, W. Zhang et al., High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize, BMC Biotechnol, vol.16, issue.1, p.58, 2016.

Q. Shan, Y. Wang, J. Li, Y. Zhang, K. Chen et al., Targeted genome modification of crop plants using a CRISPR-Cas system, Nat Biotechnol, vol.31, issue.8, pp.686-688, 2013.

L. Yan, S. Wei, Y. Wu, R. Hu, H. Li et al., High-Efficiency Genome Editing in Arabidopsis Using YAO PromoterDriven CRISPR/Cas9 System, Mol Plant, vol.8, issue.12, pp.1820-1823, 2015.

Z. Zhang, Y. Mao, S. Ha, W. Liu, J. R. Botella et al., A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis, Plant Cell Rep, vol.35, issue.7, pp.1519-1533, 2016.

J. Zhu, N. Song, S. Sun, W. Yang, H. Zhao et al., Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9, J Genet Genomics, vol.43, issue.1, pp.25-36, 2016.

H. Kim and J. S. Kim, A guide to genome engineering with programmable nucleases, Nat Rev Genet, vol.15, issue.5, pp.321-355, 2014.

K. Baek, D. H. Kim, J. Jeong, S. J. Sim, A. Melis et al., DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins, Sci Rep, vol.6, p.30620, 2016.

W. Jiang, Y. B. Weeks, and D. P. , Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations, PLoS One, vol.9, issue.6, 2014.

M. Nymark, A. K. Sharma, T. Sparstad, A. M. Bones, and P. Winge, A CRISPR/Cas9 system adapted for gene editing in marine algae, 2016.

S. E. Shin, J. M. Lim, H. G. Koh, E. K. Kim, N. K. Kang et al., CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii, 2016.

Q. Wang, Y. Lu, . Xin, L. Wei, S. Huang et al., Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9, Plant J, vol.88, issue.6, pp.1071-1081, 2016.

J. L. Crespo, S. Díaz-troya, and F. F. , Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii, Plant Physiol, vol.139, issue.4, pp.1736-1785, 2005.

W. Jiang, A. J. Brueggeman, K. M. Horken, T. M. Plucinak, and D. P. Weeks, Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii, Eukaryot Cell, vol.13, issue.11, pp.1465-1469, 2014.

F. Guihéneuf, A. Khan, and L. P. Tran, Genetic Engineering: A Promising Tool Engender Physiological, Biochemical, and Molecular Stress Resilience in Green Microalgae, Front. Plant Sci, vol.7, pp.1-8, 2016.

S. W. Cho, J. Lee, D. Carroll, J. S. Kim, and J. Lee, Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins, Genetics, vol.195, issue.3, pp.1177-1180, 2013.

S. Kim, D. Kim, S. W. Cho, K. J. Kim, and J. S. , Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins, Genome Res, vol.24, issue.6, pp.1012-1019, 2014.

S. Ramakrishna, K. Dad, A. B. Beloor, J. Gopalappa, R. Lee et al., Gene disruption by cell-penetrating peptidemediated delivery of Cas9 protein and guide RNA, Genome Res, vol.24, issue.6, pp.1020-1027, 2014.

X. Liang, J. Potter, S. Kumar, Y. Zou, R. Quintanilla et al., Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection, J Biotechnol, vol.208, pp.44-53, 2015.

S. Subburaj, S. J. Chung, C. Lee, S. M. Ryu, D. H. Kim et al., Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins, Plant Cell Rep, vol.35, issue.7, pp.1535-1544, 2016.

Y. H. Sung, J. M. Kim, H. T. Kim, J. Lee, J. Jeon et al., Highly efficient gene knockout in mice and zebrafish with RNAguided endonucleases, Genome Res, vol.24, issue.1, pp.125-131, 2014.

A. Suresh and Y. C. Kim, Translocation of cell penetrating peptides on Chlamydomonas reinhardtii, Biotechnol Bioeng, vol.110, issue.10, pp.2795-801, 2013.

J. W. Woo, J. Kim, S. I. Kwon, C. Corvalán, S. W. Cho et al., DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins, Nat Biotechnol, vol.33, issue.11, pp.1162-1164, 2015.

J. A. Zuris, D. B. Thompson, Y. Shu, J. P. Guilinger, J. L. Bessen et al., Cationic lipidmediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo, Nat Biotechnol, vol.33, issue.1, pp.73-80, 2015.

A. R. Buller, S. Brinkmann-chen, D. K. Romney, M. Herger, J. Murciano-calles et al., Directed evolution of the tryptophan synthase ?-subunit for stand-alone function recapitulates allosteric activation, Proc Natl Acad Sci U S A, vol.112, issue.47, pp.14599-604, 2015.

M. F. Dunn, D. Niks, H. Ngo, T. R. Barends, and I. Schlichting, Tryptophan synthase: the workings of a channeling nanomachine, Trends Biochem Sci, vol.33, issue.6, pp.254-264, 2008.

S. K. Dutcher, R. E. Galloway, W. R. Barclay, and G. Poortinga, Tryptophan analog resistance mutations in Chlamydomonas reinhardtii, Genetics, vol.131, issue.3, pp.593-607, 1992.

X. He, C. Tan, F. Wang, Y. Wang, R. Zhou et al., Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair, Nucleic Acids Res, vol.44, issue.9, 2016.

N. E. Lewis, N. J. Marty, K. M. Kathir, D. Rajalingam, A. D. Kight et al., A dynamic cpSRP43-Albino3 interaction mediates translocase regulation of chloroplast signal recognition particle (cpSRP)-targeting components, J Biol Chem, vol.285, issue.44, pp.34220-34230, 2010.

H. Kirst and A. Melis, The chloroplast signal recognition particle (CpSRP) pathway as a tool to minimize chlorophyll antenna size and maximize photosynthetic productivity, Biotechnol Adv, vol.32, issue.1, pp.66-72, 2014.

P. Wang and B. Grimm, Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts, Photosynth Res, vol.126, issue.2-3, pp.189-202, 2015.

K. L. Kindle, R. A. Schnell, E. Fernández, and P. A. Lefebvre, Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase, J Cell Biol, vol.109, issue.6, pp.2589-2601, 1989.

J. Steinbrenner and G. Sandmann, Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis, Appl. Environ. Microbiol, vol.72, issue.12, pp.7477-7484, 2006.

C. Tan, S. Qin, Q. Zhang, P. Jiang, and F. Zhao, Establishment of a micro-particle bombardment transformation system for Dunaliella salina, J Microbiol, vol.43, issue.4, pp.361-365, 2005.

A. Falciatore, R. Casotti, C. Leblanc, C. Abrescia, and C. Bowler, Transformation of Nonselectable Reporter Genes in Marine Diatoms, Mar Biotechnol (NY), vol.1, issue.3, pp.239-251, 1999.

L. Rodolfi, C. Zittelli, G. Bassi, N. Padovani, G. Biondi et al., Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol Bioeng, vol.102, issue.1, pp.100-112, 2009.

X. Ma, T. Chen, B. Yang, J. Liu, and C. Feng, Lipid Production from Nannochloropsis, Mar Drugs, vol.14, issue.4, p.14040061, 2016.

D. Wang, K. Ning, J. Li, J. Hu, D. Han et al., Nannochloropsis genomes reveal evolution of microalgal oleaginous traits, PLoS Genet, vol.10, issue.1, 2014.

L. Wei, Y. Xin, D. Wang, X. Jing, Q. Zhou et al., Nannochloropsis plastid and mitochondrial phylogenomes reveal organelle diversification mechanism and intragenus phylotyping strategy in microalgae, BMC Genomics, vol.14, p.534, 2013.

H. G. Aach, S. Bartsch, and V. Feyen, Studies on Chlorella protoplasts: Demonstration of the protoplastic nature and the regeneration of the cell wall, Planta, vol.139, issue.3, pp.257-60, 1978.

E. Braun and H. G. Aach, Enzymatic degradation of the cell wall of Chlorella, Planta, vol.126, issue.2, pp.181-185, 1975.

L. C. Fowke, P. M. Gresshoff, and H. J. Marchant, Transfer of organelles of the alga Chlamydomonas reinhardii into carrot cells by protoplast fusion, Planta, vol.144, issue.4, pp.341-348, 1979.

R. Loppes and R. Deltour, A temperatureconditional protoplast of Chlamydomonas reinhardi, Exp Cell Res, vol.117, issue.2, pp.439-480, 1978.

Y. Lu, R. Kong, and L. Hu, Preparation of protoplasts from Chlorella protothecoides, World J Microbiol Biotechnol, vol.28, issue.4, pp.1827-1857, 2012.

D. G. Robinson and U. G. Schlösser, Cell wall regeneration by protoplasts of Chlamydomonas, Planta, vol.141, issue.1, pp.83-92, 1978.

U. G. Schlösser, H. Sachs, and D. G. Robinson, Isolation of protoplasts by means of a "species-specific" autolysine in Chlamydomonas, Protoplasma, vol.88, issue.1, pp.51-64, 1976.

L. E. Brown, S. L. Sprecher, L. R. Keller, J. E. Boynton, N. W. Gillham et al., Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation, Mol Cell Biol, vol.11, issue.4, pp.1534-1538, 1988.

R. Cheng, R. Ma, K. Li, H. Rong, X. Lin et al., Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium, Microbiol Res, vol.167, issue.3, pp.179-186, 2012.

S. Kathiresan, A. Chandrashekar, G. A. Ravishankar, R. Sarada, C. Economou et al., Regulation of astaxanthin and its intermediates through cloning and genetic transformation of ?-carotene ketolase in Haematococcus pluvialis, Methods Mol Biol, vol.1132, pp.401-411, 2014.

P. T. Pratheesh, M. Vineetha, and G. M. Kurup, , 2014.

A. Eichler-stahlberg, W. Weisheit, O. Ruecker, and M. Heitzer, Strategies to facilitate transgene expression in Chlamydomonas reinhardtii, Planta, vol.229, issue.4, pp.873-883, 2009.

K. L. Kindle, High-frequency nuclear transformation of Chlamydomonas reinhardtii, Proc Natl Acad Sci U S A, vol.87, issue.3, pp.1228-1260, 1990.

R. León-bañares, D. González-ballester, A. Galván, and E. Fernández, Transgenic microalgae as green cell-factories, Trends Biotechnol, vol.22, issue.1, pp.45-52, 2004.

C. Remacle, P. Cardol, N. Coosemans, M. Gaisne, N. Bonnefoy et al., Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii, Proc Natl Acad Sci U S A, vol.103, issue.12, pp.1721-1725, 1991.

J. E. Boynton, N. W. Gillham, E. H. Harris, J. P. Hosler, A. M. Johnson et al., Chloroplast transformation in Chlamydomonas with high velocity microprojectiles, Science, vol.240, issue.4858, pp.1534-1538, 1988.

C. Economou, T. Wannathong, J. Szaub, and S. Purton, A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii, Methods Mol Biol, vol.1132, pp.401-411, 2014.

K. L. Kindle, K. L. Richards, and S. D. , Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii, Proc Natl Acad Sci U S A, vol.88, issue.5, pp.1721-1725, 1991.

S. Purton, Tools and techniques for chloroplast transformation of Chlamydomonas, Adv Exp Med Biol, vol.616, pp.34-45, 2007.

J. Szaub, T. Wannathong, Y. R. Economou, and C. , Genetic engineering of algal chloroplasts: Progress and prospects, Russ J Plant Physiol, vol.60, issue.4, pp.491-499, 2013.

J. D. Rochaix, R. Surzycki, S. Ramundo, K. Shimogawara, S. Fujiwara et al., High-efficiency transformation of Chlamydomonas reinhardtii by electroporation, Methods Mol Biol1132, vol.148, issue.4, pp.1821-1828, 1998.

J. Liu, T. Gaj, J. T. Patterson, S. J. Sirk, and C. F. Barbas, Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering, PLoS One, vol.9, issue.1, p.85755, 2014.

J. Liu, T. Gaj, Y. Yang, N. Wang, S. Shui et al., Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells, Nat Protoc, vol.10, issue.11, pp.1842-1859, 2015.

B. Suresh, S. Ramakrishna, and H. Kim, CellPenetrating Peptide-Mediated Delivery of Cas9 Protein and Guide RNA for Genome Editing, Methods Mol Biol, vol.1507, pp.81-94, 2017.

B. R. Liu, Y. W. Huang, and H. J. Lee, Mechanistic studies of intracellular delivery of proteins by cell-penetrating peptides in cyanobacteria, BMC Microbiology, vol.13, 2013.

B. R. Liu, Y. W. Huang, R. S. Aronstam, and H. J. Lee, Comparative Mechanisms of Protein Transduction Mediated by Cell-Penetrating Peptides in Prokaryotes, J Membrane Biol, vol.248, pp.355-368, 2015.

K. E. Wendt, J. Ungerer, R. E. Cobb, H. Zhao, and H. B. Pakrasi, CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973, Microb Cell Fact, vol.15, issue.1, p.115, 2016.

H. Li, C. R. Shen, C. H. Huang, L. Y. Sung, M. Y. Wu et al., CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production, Metab Eng, vol.38, pp.293-302, 2016.

L. Yao, I. Cengic, J. Anfelt, and E. P. Hudson, Multiple Gene Repression in Cyanobacteria Using CRISPRi, ACS Synth Biol, vol.5, issue.3, pp.207-212, 2016.

C. H. Huang, C. R. Shen, H. Li, L. Y. Sung, M. Y. Wu et al., CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942, Microb Cell Fact, vol.15, issue.1, p.196, 2016.

G. C. Gordon, T. C. Korosh, J. C. Cameron, A. L. Markley, M. B. Begemann et al., , 2016.

, CRISPR interference as a titratable, transacting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002, Metab Eng, vol.38, pp.170-179

Y. Wei, J. Niu, L. Huana, A. Huang, L. He et al., Cell penetrating peptide can transport dsRNA into microalgae with thin cell walls, Algal Research, vol.8, pp.135-139, 2015.

J. Lessard, S. B. Aicha, A. Fournier, E. Calvo, E. Lavergne et al., Characterization of the RSL1-dependent conditional expression system in LNCaP prostate cancer cells and development of a single vector format, Prostate, vol.67, issue.8, pp.808-819, 2007.

C. M. Shea and G. Tzertzinis, Controlled expression of functional miR-122 with a ligand inducible expression system, BMC Biotechnol, vol.10, p.76, 2010.

G. Sowa, E. Westrick, C. Pacek, P. Coelho, D. Patel et al., In vitro and in vivo testing of a novel regulatory system for gene therapy for intervertebral disc degeneration. Spine (Phila Pa, vol.36, 1976.

J. K. Nuñez, L. B. Harrington, and J. A. Doudna, Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering, ACS Chem Biol, vol.11, issue.3, pp.681-688, 2016.

F. Richter, I. Fonfara, B. Bouazza, C. H. Schumacher, M. Bratovi? et al., Engineering of temperature-and light-switchable Cas9 variants, Nucleic Acids Res, vol.44, issue.20, pp.10003-10014, 2016.