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Abstract. We study the problem of how to find a social ranking over
individuals given a ranking over coalitions formed by them, or in other
words, how to rank individuals based on their ability to influence the
strength of a group containing them. We are interested in the use of
ceteris paribus majority principle for social ranking and extend the
results of two previous articles ([4, 3]). We analyse the behavior of
the CP-majority rule with respect to Condorcet cycles and propose a
linear programming model for the learning its approximation.

1 Introduction
In this article, we are interested in ranking individuals using their

performances in different groups/coalitions of individuals. Such a
problem can be common in some real world situations, for instance,
ranking researchers in a scientific department by taking into account
their impact across different working groups, finding the most in-
fluential political party regarding different coalitions, or finding the
ingredient that makes best meals concerning different association of
ingredients.

As it is sometimes hard to express preferences using numbers, we
consider only ordinal informations : we suppose that we have an
order over coalitions in form of a binary relation, that we call a power
relation, and we look for a ranking over individuals who form such
coalitions, that we call a social ranking.

Example 1. Let’s consider four individuals N = {1, 2, 3, 4} . We
have the power relation over group’s performances : 1234 � 123 �
124 � 134 � 12 � 13 � 234 � 14 � 2 � 3 � 1 � 23 �
24 � 23 � 4. 13 � 234 means that the group composed by 1 and
3 is better than the group formed by 2, 3 and 4. Our aim is to find
pairwise comparisons between different individuals in order to answer
questions such as who is the most influential individual between 1
and 2? In this article we are specially interested in finding a complete
preorder over individuals.

The problem that we address in this paper is recent. Previous works
on it are all related to the axiomatic aspects of the social ranking rules:
Bernardi and her colleagues ([1]) axiomatically characterized a social
ranking solution based on the idea that the most influential individ-
uals are those appearing more frequently in the highest positions in
the ranking of coalitions; Moretti and Ozturk ([4]) presented some
impossibility results on a set of three axioms inspired from social
choice theory and finally Haret and his colleagues ([3]) showed an
axiomatization of a social ranking rule based on the majority principle
and analyzed it within some domain restriction conditions.

In this article we are interested in computational aspects of a par-
ticular social ranking rule which is the CP-majority rule. CP-majority

social ranking is based on ceteris paribus comparisons between coali-
tions: looking for a pairwise comparison between i and j, the only
information that we use is the comparisons between S ∪ {i} and
S ∪ {j} where S is a coalition containing neither i nor j.

In [4] authors showed that when a social ranking uses only ceteris
paribus comparisons, three intuitive axioms can not be verified si-
multaneously (Independence of irrelevant coalitions, dominance and
symmetry) if a social ranking is asked to be transitive. A majority rule
based on ceteris paribus (CP-majority rule) comparisons verifies these
three axioms but does not guarantee the transitivity of the social rank-
ing solution. In [3] authors characterized CP-majority rule (which may
provide social ranking with cycles) using three axioms: equality of
coalitions, positive responsiveness and neutrality and they presented a
domain restriction which guarantees the transitivity of the social rank-
ing. Briefly, CP-majority rule says that i is better than j because there
are more coalitions S (S ∈ 2N\{i,j}) such that S ∪ {i} � S ∪ {j}.
Coalitions S ((S ∈ 2N\{i,j})) can be seen as voters for i and j.

This article is based on simulation results on CP-majority rule. After
analyzing the probability to have transitive social ranking with CP-
majority, we propose an “approximation” of CP-majority rule where
a minimum number of coalitions are removed in order to satisfy the
transitivity, we call this rule CP-majority with maximum coalitions.
The article concludes with a learning approach for this last rule based
on a linear programming model.

2 Ceteris Paribus majority

2.1 Notations

We have a finite set of individuals N = {1, 2, ..., n}. We are given
a power relation � representing a binary relation on the power set
2N . We suppose � transitive and asymmetric (and complete for our
simulations). We denote by B(2N ) the set of all possible power
relations. S � T means that coalition S is preferred to coalition T .

We are looking for a social ranking, denoted by R, which must be
a complete preorder (reflexive, transitive and complete). iRj means
that i is at least as good as j, with i and j in N . We denote by T (N)
the set of all total preorders on N .

A social ranking solution is a function R : B(2N ) −→ T (N)
associating to each power relation �∈ B(2N ) a total preorder R�

over the elements of N . By this definition, the notion iR�j means
that applying the social ranking solution to the power relation� gives
the result that i is at least as good as j. We denote the asymmetric part
of R� by P� : iP�j ⇐⇒ iR�j and not jR�i (i is preferred to
j). I� represents the symmetric part of R�: iI�j ⇐⇒ iR�j and
jR�i (i is indifferent to j).



2.2 Basic notions
As we mentioned, we are interested in a solution based on
the principle of Ceteris Paribus (CP), which we can translate
to “everything else being equal”. Formally, given a power re-
lation �∈ B(2N ) and two elements i, j ∈ N we define :
Dij(�) = {S ∈ 2N\{i,j} : S ∪ {i} � S ∪ {j}}. We denote the
cardinalities of Dij(�) as d�ij .

Then we apply CP-majority rule : if i is preferred to j over more
coalitions than j against i, then iP�j. If there is no majority, iI�j

Definition 1 (CP-majority). Let �∈ B(2N ). The ceteris paribus
majority relation (CP-majority) is the binary relation R� ⊆ N ×N
such that for all i, j ∈ N :

iR�j ⇔ dij(�) ≥ dji(�).

Example 2. Let’s consider four individuals N = {1, 2, 3, 4}. We
have the power relation over group’s performances : 1234 � 123 �
124 � 134 � 12 � 13 � 234 � 14 � 2 � 3 � 1 � 23 �
24 � 23 � 4. We have 1P�2 because S ∪ {1} win 3 times for
S = {34}, {4}, {3} against 1 for S ∪ {2} (when S = ∅)

2.3 Some remarks
1) CP-majority rule considers all coalitions equally important. For

instance, the number of individuals within a coalition has no influence
on the importance of the coalition.

2) Consider a set of n individuals, then there are (2n− 1)! possible
complete power relations (permutation of all subsets of N except the
empty set). If the power relation is a complete order, the number of
coalitions being considered for a particular pairwise comparison (be-
tween i and j) is 2(n−2) since all the subsets of N without i and j can
vote. This number is equal to the number of ceteris paribus compar-
isons used for CP-majority. For instance, consider N = {1, 2, 3, 4},
coalitions which can “vote” (playing the role of voter) for the compar-
ison between 1 and 2 are: ∅, 3, 4, 34. The number of coalitions being
voter for at least one couple i and j is equal to

∑n−2
i=0

(
n
i

)
. Indeed, all

coalitions with a size inferior or equal to n− 2 can be a voter for at
least one couple. Coalitions of the size n − 1 can not vote because
they contain i or j. In example 2, the only coalition that can vote are
∅, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34. Table 1 illustrates some of these
values.

n Number of Number of coalitions S Number of coalitions S
possible � being voter voting for a precise couple

at least for one couple
2 6 4 1
3 5040 11 2
4 ∼ 1012 26 4
5 ∼ 1033 57 8
6 ∼ 1087 120 16

Table 1. Number of possible � and voting coalitions in function of n

Note that the ceteris paribus principle can be seen as an interpreta-
tion of our problem in the context of social choice theory, with groups

of individuals (coalitions) playing the role of voters: in Example 3,
groups 45, 3 and 4 may be seen as voters for the comparison of candi-
dates 1 and 2. Nevertheless, our framework differs from a classical
voting scenario in that candidates can also be voters and voters are
not identical for different pairwise comparisons : in the comparison
12 � 23, the coalition containing only 2 acts as a voter, while in the
comparison 245 � 345, 2 is a candidate. Coalition 45 acts as a voter
comparing 2 and 3 but can not be a voter if we want to compare 4
with another individual since it contains 4.

3) CP-majority makes use of limited quantity of information com-
ing from the power relation. For instance, only comparisons over sets
having the same size are used.

One of the consequences of such a remark is the fact that differ-
ent power relations may provide exactly the same information about
CP-majority rule if they have exactly the same ceteris paribus com-
parisons. As a result, they provide the same social ranking solution.
For instance, power relation� such that 1 � 2 � 3 � 12 � 13 � 23
and power relation = such that 12 = 13 = 23 = 1 = 2 = 3 share
the same ceteris paribus comparisons necessary for CP-majority rule.
We call such power relations CP-equivalent and say that they share
the same CP-information table. Table 2 presents the information table
of � and =.

1 versus 2 1 versus 3 2 versus 3
1 � 2 1 � 3 2 � 3
1 = 2 1 = 3 2 = 3

13 � 23 12 � 23 12 � 13
13 = 23 12 = 23 12 = 13

Table 2. Information table of � and =

Definition 2 (CP-equivalence). Let N be a set of individuals and �
and = be two power relations on 2N . � and = are CP-equivalent if
and only if

∀S,∀i, j, S ∪ {i} � S ∪ {j} ⇔ S ∪ {i} = S ∪ {j}

The number of different CP-information tables (sets of CP-
equivalent power relations) is

∏n
i=0

(
n
i

)
! (product of total orders

formed by coalitions of the same size). Table 3 shows number of
possible CP-information tables. In the rest of our paper, we make use
of CP-information tables when we want to simulate different power
relations with different social rankings.

n Number of
possible CP-information table

2 2
3 36
4 414720
5 ∼ 1016

6 ∼ 1048

Table 3. Number of possible CP-information tables in function of n

Table 7 of annexe shows all the possible CP-information tables for
n = 3.
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4) The ceteris paribus majority solution is grounded in intuitive and
appealing principles. However, it turns out that strict Condorcet-like
cycles are possible for more than two candidates, similarly to classical
voting theory as it is shown in the following example.

Example 3. Consider the following power relation : 2345 � 245 �
1234 � 13 � 12 � 23 � 145 � 35 � 24 � 14. CP-majority
implies that 3P�2 (since 13 � 12), 2P�1 (since 245 � 145, 24 �
14 and 13 � 23), but 1P�3 (since 12 � 23). So we have a Condorcet
cycle.

Condorcet-like cycles may be a source of difficulty for a choice
(how to find the best(s) candidate(s)) or a ranking (how to order
candidates) problem. In the following we analyze the probability
of having Condorcet-like cycles and propose a modification of the
CP-majority rule guaranteeing the transitivity of the social ranking.

3 CP-majority and transitive social ranking
3.1 Probability of Condorcet-like cycles
The aim of this section is to analyze the behavior of the CP-majority
rule with respect to transitivity of the social ranking solution. Since
we provide some statistics on this question, we consider only power
relations in form of total preorders.

We want to know the probability to have one or several Condorcet’s
winners in function of the number of candidates. We call an individual
a CP-Condorcet winner if she is at least as good as all the other
candidates using the CP-Majorty rule. To find those probabilities we
have done simulations for n= 3, 4, 5 and 6. Due to the small amount
of possible power relations (or more precisely CP-information tables)
for n = 3 and 4, we manage to simulate them all. For n = 5 and 6 we
have randomly tested 100 000 different CP-information tables. Our
simulations are inspired from a study done in the context of social
choice theory where preferences of voters are supposed to be equally
chosen (see Impartial cultures, [5]). This hypothesis means that each
power relation has the same probability to occur. Note that some
domain restriction forbidding some types of power relations may be
meaningful in some contexts. For instance, in [3] authors relaxed the
axiom of the universality of the domain and analysed the effect of
single-peaked-like domain restriction for social ranking. They showed
that their definition of single peakness guarantees the transitivity of
the social ranking. In this section we do not suggest any restriction in
the domain of power relations (B(2N )).

Our results are presented in Figure 1 and Table 4.
The number of voters correspond to the number S of coalitions

voting for a precise couple. Having 0 Condorcet winner means that the
solution found is not transitive and there is a cycle in the social ranking.
We can see that the higher the number of individuals, the lower the
probability to have a transitive social order. We also observed that
the probability to have several Condorcet winners decreases with the
number of individuals.

Note that if we are interested in finding the best individual(s),
having a transitive social ranking may not be mandatory since cycles
may occur in the bottom of the ranking.

As we already mentioned, our framework has some similarities
with voting procedures of social choice theory. Nevertheless, as it
is underlined in point 2 of Section 2.3, there are some differences
because of the fact that in our framework candidates play the role
of voters for other candidates and the voting coalitions are different
for each pairwise comparison. Condorcet paradox (having no
Condorcet winner) is a classical paradox of social choice theory. We

Figure 1. Probability to have one or more Condorcet winners

N 3 4 5 6
Nbr of voters 2 4 8 16

Nbr of different 36 414 720 100 000 100 000
CP-information tables (all) (all)
% of Condorcet winner 33.33 26.66 13.93 19.5
% of transitive solution 66.66 40 19.5 10.5

Table 4. Probability to have Condorcet winner and a transitive social
ranking

compare our results to the probability of the existence of Condorcet
winner in Impartial Cultures, found by Gerhlein and Fishburn ([5]).
Impartial culture means that each voters have a uniformly distributed
probability to vote for each candidates. Figure 2 shows the theoretical
results of Gerhlein and Fishburn. Note that in our framework, when
there are n candidates, there are 2(n−2) coalitions voting for each
pairwise comparison.

It is easy to notice that there is a remarkable difference between
our results and those found by Gehrlein and Fishburn. Such a gap
is due to the amount of indifferences in our social ranking solution
R�. Indeed, the number of voters for aR�b being equal to 2N−2,
is even and provides indifferences. In fact, the probability to have
indifferences in a social ranking is high as shown in the Figure3. The
probabilities of this table are found thanks to a simulation : we have
simulated 100 000 power relations (more precisely CP-information
tables) for each n = 4, n = 5 and n = 6 and calculated the number
of indifferences (binary relations in form iI�j). The maximal number
of strict preferences or indifferences is respectively 6, 10, and 15
(if there are n candidates, there are n(n−1)

2
possible comparisons).

We can see that the numbers of strict preferences follow the same
distribution law and leave place to many indifferences. Gehrlein and
Fishburn avoided this problem by considering only odd number of
voters.

To prevent indifferences, we have decided to do the same simula-
tions than above but without taking into account coalition formed by

3



Figure 2. Probability to have a Condorcet Winner [5]

Figure 3. Probability to have indifference

the empty set S = ∅. In other words, we do not use the comparisons
between singletons which are in the power relation1. This allows us
to have 2N−2 − 1 voters for each comparison making indifferences
impossible. The new probabilities are presented in Table 5.

Having an odd number of coalitions voting for each comparison,
we obtain very similar probabilities to those of Gehrlein and Fishburn.
Even if there are similarities between our framework and social choice
the correspondence is not immediate because of the second point of
Section 2.3.

1 Note that ∅ is the only ”coalition” S which is able to compare all couple of
candidates, hence its cancellation allows us to have an odd number of voters
for every comparisons

N 3 4 5 6
Nbr of voters 1 3 7 15

Nbr of combination tested 6 17280 100 000 100 000
% of Condorcet winner 100 88.89 78.60 70.76
% of transitive solution 100 83.33 58.67 35.96

Table 5. Probability to have Condorcet winner and a transitive social
ranking without coalition S = {∅}

3.2 Removing some coalitions for a transitive social
ranking using CP-majority

Simulations of the previous section show that the social ranking so-
lution derived from CP-majority may not be transitive. Nevertheless,
when one desires to use ceteris paribus comparisons, CP-majority
appears as a very intuitive and natural rule. Moreover, as it is shown
in [3], CP-majority is the only social ranking rule which satisfies the
neutrality, the equality of coalitions and the positive responsiveness.
Hence, we thought that it may be interesting to keep the basic prin-
ciples of CP-majority and to propose an approximation of this rule
which guarantees the transitivity.

Our idea is the following: we relax the equality of coalition axiom
(all coalitions have the same importance, including ∅) and try to find
the minimum number of coalitions to remove in order to guarantee
the transitivity of the social ranking solution by CP-majority rule. We
call this new rule CP-majority with maximum coalitions.

Example 4. Consider the following power relation : 13 � 23 �
12 � 1 � 2 � 3. Applying the CP-majority rule we obtain 1P�2,
1I�3 and 2I�3, which is not transitive. By removing the coalition
2 from the rule, we obtain 1P�3, which makes our social order
transitive (we have 1P�2I�3).

In order to resolve our new problem we make use of linear pro-
gramming where the objective function maximizes the number of
coalitions playing the role of voters and the linear constraints guaran-
tee the transitivity of the social ranking.

The linear programming :
Max

∑
s Ss

s.t.

{ ∑
s PSij × Ss ≥ −M(1−Rij) ∀i, j

Ra1a2 +Ra2a3 + ....+Ran−1an −Rakak−1 < n− 1

* For all a1, a2, ..., an forming a cycle, for all k ∈ {a1, a2, ..., an}
and for all n.

with:
(i.) Power relation :

PSij =

{
1 if S ∪ {i} � S ∪ {j}
−1 if S ∪ {j} � S ∪ {i}

(ii.) Social ranking :

Rij =

{
1 if iP�j
0 otherwise

(iii.) Decision variables for coalition :

Ss =

{
1 if the coalition Ss is kept
0 otherwise
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M is a constant large enough so that the first constraint is satisfied
when Rij = 0.

Remark that there may be more than one solution satisfying our
constraints (for instance the minimum number of coalitions to remove
may be 1 with many possibilities, removing coalition {1} or coalition
{23}, etc.). Our LP chooses just one solution.

We use our LP in order to do some simulations to have probabilities
on the number of coalitions to remove. We have randomly simulated
10 000 power relations for n = 4 and n = 5 with or without empty
set and found the minimum number of coalitions to remove. Results
are shown in the following Figure 4 and Table 6.

Figure 4. Minimum number of coalitions to remove to have a transitive
social order with 10 000 power relations

S ∅ 1 2 3 4
probability 40.35 11.13 10.99 11.09 15.18

S 12 13 14 23 24 34
probability 4.20 4.53 4.15 4.60 6.10 5.73

Table 6. Probability for a coalition to be removed (in %), for N = 4 (10
000 simulations)

As we can see, most of our solutions can be transitive by removing
up to 2 coalitions for n = 4 and 4 for n = 5. We can also observe
that removing the empty S = ∅ more than double the probability of
being a transitive social ranking for n = 4 and nearly triple it for
n = 5. Table 6 shows that we remove more frequently the coalitions
that vote for the highest number of couples.

4 Learning a CP-majority with maximum coalitions

In this section we make the assumption that power relations and their
social rankings are given. Our goal is to find a common sub-rule
(which coalition(s) to keep or to remove) based on the CP-majority
rule.

Our aim is to see to what extend our LP model is able to find a
common CP-majority sub-rule : the same set of coalitions playing the
role of voters for power relation+social ranking couples.

We realized three different tests:

• data (power relation + social ranking) resulting from a common
CP-majority with maximum coalitions rule (the same coalitions
are kept for each power relation) : Subsection 4.1.

• data (power relation + social ranking) resulting from CP-majority
with maximum coalitions rules sharing a subset of coalitions (for
instance half of the kept coalitions are common to the rules...) :
Subsection 4.2.

• data (power relation + social ranking) without any particular CP-
majority rule : Subsection 4.3

4.1 Data sharing the same rule

Firstly, we have generated random power relations and applied a
unique random sub-rule (CP-majority using a subset of coalitions)
to obtain associated social ranking2. The unique rule is generated
through a function; every coalition has probability p to stay in the
rule. If p = 0.5 every coalition has 50% of chance to stay in the rule.
Then our goal is to find which coalitions have been eliminated, as
shown in Figure 5.

Figure 5. Learning rules

Then we have applied the following ILP and compared our results
with the real rule.

Max
∑

s Ss

s.t.

{∑S PSijk × Ss ≥ −M(1−Rijk) ∀i, j, k∑S PSijk × Ss ≤ −1 +MRijk ∀i, j, k

With:

2 As we don’t modify the rule, we can have social rankings that are not
transitive
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i) Power relation :

PSijk =

{
1 if S ∪ {i} � S ∪ {j} for the power relation k

−1 if S ∪ {j} � S ∪ {i} for the power relation k

ii) Social ranking :

Rijk =

{
1 if iP�j in the social ranking k

0 otherwise

iii) Decision Variables (common to all power relations!) :

Ss =

{
1 if Ss is kept
0 otherwise

M is a constant large enough so that the first (resp. second) constraint
is verified when Rijk = 0 (resp. Rijk = 1).

We made our simulations on different sizes of training data k. We
have made 500 tests for each different number of power relation k
used to learn and different p, for n = 4. When there is at least one
different coalition between the real sub-rule and what we find, we
consider it as a defeat. Figure 6 illustrates our results and Figure 7
shows learning time for one rule.
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Figure 6. probability to find the CP-majority rule with exact subset of
voting coalition for n = 4

When our data is very well structured, we can see that our model
is more efficient with extreme values for p. It doesn’t need a large
number of power relations k to have satisfying results; for k greater
than 8, it has more than 99% of chance to find the correct sub-rule.
The time of processing seems to increase linearly.

4.2 Data sharing the same subset of coalitions
Now, we are interested in introducing noise in our data. The goal is
to find a common subset of coalitions that is used by different sub-
rules even if there may be other additional coalitions in the sub-rules
applied to some of the power relations.

Firstly, we have randomly generated a subset of coalitions that
we call common CP-subset. Then we have randomly generated
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Figure 7. Time to learn a rule (for n = 4)

power relations, and we applied the CP-majority rule using common
CP-subset plus a random coalition to obtain associated social ranking.
The random coalition that we add represents “the noise”. Our goal
is to learn a sub-rule that minimizes the distance between social
rankings of the input data and the ones generated by the learned
sub-rule. We expect to find a common sub-rule that contains all the
elements of the common CP-subset.

Example 5. Let us give a small illustration for 4 individuals : We
randomly generate a common CP-subset of the size 4, for instance,
1, 3, 12, 34. Then we generate 3 random power relations. To create
our social rankings (one for each power relation), we use three dif-
ferent sub-rules containing the common CP-subset plus one different
coalition. The choice of the additional coalitions is random. For in-
stance, we may have at the end three different sub-rules : the first
sub-rule with coalitions 1, 2, 3, 12, 34, the second with 1, 3, 12, 23, 34
and the third with ∅, 1, 3, 12, 34. We expect to learn a sub-rule using
at least 1, 3, 12, 34 and minimizing the distance of generated social
rankings to initial ones.

To do so, we have used the distance to the Kemeny consensus [2],
between the social ranking generated from the rule we want to find
(learned sub-rule) and those in the input data. The Kemeny distance
is a way to calculate the distance between two rankings. We take
all binary relations iR�expectedj from our expected social rankings
and compare them with the learned social rankings iR�learnedj. If
iR�expectedj 6= iR�learnedj then we increase the distance by one.

Example 6. Let’s have the social ranking (1) : 0P�1 1P�1 2P�1 3.
The distance with (2) : 1P�2 0P�2 2P�2 3 is 1 because 0P�1 1 and
1P�2 0.
The distance with (3) : 2P�3 1P�3 0P�3 3 is 3 because 0P�1 1 and
1P�3 0, 0P�2 2 and 2P�3 0 and 1P�1 2 and 2P�3 1.

Our goal is to minimize the general Kemeny distance between given
social rankings and those we generated with our learned sub-rule.
We have used the following ILP .

Min
∑

ijk Vijk

6



s.t.



∑
s PSijk × Ss ≥ −M(1−Rijk) ∀ijk∑
S PSijk × Ss ≤ −1 +MRijk ∀ijk

Rijk +Rjik = 1 ∀ijk
Oijk −Rijk − Vijk ≤ 0 ∀ijk
Oijk −Rijk + Vijk ≥ 0 ∀ijk

With:
i) Power relation :

PSijk =

{
1 if S ∪ {i} � S ∪ {j} for the power relation k

−1 if S ∪ {j} � S ∪ {i} for the power relation k

ii) Objective social ranking :

Oijk =

{
1 if iP�jin the social ranking Ok

0 otherwise

iii) Decision Variables social ranking :

Rijk =

{
1 if iP � j in the social ranking k

0 otherwise

iv) Decision variables for coalition :

Ss =

{
1 if Ss is kept
0 otherwise

v) Decision variables Kemeny distance :

Vijk =

{
1 if Rijk 6= Oijk

0 otherwise

M is a sufficiently large constant.
We made our simulations on different sizes of training data. We

have done 1000 tests for n = 4, for different sizes of common CP-
subset. If the sub-rule obtained contains all the elements of the com-
mon CP-subset we consider it as a success. Our results are shown in
the Figure 8.
As we can see, we are able to learn the common CP-subset with few
power relations, but it seems that there exists a limit to our learning :
we can not succeed in 10% of the cases. The bigger is the common
CP-subset, the more difficult it is to find it.
We calculated the average number of coalitions in the rule found by
our LP on our 1000 test for n = 4 (see Figure 8 in the annexe). The
average number of coalition found by our LP is close to the number
of coalitions that compose the common CP-subset.

4.3 Data with different rules (CP-majority with
different coalitions)

Now we want to study the case were someone is not consistent in
the use of a sub-rule. We have random power relations and social
rankings, but social rankings haven’t been generated by a specific
sub-rule. For simplification, social ranking are transitive and contains
no indifferences. As social rankings haven’t been obtained through
a unique sub-rule, it is very unlikely to find a single sub-rule that
satisfies all the transitions from the power relations to the social
rankings. For this reason, when a sub-rule is impossible to find we
will modify our expected social ranking. The goal is to find a rule that,
given the power relations, gives an approximation of the given social
rankings as shown in Figure 9.

Figure 8. Learning rules with noise for n = 4, Y being the number of
coalitions shared by all power relations, with 1000 simulations

Example 7. We generate 3 random power relations for N = 4. To
create our social rankings (one for each power relation), we use three
different sub-rules of size y. For instance for y = 4, we can have
the first sub-rule: ∅, 4, 12, 34, the second 1, 3, 23, 34 and the third
2, 3, 13, 24. We want to find a sub rule that minimizing the distance
of generated social rankings to initial ones.

Figure 9. Learning rules with approximation

Our results for n = 4 are presented in the Figure 10. We use the
same LP model as Subsection 4.2 in order to minimize the Kemeny
distance.

As we can see the more coalitions we want to keep, the higher will
be the Kemeny distance. For Y = 8, the Kemeny distance seems to
tend to 3, knowing that for n = 4 the maximal distance is 6 (if the
social order from our rule is the exact opposite of the one given), our
learning model is not efficient. It is also harder to satisfy a lot of
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Figure 10. Kemeny distance between the real social ranking and the
approximative one for n = 4

the social rankings. Such results are not surprising since our results
are similar to a random selection when there is no structure in the data.

5 Conclusion and future work
In this paper, we presented some new results on the feasibility and the
expected results of the implementation of the CP-Majority principle
for social ranking. We analyzed the probability of having Condorcet
cycles and presented an LP model in order to have a transitive social
ranking as close as possible to a CP-majority rule. We addressed also
the learning of a CP-majority like rule using a subset of coalitions as
voters. We obtained interesting results for small n. Further simulations
must be done with bigger n and different types of data.

Moreover, we only studied complete power relations, but it may
be unlikely to happen in real life. An in-depth study of CP-Majority
principle on incomplete power relations is another interesting problem
to study. Another direction is the analysis of the consequences of a
small change in the power relation to our social ranking, similar to a
sensibility analysis.
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6 Annexe

Order on 1 Order on 1 0R1 0R2 1R2 Order

0 � 1 � 2

01 � 02 � 12 0P�1 0P�2 1P�2 0P�1P�2
01 � 12 � 02 0I�1 0P�2 1P�2 0I�1P�2
02 � 01 � 12 0P�1 0P�2 1I�2 0P�1I�2
02 � 12 � 01 0P�1 0I�2 1P�2
12 � 01 � 02 0I�1 0I�2 1P�2
12 � 02 � 01 0I�1 0I�2 1I�2 0I�1I�2

0 � 2 � 1

01 � 02 � 12 0P�1 0P�2 1I�2 0P�1I�2
01 � 12 � 02 0I�1 0I�2 1P�2
02 � 01 � 12 0P�1 0P�2 2P�1 0P�2P�1
02 � 12 � 01 0P�1 0I�2 2P�1 0I�1P�2
12 � 01 � 02 0I�1 0I�2 1I�2 0I�1I�2
12 � 02 � 01 0I�1 0I�2 2P�1

1 � 0 � 2

01 � 02 � 12 0I�1 0P�2 1P�2 0I�1P�2
01 � 12 � 02 1P�0 0P�2 1P�2 1P�0P�2
02 � 01 � 12 0I�1 0I�2 1P�2
02 � 12 � 01 0I�1 0I�2 1I�2 0I�1I�2
12 � 01 � 02 1P�0 0I�2 1P�2 1P�0I�2
12 � 02 � 01 0P�1 0I�2 1I�2

1 � 2 � 0

01 � 02 � 12 0I�1 0I�2 1P�2
01 � 12 � 02 1P�0 0I�2 1P�2 1P�0I�1
02 � 01 � 12 0I�1 0I�2 1I�2 0I�I�1I�2
02 � 12 � 01 0I�1 2P�0 1I�2
12 � 01 � 02 1P�0 2P�0 1P�2 1P�2P�0
12 � 02 � 01 1P�0 2P�0 1I�2 1I�2P�0

2 � 0 � 1

01 � 02 � 12 0P�1 0I�2 1I�2
01 � 12 � 02 0I�1 0I�2 1I�2 0I�1I�2
02 � 01 � 12 0P�1 0I�2 2P�1 0I�2P�1
02 � 12 � 01 0P�1 2P�0 2P�1 2P�0P�1
12 � 01 � 02 0I�1 2P�0 1I�2
12 � 02 � 01 0I�1 2P�0 2P�1 2P�0I�1

2 � 0 � 1

01 � 02 � 12 0I�1 0I�2 1I�2 0I�1I�2
01 � 12 � 02 1P�0 0I�2 1I�2
02 � 01 � 12 0I�1 0I�2 2P�1
02 � 12 � 01 0I�1 2P�0 2P�1 2P�0I�1
12 � 01 � 02 1P�0 2P�0 1I�2 1I�2P�0
12 � 02 � 01 1P�0 2P�0 2P�1 2P�1P�0

Table 7. CP-information tables for N = {0, 1, 2}

Number of power Y = 2 Y = 4 Y = 6 Y = 8
relation used to learn

2 3.278 4.326 4.481 4.544
3 3.736 5.427 6.619 7.567
4 3.519 5.328 6.918 8.247
5 3.219 5.22 7.05 8.605
6 3.258 5.173 7.055 8.788
7 3.127 5.112 7.016 8.84
8 2.95 5.098 6.94 8.896
9 2.661 4.913 6.973 8.896
10 2.705 4.862 6.936 8.943
11 2.505 4.765 6.847 8.887
12 2.56 4.691 6.831 8.918
13 2.406 4.61 6.806 8.885

Table 8. Average number of coalition in learning rules with noise, Y : the
nbr of coalitions shared by all power relations, tested on 1000 simulations
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