E. Abdou, A. Deredjian, M. P. Jiménez-de-bagüés, S. Köhler, and V. Jubier-maurin, RegA, the transcriptional regulator of the two-component system RegB/RegA of Brucella suis, is a controller of both oxidative respiration and denitrification, required for chronic infection in mice, Infect. Immun, vol.81, pp.2053-2061, 2013.

A. Dahouk, S. Jubier-maurin, V. Neubauer, H. Köhler, and S. , Quantitative analysis of the Brucella suis proteome reveals metabolic adaptation to long-term nutrient starvation, BMC Microbiol, vol.13, p.199, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02165043

A. Dahouk, S. Jubier-maurin, V. Scholz, H. C. Tomaso, H. Karges et al., Quantitative analysis of the intramacrophagic Brucella suis proteome reveals metabolic adaptation to late stage of cellular infection, Proteomics, vol.8, pp.3862-3870, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02424978

A. Dahouk, S. Loisel-meyer, S. Scholz, H. C. Tomaso, H. Kersten et al., Proteomic analysis of Brucella suis under oxygen deficiency reveals flexibility in adaptive expression of various pathways, Proteomics, vol.9, pp.3011-3021, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02424979

C. A. Allen, L. G. Adams, and T. A. Ficht, Transposon-derived Brucella abortus rough mutants are attenuated and exhibit reduced intracellular survival, Infect. Immun, vol.66, pp.1008-1016, 1998.

J. Ariza, C. Pigrau, C. Cañas, A. Marrón, F. Martínez et al., Current understanding and management of chronic hepatosplenic suppurative brucellosis, Clin. Infect. Dis, vol.32, pp.1024-1033, 2001.

K. R. Atkuri and L. A. Herzenberg, Culturing at atmospheric oxygen levels impacts lymphocyte function, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.3756-3759, 2005.

T. L. Bailey and M. Gribskov, Combining evidence using p-values: application to sequence homology searches, Bioinformatics, vol.14, pp.48-54, 1998.

A. B. Bandara, A. Contreras, A. Contreras-rodriguez, A. M. Martins, V. Dobrean et al., Brucella suis urease encoded by ure1 but not ure2 is necessary for intestinal infection of BALB/c mice, BMC Microbiol, vol.7, p.57, 2007.

S. K. Banerjee, M. Kumar, R. Alokam, A. K. Sharma, A. Chatterjee et al., Targeting multiple response regulators of Mycobacterium tuberculosis augments the host immune response to infection, Sci. Rep, vol.6, p.25851, 2016.

M. J. Bessman, D. N. Frick, and S. F. Handley, The MutT proteins or "Nudix" hydrolases, a family of versatile, widely distributed, "housecleaning" enzymes, J. Biol. Chem, vol.271, pp.25059-25062, 1996.

A. Blumenthal, C. Trujillo, S. Ehrt, and D. Schnappinger, Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo, PLoS ONE, vol.5, p.15667, 2010.

C. Boon, D. , and T. , How Mycobacterium tuberculosis goes to sleep: the dormancy survival regulator DosR a decade later, Future Microbiol, vol.7, pp.513-518, 2012.

M. L. Boschiroli, S. Ouahrani-bettache, V. Foulongne, S. Michaux-charachon, G. Bourg et al., The Brucella suis virB operon is induced intracellularly in macrophages, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.1544-1549, 2002.

H. I. Boshoff, C. E. Barry, and . Iii, Tuberculosis metabolism and respiration in the absence of growth, Nat. Rev. Microbiol, vol.3, pp.1740-1526, 2005.

N. Bosseray, M. Plommet, and J. De-rycke, Development of Brucella abortus, Brucella melitensis and Brucella suis infection in mice to a chronic stage and cure, Ann. Rech. Vet, vol.13, pp.153-161, 1982.

L. N. Calhoun and Y. M. Kwon, Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review, J. Appl. Microbiol, vol.110, pp.375-386, 2011.

M. C. Carrica, I. Fernandez, M. A. Martí, G. Paris, and F. A. Goldbaum, The NtrY/X two-component system of Brucella spp. acts as a redox sensor and regulates the expression of nitrogen respiration enzymes, Mol. Microbiol, vol.85, pp.39-50, 2012.

M. C. Carrica, I. Fernandez, R. Sieira, G. Paris, and F. A. Goldbaum, The two-component systems PrrBA and NtrYX co-ordinately regulate the adaptation of Brucella abortus to an oxygen-limited environment, Mol. Microbiol, vol.88, pp.222-233, 2013.

E. I. Castañeda-roldán, S. Ouahrani-bettache, Z. Saldaña, F. Avelino, M. A. Rendón et al., Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells, Cell Microbiol, vol.8, pp.1877-1887, 2006.

C. C. Caswell, A. E. Elhassanny, E. E. Planchin, C. M. Roux, J. N. Weeks-gorospe et al., Diverse genetic regulon of the virulence-associated transcriptional regulator MucR in Brucella abortus 2308, Infect. Immun, vol.81, pp.1040-1051, 2013.

J. Celli, Surviving inside a macrophage: the many ways of Brucella, Res. Microbiol, vol.157, pp.93-98, 2006.

J. C. Chung, O. Rzhepishevska, M. Ramstedt, W. , and M. , Type III secretion system expression in oxygen-limited Pseudomonas aeruginosa cultures is stimulated by isocitrate lyase activity, Open Biol, vol.3, p.120131, 2016.

A. Cloeckaert, I. Jacques, M. J. Grilló, C. M. Marín, M. Grayon et al., Development and evaluation as vaccines in mice of Brucella melitensis Rev.1 single and double deletion mutants of the bp26 and omp31 genes coding for antigens of diagnostic significance in ovine brucellosis, Vaccine, vol.22, pp.2827-2835, 2004.

A. Contreras-rodriguez, B. Ramirez-zavala, A. Contreras, G. G. Schurig, N. Sriranganathan et al., Purification and characterization of an immunogenic aminopeptidase of Brucella melitensis, Infect. Immun, vol.71, pp.5238-5244, 2003.

M. F. De-jong and R. M. Tsolis, Brucellosis and type IV secretion, Future Microbiol, vol.7, pp.47-58, 2012.

R. Delrue, C. Deschamps, S. Léonard, C. Nijskens, I. Danese et al., A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis, Cell Microbiol, vol.7, pp.1151-1161, 2005.

R. Delrue, P. Lestrate, A. Tibor, J. Letesson, D. Bolle et al., Brucella pathogenesis, genes identified from random large-scale screens, FEMS Microbiol. Lett, vol.231, pp.1-12, 2004.

N. Dorrell, S. Spencer, V. Foulonge, P. Guigue-talet, D. O'callaghan et al., Identification, cloning and initial characterisation of FeuPQ in Brucella suis: a new sub-family of two-component regulatory systems, FEMS Microbiol Lett, vol.162, pp.143-150, 1998.

M. D. Edmonds, A. Cloeckaert, and P. H. Elzer, Brucella species lacking the major outer membrane protein Omp25 are attenuated in mice and protect against Brucella melitensis and Brucella ovis, Vet. Microbiol, vol.88, pp.205-221, 2002.

S. Ekici, G. Pawlik, E. Lohmeyer, H. G. Koch, and F. Daldal, Biogenesis of cbb(3)-type cytochrome c oxidase in Rhodobacter capsulatus, Biochim. Biophys. Acta, vol.1817, pp.898-910, 2012.

A. E. Elhassanny, E. S. Anderson, E. A. Menscher, R. M. Roop, and . Ii, The ferrous iron transporter FtrABCD is required for the virulence of Brucella abortus 2308 in mice, Mol. Microbiol, vol.88, pp.1070-1082, 2013.

S. Elsen, L. R. Swem, D. L. Swem, and C. E. Bauer, RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol, Mol. Biol. Rev, vol.68, pp.263-279, 2004.

S. Endley, D. Mcmurray, and T. A. Ficht, Interruption of the cydB Locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection, J. Bacteriol, vol.183, pp.2454-2462, 2001.

J. M. Eraso, J. H. Roh, X. Zeng, S. J. Callister, M. S. Lipton et al., Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4.1: combined transcriptome and proteome analysis, J. Bacteriol, vol.190, pp.4831-4848, 2008.

K. C. Fahnoe, M. E. Flanagan, G. Gibson, V. Shanmugasundaram, Y. Che et al., Non-traditional antibacterial screening approaches for the identification of novel inhibitors of the glyoxylate shunt in gram-negative pathogens, PLoS ONE, vol.7, p.51732, 2012.

F. C. Fang, S. J. Libby, M. E. Castor, and A. M. Fung, Isocitrate lyase (AceA) is required for Salmonella persistence but not for acute lethal infection in mice, Infect. Immun, vol.73, pp.2547-2549, 2005.

J. M. Gee, M. W. Valderas, M. E. Kovach, V. K. Grippe, G. T. Robertson et al., The Brucella abortus Cu, Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wildtype virulence in experimentally infected mice, Infect Immun, vol.73, pp.2873-2880, 2005.

R. Gennis and S. Valley, Respiration, Escherichia coli and Salmonella cellular and molecular biology, pp.217-261, 1996.

P. Gerhardt and J. B. Wilson, The nutrition of brucellae: growth in simple chemically defined media, J. Bacteriol, vol.56, pp.17-24, 1948.

F. Godfroid, B. Taminiau, I. Danese, P. Denoel, A. Tibor et al., Identification of the perosamine synthetase gene of Brucella melitensis 16M and involvement of lipopolysaccharide O side chain in Brucella survival in mice and in macrophages, Infect. Immun, vol.66, pp.5485-5493, 1998.

V. Haine, M. Dozot, J. Dornand, J. J. Letesson, D. Bolle et al., NnrA is required for full virulence and regulates several Brucella melitensis denitrification genes, J. Bacteriol, vol.188, pp.1615-1619, 2006.

V. Haine, A. Sinon, F. Van-steen, S. Rousseau, M. Dozot et al., Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence, Infect. Immun, vol.73, pp.5578-5586, 2005.

N. Hanna, S. Ouahrani-bettache, K. L. Drake, L. G. Adams, S. Köhler et al., Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses, BMC Genomics, vol.14, p.459, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02352345

C. Hoboth, R. Hoffmann, A. Eichner, C. Henke, S. Schmoldt et al., Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis, J. Infect. Dis, vol.200, 2009.

R. W. Honaker, R. L. Leistikow, I. L. Bartek, and M. I. Voskuil, Unique roles of DosT and DosS in DosR regulon induction and Mycobacterium tuberculosis dormancy, Infect. Immun, vol.77, pp.3258-3263, 2009.

B. P. Hurley, A. L. Goodman, K. L. Mumy, P. Murphy, S. Lory et al., The two-component sensor response regulator RoxS/RoxR plays a role in Pseudomonas aeruginosa interactions with airway epithelial cells, Microbes Infect, vol.12, pp.190-198, 2010.

P. Ø. Jensen, T. Bjarnsholt, R. Phipps, T. B. Rasmussen, H. Calum et al., Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa, Microbiology, vol.153, pp.1329-1338, 2007.

M. P. Jiménez-de-bagüés, S. Loisel-meyer, J. Liautard, and V. Jubier-maurin, Different roles of the two high-oxygen-affinity terminal oxidases of Brucella suis: cytochrome c oxidase, but not ubiquinol oxidase, is required for persistence in mice, Infect. Immun, vol.75, pp.531-535, 2007.

T. Kawakami, M. Kuroki, M. Ishii, Y. Igarashi, and H. Arai, Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa, Environ. Microbiol, vol.12, pp.1399-1412, 2010.

D. H. Kim, J. J. Lim, J. J. Lee, D. G. Kim, H. J. Lee et al., Identification of genes contributing to the intracellular replication of Brucella abortus within HeLa and RAW 264.7 cells, Vet. Microbiol, vol.158, pp.322-328, 2012.

S. Kim, M. Watarai, Y. Kondo, J. Erdenebaatar, S. Makino et al., Isolation and characterization of mini-Tn5Km2 insertion mutants of Brucella abortus deficient in internalization and intracellular growth in HeLa cells, Infect. Immun, vol.71, pp.3020-3027, 2003.

S. Köhler, V. Foulongne, S. Ouahrani-bettache, G. Bourg, J. Teyssier et al., The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell, Proc. Natl. Acad. Sci. U.S.A, vol.99, pp.15711-15716, 2002.

J. Lamontagne, A. Forest, E. Marazzo, F. Denis, H. Butler et al., Intracellular adaptation of Brucella abortus, J. proteome Res, vol.8, pp.1594-1609, 2009.

W. P. Laratta, P. S. Choi, I. E. Tosques, and J. P. Shapleigh, Involvement of the PrrB/PrrA two-component system in nitrite respiration in Rhodobacter sphaeroides 2.4.3: evidence for transcriptional regulation, J. Bacteriol, vol.184, pp.3521-3529, 2002.

P. Lestrate, A. Dricot, R. Delrue, C. Lambert, V. Martinelli et al., Attenuated signature-tagged mutagenesis mutants of Brucella melitensis identified during the acute phase of infection in mice, Infect. Immun, vol.71, pp.7053-7060, 2003.

K. Levier, R. W. Phillips, V. K. Grippe, R. M. Roop, . Ii et al., Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival, Science, vol.287, pp.2492-2493, 2000.

T. L. Lindsey, J. M. Hagins, P. A. Sokol, and L. A. Silo-suh, Virulence determinants from a cystic fibrosis isolate of Pseudomonas aeruginosa include isocitrate lyase, Microbiology, vol.154, pp.1616-1627, 2008.

S. Loisel-meyer, M. P. Jiménez-de-bagüés, E. Bassères, J. Dornand, S. Köhler et al., Requirement of norD for Brucella suis virulence in a murine model of in vitro and in vivo infection, Infect. Immun, vol.74, pp.1973-1976, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02165790

S. Loisel-meyer, M. P. Jiménez-de-bagüés, S. Köhler, J. P. Liautard, and V. Jubier-maurin, Differential use of the two high-oxygen-affinity terminal oxidases of Brucella suis for in vitro and intramacrophagic multiplication, Infect. Immun, vol.73, pp.7768-7771, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02165806

J. E. Lopilato, J. L. Garwin, S. D. Emr, T. J. Silhavy, and J. R. Beckwith, Dribose metabolism in Escherichia coli K-12: genetics, regulation, and transport, J. Bacteriol, vol.158, pp.665-673, 1984.

L. Mao, C. Mackenzie, J. H. Roh, J. M. Eraso, S. Kaplan et al., Combining microarray and genomic data to predict DNA binding motifs, Microbiology, vol.151, pp.3197-3213, 2005.

X. Z. Mao, Q. Ma, C. Zhou, X. Chen, H. Zhang et al., DOOR 2.0: presenting operons and their functions through dynamic and integrated views, Nucleic Acids Res, vol.42, pp.654-659, 2014.

J. D. Mckinney, K. Höner-zu-bentrup, E. J. Muñoz-elías, A. Miczak, B. Chen et al., Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase, Nature, vol.406, pp.735-738, 2000.

A. Mirabella, M. Terwagne, M. S. Zygmunt, A. Cloeckaert, X. De-bolle et al., Brucella melitensis MucR, an orthologue of Sinorhizobium meliloti MucR, is involved in resistance to oxidative, detergent, and saline stresses and cell envelope modifications, J. Bacteriol, vol.195, pp.453-465, 2013.

E. J. Muñoz-elías and J. D. Mckinney, Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence, Nat. Med, vol.11, pp.638-644, 2005.

D. O'callaghan, C. Cazevieille, A. Allardet-servent, M. L. Boschiroli, G. Bourg et al., A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis, Mol. Microbiol, vol.33, pp.1210-1220, 1999.

J. I. Oh, I. J. Ko, and S. Kaplan, The default state of the membrane-localized histidine kinase PrrB of Rhodobacter sphaeroides 2.4.1 is in the kinase-positive mode, J. Bacteriol, vol.183, pp.6807-6814, 2001.

K. L. Palmer, S. A. Brown, and M. Whiteley, Membrane-bound nitrate reductase is required for anaerobic growth in cystic fibrosis sputum, J. Bacteriol, vol.189, pp.4449-4455, 2007.

G. Pappas, The changing Brucella ecology: novel reservoirs, new threats, Int. J. Antimicrob. Agents, vol.36, pp.8-11, 2010.

R. F. Rest and D. C. Robertson, Characterization of the electron transport system in Brucella abortus, J. Bacteriol, vol.122, pp.139-144, 1975.

P. R. Romero and P. D. Karp, Using functional and organizational information to improve genome-wide computational prediction of transcription units on pathway-genome databases, Bioinformatics, vol.20, pp.709-717, 2004.

S. Ronneau, S. Moussa, T. Barbier, R. Conde-Álvarez, A. Zúñiga-ripa et al., Brucella, nitrogen and virulence, Crit. Rev. Microbiol, vol.42, pp.507-525, 2016.

F. Sangari, A. Cayón, A. Seoane, and J. Garciía-lobo, Brucella abortus ure2 region contains an acid-activated urea transporter and a nickel transport system, BMC Microbiology, vol.10, p.107, 2010.

F. J. Sangari, J. Agüero, and J. M. García-lobo, Improvement of the Brucella abortus B19 vaccine by its preparation in a glycerol based medium, Vaccine, vol.14, pp.274-276, 1996.

F. J. Sangari, A. Seoane, M. C. Rodríguez, J. Agüero, and J. M. García-lobo, Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium, Infect. Immun, vol.75, pp.774-780, 2007.

D. Schnappinger, S. Ehrt, M. I. Voskuil, Y. Liu, J. A. Mangan et al., Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment, J. Exp. Med, vol.198, pp.693-704, 2003.

H. C. Scholz, S. Revilla-fernandez, S. Al-dahouk, J. A. Hammerl, M. S. Zygmunt et al., Brucella vulpis sp. nov., isolated from mandibular lymph nodes of red foxes (Vulpes vulpes), Int. J. Syst. Evol. Microbiol, vol.66, pp.2090-2098, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346188

R. Sharma, O. Das, S. G. Damle, and A. K. Sharma, Isocitrate lyase: a potential target for anti-tubercular drugs, Recent Pat. Inflamm. Allergy Drug Discov, vol.7, pp.114-123, 2013.

L. Shi, C. D. Sohaskey, B. D. Kana, S. Dawes, R. J. North et al., Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.15629-15634, 2005.

A. H. Sohn, W. S. Probert, C. A. Glaser, N. Gupta, A. W. Bollen et al., Human neurobrucellosis with intracerebral granuloma caused by a marine mammal Brucella spp, Emerg. Infect. Dis, vol.9, pp.485-488, 2003.

C. G. Trant, T. L. Lacerda, N. B. Carvalho, V. Azevedo, G. M. Rosinha et al., The Brucella abortus phosphoglycerate kinase mutant is highly attenuated and induces protection superior to that of vaccine strain 19 in immunocompromised and immunocompetent mice, Infect. Immun, vol.78, pp.2283-2291, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00507321

H. Turan, K. Serefhanoglu, E. Karadeli, T. Togan, A. et al., Osteoarticular involvement among 202 brucellosis cases identified in Central Anatolia region of Turkey, Intern. Med, vol.50, pp.421-428, 2011.

V. G. Tusher, R. Tibshirani, C. , and G. , Significance analysis of microarrays applied to the ionizing radiation response, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.5116-5121, 2001.

M. I. Voskuil, D. Schnappinger, K. C. Visconti, M. I. Harrell, G. M. Dolganov et al., Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program, J. Exp. Med, vol.198, pp.705-713, 2003.

L. G. Wayne and C. D. Sohaskey, Nonreplicating persistence of Mycobacterium tuberculosis, Annu. Rev. Microbiol, vol.55, pp.139-163, 2001.

J. Wu and C. Bauer, RegB/RegA, a global redox-responding twocomponent system, Bacterial Signal Transduction: Networks and Drug Targets, pp.131-148, 2008.

Q. Wu, J. Pei, C. Turse, and T. A. Ficht, Mariner mutagenesis of Brucella melitensis reveals genes with previously uncharacterized roles in virulence and survival, BMC Microbiol, vol.6, p.102, 2006.

A. Zúñiga-ripa, T. Barbier, R. Conde-Álvarez, E. Martinez-gómez, L. Palacios-chaves et al., Brucella abortus depends on pyruvate phosphate dikinase and malic enzyme but not on Fbp and GlpX fructose-1,6-bisphosphatases for full virulence in laboratory models, J. Bacteriol, vol.196, pp.3045-3057, 2014.