A. A. Konnov, A. Mohammad, N. I. Velamati-ratna-kishore, C. Kim, S. Prathap et al., A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures, Prog. Energy Combust. Sci, vol.68, pp.197-267, 2018.

Y. Wu, V. Modica, B. Rossow, and F. Grisch, Effects of pressure and preheating temperature on the laminar flame speed of methane/air and acetone/air mixtures, Fuel, vol.185, pp.577-588, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01611232

O. Askari, Z. Wang, K. Vien, M. Sirio, and H. Metghalchi, On the flame stability and laminar burning speeds of syngas/O2/He premixed flame, Fuel, vol.190, pp.90-103, 2017.

F. N. Egolfopoulos, P. Cho, and C. K. Law, Laminar flame speeds of methane-air mixtures under reduced and elevated pressures, Combust. Flame, vol.76, pp.90119-90122, 1989.

P. S. Veloo, Y. L. Wang, F. N. Egolfopoulos, and C. Westbrook, A comparative experimental and computational study of methanol, ethanol, and n-butanol flames, Combust. Flame, vol.157, pp.1989-2004, 2010.

. L-p-h-de-goey, R. Van-maaren, and . Quax, Stabilization of Adiabatic Premixed Laminar Flames on a Flat Flame Burner, vol.92, pp.201-207, 1993.

V. A. Alekseev, J. D. Naucler, M. Christensen, E. J. Nilsson, E. N. Volkov et al., Experimental Uncertainties of the Heat Flux Method for Measuring Burning Velocities, Combust. Sci. Technol, vol.188, pp.853-894, 2016.

T. Tahtouh, F. Halter, C. Mounaïm-rousselle, and E. Samson, Experimental Investigation of the Initial Stages of Flame Propagation in a Spark-Ignition Engine: Effects of Fuel, Hydrogen Addition and Nitrogen Dilution, SAE Int. J. Engines, vol.3, pp.1-19, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00657854

E. Varea, V. Modica, A. Vandel, and B. Renou, Measurement of laminar burning velocity and Markstein length relative to fresh gases using a new postprocessing procedure: Application to laminar spherical flames for methane, ethanol and isooctane/air mixtures, Combust. Flame, vol.159, pp.577-590, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01670652

M. Metghalchi and J. C. Keck, Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature, Combust. Flame, vol.48, pp.191-210, 1982.

A. Omari and L. Tartakovsky, Measurement of the laminar burning velocityusing the confined and unconfined spherical flame methods -A comparative analysis, Combust. Flame, vol.168, pp.127-137, 2016.

C. K. Law, Combustion at a crossroads: Status and prospects, Proc. Combust. Inst, vol.31, pp.1-29, 2007.

C. K. Wu and C. K. Law, On the determination of laminar flame speeds from stretched flames, Symp. Combust, vol.20, pp.80693-80700, 1985.

A. Kelley and C. Law, Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames, Combust. Flame, vol.156, pp.1844-1851, 2009.

J. H. Tien and M. Matalon, On the burning velocity of stretched flames, Combust. Flame, vol.84, pp.238-248, 1991.

F. Halter, C. Tahtouh, and . Mounaïm-rousselle, Nonlinear effects of stretch on the flame front propagation, Combust. Flame, vol.157, pp.1825-1832, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01276405

X. Li, E. Hu, X. Meng, C. Peng, X. Lu et al., Effect of Lewis Number on Nonlinear Extrapolation Methods from Expanding Spherical Flames, Combust. Sci. Technol, pp.1510-1526, 2017.

F. Wu, W. Liang, Z. Chen, Y. Ju, and C. K. Law, Uncertainty in stretch extrapolation of laminar flame speed from expanding spherical flames, Proc. Combust. Inst, vol.35, pp.663-670, 2015.

J. Beeckmann, N. Chaumeix, P. Dagaut, G. Dayma, F. Foucher et al., Collaborative study for accurate measurements of laminar burning velocity, Proc. Eur, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00916265

B. Galmiche, F. Halter, and F. Foucher, Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of isooctane/air mixtures, Combust. Flame, vol.159, pp.3286-3299, 2012.

A. E. Lutz, F. M. Rupley, R. J. Kee, E. Stanjan, F. Computing et al., , 1996.

R. J. Moffat, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci, vol.1, pp.3-17, 1988.

A. E. Dahoe and L. P. De-goey, On the determination of the laminar burning velocity from closed vessel gas explosions, J. Loss Prev. Process Ind, vol.16, pp.457-478, 2003.

D. Bradley, M. Hicks, C. Lawes, R. Sheppard, and . Woolley, The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-octane-Air and Iso-octanen-Heptane-Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb, Combust. Flame, vol.115, pp.126-144, 1998.

A. A. Konnov, R. Riemeijer, V. N. Kornilov, and L. P. De-goey, 2D effects in laminar premixed flames stabilized on a flat flame burner, vol.47, pp.213-223, 2013.

T. Ombrello, C. Carter, and V. Katta, Burner platform for subatmospheric pressure flame studies, Combust. Flame, vol.159, pp.2363-2373, 2012.

N. Hinton, R. Stone, and R. Cracknell, Laminar burning velocity measurements in constant volume vessels -Reconciliation of flame front imaging and pressure rise methods, Fuel, vol.211, pp.446-457, 2018.

M. Hassan, K. Aung, and G. Faeth, Measured and predicted properties of laminar premixed methane/air flames at various pressures, Combust. Flame, vol.115, pp.539-550, 1998.

T. Simon-crispin, Burning velocity and the influence of flame stretch, 1991.

A. M. Garforth and C. J. Rallis, Laminar burning velocity of stoichiometric methane-air: pressure and temperature dependence, Combust. Flame, vol.31, pp.53-68, 1978.

W. Liang, F. Wu, and C. K. Law, Extrapolation of laminar flame speeds from stretched flames: Role of finite flame thickness, Proc. Combust. Inst, 2016.

G. M-l-frankel and . Sivashinsky, On Effects Due To Thermal Expansion and Lewis Number in Spherical Flame Propagation, Combust. Sci. Technol, vol.31, pp.131-138, 1983.

Z. Chen and . Ju, Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame, Combust. Theory Model, vol.11, pp.427-453, 2007.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer et al., Z. Qin