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Amino acidic substitutions 
in the polymerase N-terminal region 
of a reassortant betanodavirus strain causing 
poor adaptation to temperature increase
Sandra Souto1,2* , Lucía Vázquez‑Salgado1, José G. Olveira1 and Isabel Bandín1

Abstract 

Nervous necrosis virus (NNV), Genus Betanodavirus, is the causative agent of viral encephalopathy and retinopathy 
(VER), a neuropathological disease that causes fish mortalities worldwide. The NNV genome is composed of two 
single‑stranded RNA molecules, RNA1 and RNA2, encoding the RNA polymerase and the coat protein, respectively. 
Betanodaviruses are classified into four genotypes: red‑spotted grouper nervous necrosis virus (RGNNV), striped jack 
nervous necrosis virus (SJNNV), barfin flounder nervous necrosis virus (BFNNV) and tiger puffer nervous necrosis 
virus (TPNNV). In Southern Europe the presence of RGNNV, SJNNV and their natural reassortants (in both RNA1/RNA2 
forms: RGNNV/SJNNV and SJNNV/RGNNV) has been reported. Pathology caused by these genotypes is closely linked 
to water temperature and the RNA1 segment encoding amino acids 1–445 has been postulated to regulate viral 
adaptation to temperature. Reassortants isolated from sole (RGNNV/SJNNV) show 6 substitutions in this region when 
compared with the RGNNV genotype (positions 41, 48, 218, 223, 238 and 289). We have demonstrated that change of 
these positions to those present in the RGNNV genotype cause low and delayed replication in vitro when compared 
with that of the wild type strain at 25 and 30 °C. The experimental infections confirmed the impact of the mutations 
on viral replication because at 25 °C the viral load and the mortality were significantly lower in fish infected with the 
mutant than in those challenged with the non‑mutated virus. It was not possible to challenge fish at 30 °C because of 
the scarce tolerance of sole to this temperature.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Viral virulence is determined by multiple factors, includ-
ing host cell recognition, viral replication efficiency and/
or ability to deal with the host’s immune system [1]. In 
addition, the interaction host-virus-environment can 
have also relevant effects on virus production, and there-
fore, on virulence [2]. Regarding environmental influ-
ences, temperature has a crucial effect on viruses hosted 
by fish because these are ectothermic animals.

Nervous necrosis viruses (NNV), members of the 
genus Betanodavirus, are the causative agents of a serious 
neuropathological condition, affecting fish worldwide, 

known as viral encephalopathy and retinopathy (VER). 
The genome of betanodaviruses is composed of two sin-
gle stranded positive sense RNA molecules. The RNA1 
segment encodes the RNA dependent RNA polymerase 
(RdRp) also known as protein A, and RNA 2 codes for the 
coat protein [3]. In addition, a subgenomic RNA (RNA3) 
is transcribed from the 3′ end of RNA1 [4, 5]. Betano-
daviruses have been traditionally classified, based on a 
small variable sequence of RNA2, into four genotypes 
[6]. Geographical distribution of these genotypes seems 
to be related to their temperature sensitivity. Thus, the 
red-spotted grouper nervous necrosis virus (RGNNV) 
genotype, which affects warm-water species, is the most 
widely distributed, and the one with the highest number 
of susceptible species; the barfin flounder nervous necro-
sis virus (BFNNV) genotype seems limited to cold-water 
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fish; the tiger puffer nervous necrosis virus (TPNNV) 
genotype has only been described in one species in Japan, 
and the striped jack nervous necrosis virus (SJNNV), 
although for a long time it was considered limited to fish 
from Japanese waters, has also been detected in the Ibe-
rian Peninsula [7]. In addition, in Southern Europe, reas-
sortants between both RGNNV and SJNNV genotypes 
have been isolated from Senegalese sole (Solea senega-
lensis) and other fish species [8, 9]. Temperature sensi-
tivity of betanodaviruses seems to be regulated by RNA1 
[10, 11] and more specifically by the region encoding the 
amino acid residues 1–445 [10]. Reassortant strains (har-
bouring a RGNNV-type RNA1 and a SJNNV-RNA2) iso-
lated from Senegalese sole show 6 amino acidic changes 
with respect to the RGNNV genotype in this region 
(positions 41, 48, 218, 223, 238 and 289). In addition, 
whereas RGNNV strains can cause disease from 23 to 
30 °C (in sea bass) to 28–30 °C (in different grouper spe-
cies) [12, 13], the reassortant strain causes high mortality 
in sole from 18 to 22 °C [14].

This study deals with the potential association of 
these substitutions with a differential replicative capac-
ity at different temperatures in vitro and in vivo. To this 
end, reversion to the RGNNV type of all 6 positions was 
accomplished by site-directed mutagenesis and the rep-
lication of mutated virus was compared with that of wild 
type (wt) strain in E-11 cells and in sole brain tissues. 
RGNNV and SJNNV strains were also used for compara-
tive purposes in the in vitro replication studies. In addi-
tion, the effect of the mutations on virulence for sole was 
also analyzed.

Materials and methods
Viruses and cells
The betanodavirus strains used in this study were: the 
natural reassortant SpSsIAusc160.03 (herafter wt160) 
showing a RGNNV RNA1 and a SJNNV RNA2 [8], 
employed as the parental strain for the construction of 
the recombinant viruses, and two recombinant strains: 
r160, with a genome sequence identical to wt160 [15] and 

r1_445, harbouring 6 point mutations in the RNA1 and 
generated in this study. In addition, the RGNNV-type 
strain SGWak97 and the SJNNV-type strain SJNag93 
were used for comparative purposes. All the strains were 
grown on E-11 cells using L-15 Leibovitz (Lonza, Basel, 
Switzerland) medium supplemented with penicillin 
(100 units/mL), streptomycin (100 mg/mL) and 2% foe-
tal bovine serum (FBS, Lonza) at 25  °C. Inoculated cell 
cultures were checked daily for development of cyto-
pathic effect (CPE). After destruction of cell monolayers, 
crude virus, i.e. cell suspensions, were collected, clarified 
by centrifugation at 4000 ×  g for 15  min and stored at 
−20 °C until used.

For virus titration, tenfold dilutions of virus were 
inoculated into subconfluent E-11 cells in 96-well plates 
(Sarstedt, Nümbrecht, Germany). The titre was calcu-
lated after incubation for 10 days at 25 °C and expressed 
as 50% tissue culture infective dose  (TCID50) according 
to Reed and Müench [16].

Transfection experiments were performed using 
BSRT7/5 cells [17], kindly provided by Dr K. K. Conzel-
mann (Ludwig-Maximilians-Universität Munich, Ger-
many), grown in Dulbecco’s modified Eagle’s medium 
(DMEM; Lonza) supplemented with 10% FBS, glutamine 
(2 mM/L, Lonza), penicillin (100 U/mL) and streptomy-
cin (100 mg/mL) at 37 °C in a 5%  CO2 humidified cham-
ber. Geneticin (G418, 1 mg/mL final concentration) was 
added every two subcultures.

Recovery of recombinant viruses
The recombinant virus termed r1_445, with amino acid 
substitutions at position 41, 48, 218, 223, 238 and 289 in 
the polymerase protein, was generated by reverse genetics 
as described previously [15]. A cDNA clone containing 
the complete sequence of the wt160 (pBS160R1) [15] was 
used as template to introduce point mutations through 
site-directed mutagenesis (QuikChange site-directed 
mutagenesis kit; Stratagene, La Jolla, CA, USA) using 
the primers listed in Table  1, obtaining  pBS160R11_445. 
BSRT7/5 monolayers were transfected with a mixture 

Table 1 Oligonucleotides used for mutagenesis and positions of the point mutations in strain r1_445 

a Nucleotides used for mutagenesis are underlined.
b Positions in SpSsIAusc160.03 RNA1 genome (GenBank accession no. NC_024492.1).

Oligonucleotide sequence (5′ to 3′)a nt  substitutionb aa substitution

AGG ATT ATC GCC AACGC GTCA TCG CTG AGA AGAAA A‑199 → G Iso‑41 → Val

CGC GTC ATC GCT GAG AAG AAA CAA ATTC TCC GTG ATG C G‑220 → A Val‑48 → Iso

CCC GAC CTC GAG GTTTCT GGG CGA ATC C‑730 → T Leu‑218 → Phe

GAG GTT TCT GGG CGA ATC TGATGC AGA TCCTG T‑745 → A Leu‑223 → Met

GTC ACC GCG ATC TGT AGT TTTCT TTA CAC CAA GC A‑791 → T Thr‑238 → Phe

CAA GAT CAG TGA GTA TGG TGCTG AGT TGG AGT ATA TGC G A‑943 → G Thr‑289 → Ala
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of point mutated  pBS160R11_445 (1  µg) and pBS160R2 
(1 µg) [15] by using the Lipofectamine2000 reagent (Inv-
itrogen, Waltham, MA USA) according to the supplier’s 
instructions. Cells were incubated for 24 h at 37  °C and 
then shifted to 28 °C for 7 days. Cells were suspended in 
the supernatant by scraping the wells and then subjected 
to freezing/thawing and clarification by centrifugation. 
Supernatants were subjected to several passages on E-11 
cells until CPE was observed. Virus progeny integrity 
was confirmed by sequencing the region of the RNA1 
which contains the desired substitutions (GATC Biotech, 
Ebersberg, Germany) amplified using the commercial 
kit Go Taq Flexi DNA Polymerase (Promega, Madison, 
WI, USA) and the primers NNVs1_1f and NNVs1_2r [8]. 
Sequencing was also used after each experiment to con-
firm the identity of viral recombinants.

Effect of temperature on viral replication in vitro
E-11 cells grown in 25  cm2 flasks were infected with 
either wt160, r160, r1_445, SGWak97, or SJNag93 (4 
flasks/strain) at a multiplicity of infection (MOI) of 0.01. 
The negative control was inoculated with L-15 medium. 
After 1 h adsorption at 15, 20, 25 or 30 °C, the cells were 
washed three times with PBS and then L-15 with 2% FBS 
was added to each flask which were incubated at the 
temperature used for adsorption. Infected cultures were 
checked daily for CPE appearance up to 10  days. Every 
day an aliquot of 700 μL of supernatant was sampled and 
subsequently replaced with the same volume of fresh 
medium. These samples were subjected to viral titration 
and RT-qPCR.

Effect of high temperature on virus adsorption
In order to assess the effect of high temperature on viral 
adsorption to E-11 cells, infectivity capacity was evalu-
ated at 25 and 30 °C. Each virus was inoculated at a MOI 
of 0.01 in 48-well plates. After an adsorption period (1 h), 
the remaining inoculum was removed and maintained 
at −20  °C until RNA1 quantification by RT-qPCR. Two 
quantification sets were performed: the original inocu-
lum and the remaining inoculum from each of the inoc-
ulated wells (non-adsorbed virus), used to calculate the 
adsorbed virus.

Effect of temperature on viral replication in vivo 
and virulence
Senegalese sole (S. senegalensis) juveniles (mean weight 
1.5 g) were obtained from a commercial fish farm and 
maintained at the fish facilities of the Universidade 
de Santiago de Compostela in opaque tanks contain-
ing seawater. Prior to experimental infection sole were 
acclimated at each experimental temperature for a 

minimum of 10  days. During this period 10 fish were 
sacrificed with an anesthetic overdose (MS-222, Sigma-
Aldrich, St. Louis, MO, USA) and used for the diagnosis 
of bacterial pathogens as well as for four regular viral 
agents: infectious pancreatic necrosis virus (IPNV), 
infectious hematopoietic necrosis virus (IHNV), viral 
haemorrhagic septicaemia virus (VHSV) and betanoda-
virus. Bacterial isolation was accomplished by inoculat-
ing samples of kidney, spleen, and liver onto tryptone 
soy agar supplemented with 1% (wt/vol) NaCl (TSA-
1) and TCBS (thiosulfate-citrate-bile salts-sucrose) 
agar (Vibrio selective agar) and incubating the sam-
ples at 25  °C for 24  h. Viral detection was performed 
by RT-PCR as previously described [18]. Fish were fed 
at libitum once a day and handled in strict accordance 
with good animal practices as defined by the European 
Union guidelines for the handling of laboratory animals 
(directive 2010/63/UE). During the experiment oxygen, 
nitrogen compounds, pH, and salinity were monitored 
continuously. Temperature, lighting and noise were also 
strictly controlled in order to minimize stress.

Sole juveniles were infected with the recombinant 
(r160 and r1_445) at 15, 20 and 25  °C. Triplicate sole 
groups (n = 20/temperature assayed) were bath infected 
with each strain at a virus concentration of  105  TCID50/
mL for 3 h with strong aeration. Control fish were han-
dled like the infected groups and L-15 medium was 
used for mock infection. Mortalities and clinical signs 
were recorded daily, and dead fish were removed. Sur-
viving fish were euthanized using a MS-222 overdose. 
Brain tissues from both dead fish and survivors were 
aseptically collected and pooled in samples comprising 
tissues from 3 fish. Samples were analyzed by cell cul-
ture and RNA quantification.

Processing of samples
Brain tissues were analyzed in pools of three, except 
when the number of available fish was too low, in which 
case they were processed individually. In both cases 
samples were homogenized in Earle’s balanced salt 
solution (1:10 for individual brains and 1:5 for pooled 
samples) supplemented with antibiotics (1000  IU/mL 
penicillin, 1000  µg/mL streptomycin, 500  µg/mL gen-
tamycin and 500  µg/mL partricin). The samples were 
centrifuged at 3000 × g for 15 min at 4 °C. The resulting 
supernatants were split into two aliquots; one stored at 
−80 °C for later use in RT-qPCR, and the other used for 
inoculation onto monolayers of E-11 cells in final dilu-
tions of 1:100 and 1:1000. The plates were incubated 
at 25 °C and monitored for cytopathic effect (CPE) for 
7 days.
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RNA quantification
Total RNA was extracted from infected cell culture 
supernatants and tissue homogenates using the EZNA 
Total RNA I kit (Omega Biotek, Norcross, GA, USA) fol-
lowing manufacturer’s instructions. Extracted RNA was 
reverse transcribed with the Superscript IV reverse tran-
scriptase (Invitrogen) using random primers at 50 °C for 
50 min, followed by 5 min at 85 °C for RT enzyme inac-
tivation. For qPCR, reactions were processed with 2  µL 
of cDNA samples in 20  µL final volume, using iQTM 
 SYBR®Green Supermix (Bio-Rad, Hercules, CA, USA) 
and 200 nM of primers SnodR1 F/R [18]. Reactions were 
carried out in a CFX96TM Real-Time PCR Detection 
System (Bio-Rad) as previously described [15], briefly 
after a denaturation/activation step at 95  °C for 15 min, 
the mixture was subjected to 40 cycles of amplification 
(denaturation at 95  °C for 15 s, annealing and extension 
at 60  °C for 15  s). All samples were tested in triplicate. 
Quantification of genome copies was accomplished using 
standard curves generated from 20-fold serial dilutions of 
a plasmid DNA containing the full-length RNA1 of strain 
SpSs-IAusc160.03 in the range of  101 to  107  copies/µL. 
Viral load data were calculated as RNA1 copies per g of 
fish tissue (tissue homogenates) or per mL of supernatant 
(cell culture).

Statistical analysis
Statistical analyses were carried out using GraphPad 
Prism version 7.00 for Windows (GraphPad Software, 
La Jolla, CA, USA). Viral quantification  (TCID50 and 
RNA1 copies) data were subjected to a two-way ANOVA 
followed by Tukey’s multiple comparisons. Mortal-
ity rates were analysed by the survival curves, using the 
Kaplan–Meyer test. To determine significant differences 
in survival distributions between experimental groups, 
a log-rank Mantel Cox test was carried out. p < 0.05 was 
considered statistically significant.

Results
Recovery of the mutant strain r1_445
Site-directed mutagenesis was used to perform 6 nucleo-
tide changes in the RNA1 genome of r160 (one nucleo-
tide change per amino acid substitution in the RdRp 
sequence) which removed the differences observed 
between the wt160 sequence and the sequence of 
SGWak97 (GenBank accession number NC_008040). 
Resultant amino acid substitutions affected to the follow-
ing positions in the protein A sequence: 41 (Ile → Val), 
48 (Val → Ile), 218 (Leu → Phe), 223 (Leu → Lys), 238 
(Tyr → Phe) and 289 (Thr → Ala). Presence of mutations 
was confirmed by sequencing. CPE was observed in the 

first passage on E-11 cells, and then r1_445 was ampli-
fied by two successive passages. Viral titre at passage 3 
reached  108  TCID50/mL.

Effect of temperature on viral replication in vitro
Inoculated flasks were visualized/checked daily for the 
appearance of CPE (Table 2). At 15 °C, no specific altera-
tions associated to betanodavirus infection (i.e. vacu-
olization of cells) were observed. Cell shrinkage was 
observed in all flasks probably because of incubation at 
a non-optimal temperature. After 3  days post-infection 
(dpi) cells infected with RGNNV strain appeared con-
tracted and started to detach from the flask surface. At 
6 and 8 dpi, cells inoculated with SJNNV and wt160 
strains and those infected with r160 strain, respectively, 
showed similar characteristics. However, complete dis-
ruption of the cell monolayer was not observed in any 
of the flasks. No cell detachment was observed in the 
flask infected with r1_445. At 20  °C, typical betanoda-
virus CPE was observed after 5–6 days which led to the 
complete destruction of the monolayers, except the cells 
infected with r1_445. At 25 °C all strains developed CPE 
after 3 dpi and the monolayer was destroyed in all cases; 
but this disruption was delayed 2  days in wells inocu-
lated with r1_445, with respect to those inoculated with 
r160 and wt160. At the highest temperature tested, 30 °C, 
CPE was also observed after 3 days in most of the flasks, 
and complete destruction at 5 dpi. As occurred at 25 °C, 
total monolayer disruption was delayed 2 days (until day 
7) in the flasks infected with r1_445. No destruction was 
accomplished in flasks infected with the SJNNV strain 
(Table 2).

Production of infectious virus was assessed by  TCID50 
method (Figure 1). At 15 °C low viral titers were obtained 
and only from day 5 onwards. At 5 dpi the lowest value 
was displayed by the mutant strain r1_445 (mean titre 
5.6 × 102  TCID50/mL) and the highest one by SJNNV 
strain (4.2 × 103). At 10 dpi the lowest and highest titers 
were also obtained with r1_445 and SJNNV strains 
(5.6 × 104 and 7.5 × 105  TCID50/mL, respectively). Even 
though r1_445 production was significantly lower than 
the other strains only at day 9, differences around 1 log 
were observed between the mutant r1_445 and the 
non-mutated recombinant r160 throughout the whole 
experiment. Incubation at 20 °C provided more efficient 
replication results and titer values were recorded from 
2 to 3 dpi. As occurred at 15 °C, the mutant r1_445 dis-
played the lowest titer value at 3 dpi (3.2 × 102 TCID50/
mL) which was 1 log lower than that of the non-mutated 
recombinant strain r160 (3.2  ×  103), although it was 
quite similar to the wt160. However, from day 3 onwards 
significant differences were observed only with RGNNV 
strain. At 25  °C all five strains tested showed increased 
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replication values. However, as recorded at lower tem-
peratures, r1_445 showed slower replication than the 
other strains. The mutant strain r1_445 showed signifi-
cant lower production (p < 0.05) comparing with RGNNV 
strain from 2  dpi, with r160 from 4 to 8  dpi and with 
wt160 from 4 to 7 dpi. At day 7 pi whereas r160 showed 
a maximum titer value of 1.3 × 107 TCID50/mL, the titer 
displayed by r1_445 was 2 logs lower (1 × 105), reaching 
the maximum titer of 4.2 × 106 2  days later. Finally, at 
30 °C titer was obtained as early as 1 dpi from RGNNV, 
wt160 and r160 strains (3.2 to 4.3 × 104  TCID50/mL). 
These values, increased to 4.2 × 104–1 × 106  TCID50/
mL at 3 dpi when first titers were obtained from SJNNV 
and r1_445 (2.4 and 3.2 × 102, respectively). From this 
time point to 6  dpi significant differences (p < 0.0001) 
were observed between r1_445 and either, r160, wt160 
and RGNNV. RNA1 quantification supported the results 
obtained by titration, although differences among strains 
were slightly lower (Figure  2). At 15  °C SJNNV strain 
showed the highest values, being the only one detected at 
3 dpi (mean RNA copy number 5.3 × 103/mL) and reach-
ing the maximum value of 1.1 × 107 RNA copies/mL at 
10 dpi. The other four strains were detected 2 days later 
(5 dpi) with similar values (8.5 × 102–2.3 × 103). Although 

significant differences were not observed among the 
strains, the genomic load obtained from r1_445 at 10 
dpi was 1 and 0.7 log lower than that of r160 and wt160, 
respectively. As it can be observed in Figure  2 at 20  °C 
all five strains were detected at 2 dpi and SJNNV strain 
showed again the highest RNA copy number. During 
the first 3  days the genomic load of r1_445, r160 and 
wt160 was very similar. However, from day 5 pi onwards 
whereas the values of r1_445 and wt160 remained very 
close, comparison of r1_445 with r160 replication 
showed clear differences. At 8–9  dpi these differences 
(2–3 logs) were significant (p < 0.0001). As growth tem-
perature increased viral genomes were detected from the 
first day (25 and 30 °C). At 25 °C RGNNV strain showed 
the highest initial values, although at 5  dpi SJNNV and 
RGNNV strains showed almost identical genomic load. 
As occurred at lower temperatures the mutant r1_445 
showed a delay in the replication. At 6 dpi significant dif-
ferences (p < 0.05) were observed between r1_445 and 
wt160, r160 and RGNNV strains. At 7  dpi when r160 
reached the maximum copy number (5.4 × 1011), the 
value obtained from r1_445 was 2 logs lower. The mutant 
strain reached a final genomic load of 7.4 × 1010, at 9 dpi. 
Finally, at 30 °C, the five strains showed similar initial and 

Figure 1 Viral replication on E-11 cells. Data are expressed as  TCID50/mL. Means and standard deviations from three wells are presented. Letters 
indicate significant differences (p < 0.05) with: a RGNNV; b wt160; c r160.
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final genomic loads (1.1–2.5 × 104 and 2.1–4.5 × 1011, 
respectively). However, differences in the time needed to 
reach the final value were clear and although the RGNNV 
strain showed the highest genomic load at 5 dpi, SJNNV 
strain did not reach the peak until 10 dpi. Regarding the 
mutant r 1_445 between 3 and 5 dpi it showed a delay in 
replication with respect to both r160 and wt160 with a 
difference in the genomic load of 2–3 logs (p < 0.0001). 
The delay was maintained until the end of the experi-
ment, because although no significant differences were 
observed in the final genomic load obtained from the 
three strains, r1_445 took 1  day more than r160 and 
wt160 to reach the maximum level. 

Effect of increased temperature on viral adsorption
The adsorbed virus was estimated from the differ-
ence between the original viral inoculum and the non-
adsorbed virus using RNA1 quantification values. The 
efficiency of the adsorption was then calculated from the 
ratio between adsorbed virus and total viral inoculum. 
At 25  °C all strains showed adsorption rates above 99%. 
At 30  °C although no significant differences (p > 0.99) 

were found between strains r1_445 and SJNNV showed 
slightly lower values (Table 3).

Effect of temperature on viral replication in vivo
Experimental challenges were performed only with 
recombinant r160 and mutant r1_445 strains in order to 
minimize the number of fish and because r160 and w160 
has been previously demonstrated to cause similar mor-
talities [15]. Fish infections were performed at 15, 20 and 
25  °C. High mortalities were recorded at 20 and 25  °C, 
whereas at 15 °C survival rates were around 85% for both 
strains (Figure  3). At 20 and 25  °C, the number of sur-
vivors was higher in the tanks challenged with r1_445 
than in those infected with r160 (31.7 versus 18.3% and 
49.7 versus 14.1%, at 20 and 25 °C, respectively), although 
significant differences were observed only at 25  °C 
(p < 0.001); at this temperature mortalities in fish infected 
with r1_445 were clearly delayed with respect to those 
observed in fish infected with r160.

Infective particles were recovered in cell culture from 
all the dead fish samples regardless of the tempera-
ture used in the challenge. To analyze the RNA1 loads 
in infected fish three different phases in the mortal-
ity curve were considered and named as: (i) T1, initial 

Figure 2 Viral replication on E-11 cells. Data are expressed as viral RNA1 detected in E‑11 cells supernatants. Means and standard deviations 
from three wells are presented. Letters indicate significant differences (p < 0.05) with: a RGNNV; b wt160; c r160.
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mortality phase, (ii) T2, acute mortality phase and (iii) 
T3, late mortality phase (Figure  4). Depending on the 
phase and temperature fish were analyzed individu-
ally or in pools of three. Differences in the RNA1 copy 
number were observed at the different temperatures 
tested and between both strains. At 15  °C, although the 
viral genomic load was low in all samples, fish infected 
with r1_445 showed values around 1 log higher than 
those infected with r160  (106 and  105 mean RNA copy 
number/g brain tissue, respectively). As challenge tem-
perature was higher viral loads obtained from infected 
fish also increased. At 20  °C fish infected with r1_445 
showed a higher average RNA1 load than those chal-
lenged with r160 (2.1 × 106 and 2.1 × 105, respectively) 
only at T1. However, at T2 and T3 the opposite situation 
was observed and RNA1 copy number obtained from fish 
infected with r160 (2.3 and 1.9 × 108) was slightly higher 
than that of r1_445-infected fish (9.7 and 4.5 × 107). At 
25  °C viral genomic load showed by fish infected with 
r160 was significantly higher than that obtained from fish 
challenged with r1_445 (1–1.5 log) at all three times. At 
T1 and T2 fish infected with r160 showed similar values 
(5.6 and 4.3 × 108) clearly higher than those observed 
in groups challenged with the mutant strain (6.0 × 107 
and 9.1 × 106). Although, a decrease of around 1 log was 
observed in the last mortality phase (T3) regardless the 
strain analyzed, virus challenged with the non-mutated 
virus showed a significant higher viral load (p < 0.01). The 
viral load obtained from surviving fish was slightly lower 
than that achieved with dead fish at the three tempera-
tures. At 15 and 20 °C survivors infected with both strains 
showed similar viral load (mean copy number 2.2–
5.2 × 104 and 7.2–9.6 × 105, at 15 and 20 °C, respectively). 
At 25 °C as occurred with dead fish, differences between 
both strains were higher (6.6 × 106 and 7.3 × 105, survi-
vors infected with r160 and r1_445, respectively).

Discussion
Two of the four betanodavirus genotypes, RGNNV and 
SJNNV, as well as their reassortants (either RGNNV/
SJNNV or SJNNV/RGNNV) are considered pathogenic 
for warm-water species [19]. Temperature increase plays 
an important role in the induction of the disease caused 
by these genotypes and it is considered a predisposing 
factor for disease outbreaks [12]. Previous studies have 
indicated that RNA1 plays a key role in controlling viral 
replication at different temperatures [10, 11] and that 
the region comprising 1–445 amino acid positions of the 
protein A is involved in NNV thermotolerance [10]. The 
reassortant strains (RGNNV/SJNNV) isolated from Sen-
egalese sole in the Iberian Peninsula show 6 amino acid 
changes with respect to the RGNNV genotype in this 
region [8]. With the aim to analyze the role of the above 
cited positions in the viral adaptation to temperature, 
the replication of a recombinant virus showing point 
mutations has been compared with that of the recombi-
nant with no mutations, the wild type strain and strains 
belonging to the parental genotypes RGNNV and SJNNV 
at 15, 20, 25 and 30 °C. In addition, the effect of the muta-
tions on the virulence for sole has been analyzed.

The replication assays performed in vitro showed that 
all strains replicate at the four temperatures tested as it 
has been previously reported [11]. However, at 15  °C 
the lowest viral production was obtained, indicating 
that this is a suboptimal temperature for all 5 strains 
analyzed. As temperature increased viral yields were 
higher but whereas at 20  °C only slight differences were 
observed between the mutant r1_445 and 160 (both wt 
and recombinant), the effect of mutations was obvious 
at 25 and 30  °C. At both temperatures the replication 
of r1_445 was significantly lower (p < 0.05) than that of 
wt160 and delayed in time at 30  °C. The analysis of the 
viral load supports these results. These findings indicate 
that r1_445 shows a temperature sensitivity (ts) pheno-
type and confirm that 1–445 region of RNA polymerase 

Table 3 Viral attachment to E-11 cells at 25 °C 

Results expressed as RNA1 copies/mL (1) and  log10RNA1 copies/mL ± standard deviation (2) from 3 replicas of inoculated (3) and adsorbed virus (estimated as 
the difference between the RNA1 values of the original inocula and those of the remaining inocula after 1 h adsorption) (4) The efficiency of the adsorption (5; as 
percentage) was calculated from the ratio between adsorbed and total viral inoculum.

Viral strain Inoculum3 Adsorbed  virus4

25 °C 30 °C

RNA1  copies1 Log ± SD2 RNA1 copies Log ± SD Ad  rate5 RNA1 copies Log ± SD Ad rate

wt160 4.10 × 1011 11.61 ± 0.14 4.08 × 1011 11.61 ± 0.31 99.51 4.07 × 1011 11.61 ± 0.31 99.26

r160 7.24 × 1010 10.86 ± 0.15 7.19 × 1010 10.86 ± 0.15 99.31 7.17 × 1010 10.85 ± 0.15 99.03

r1_445 3.22 × 1011 11.51 ± 0.25 3.19 × 1011 11.50 ± 0.24 99.07 3.18 × 1011 11.50 ± 0.24 98.75

RGNNV 5.62 × 1010 10.75 ± 0.18 5.60 × 1010 10.75 ± 0.08 99.64 5.58 × 1010 10.75 ± 0.08 99.28

SJNNV 1.71 × 1011 12.23 ± 0.15 1.70 × 1011 11.23 ± 0. 27 99.41 1.69 × 1011 11.23 ± 0.15 98.83
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is involved in the temperature adaptation of NNV as pre-
viously reported [10]. This region has transmembrane 
domains (TMD) which can function as membrane locali-
zation signals (MLS) [20, 21]. These MLS mediate protein 
A localization within the mitochondria membrane where 
the replication complex is formed [20]. Three putative 
TMD located at positions 6–26, 152–173 and 224–249 
have been identified in the four NNV genotypes and 9 
amino acid signatures characteristic for each genotype 
were recognized at positions 7, 19, 155, 223, 232, 235, 

241, 251 and 254, which could be related with differences 
in growth kinetics among genotypes [11]. Position 223 
is one of the 6 substitutions observed in the reassortant 
RdRp and that has been mutated in r1_445 to the residue 
present in the RGNNV type. Substitution at this position 
(Leu → Lys) implies an important change in the physico-
chemical properties (hydrophobic side change → posi-
tively charged chain). Although aa 223 is flanking the 
224–249 TMD, it has been suggested that the net posi-
tive charge in the flanking regions of the TMD plays 
most important role than the TMD sequence itself [22]. 
Other important change could be that of position 238 
(Tyr → Phe) which is within the aforementioned TMD, 
but in this case the substitution does not seem to have 
drastic effects. Therefore, the low tolerance to high tem-
peratures observed in the mutant r1_445 seems to point 
to position 223 as a putative responsible for temperature 
regulation, at least in the reassortant strains, and suggest 
that the ts could be related to difficulties in the mitochon-
drial recognition. However, it is interesting to note that 
although point mutations shown by the mutant strain 
made the 1–445 region identical to that of the RGNNV 
strain, as temperature increases, r1_445 replication was 
clearly slower than that of this isolate. This finding sug-
gests that temperature sensitivity might be controlled not 
only by the N-terminal side of RNA1, but also by differ-
ent regions as in other RNA viruses, like flaviviruses [23, 
24] or paramyxoviruses [25, 26], in which ts phenotype 
was conferred by a number of mutations throughout 
structural and non-structural genes. The natural reas-
sortant strain shows other differences with the parental 
genotypes, in both RNA1 and RNA2. In RNA1 these dif-
ferences consist of 13 additional amino acid positions in 
the RdRp coding region, [8] and four nucleotides in the 
3′ NCR [15]. In RNA2 the mismatches with the SJNNV 
genotype consist of five to six amino acids in the capsid 
protein, three shared by all strains [8], and five nucleo-
tides in the 3′NCR [15]. RNA2 substitutions have been 
demonstrated to play a role in virulence for fish [15, 27–
29]. Substitutions in protein A other than in the 1–445 
region could be a consequence of the complex phenom-
enon of reassortment but could also be involved in viru-
lence or thermotolerance. Generation of recombinants 
harbouring mutations in the 1–445 region and in differ-
ent positions of RNA1 are in progress to elucidate this 
issue.

The experimental infections confirmed the impact of 
the mutations on the viral replication because at 25  °C 
the viral load was significantly lower in fish infected 
with the mutant virus than in those challenged with the 
non-mutated virus. The ts phenotype is associated with 
a decreased viral replication and attenuation at a restric-
tive temperature in different viruses [23, 25, 30–32]. 

Figure 3 Virulence of viral strains for Senegalese sole. The curves 
represent the fish survival after infection by immersion with r160 and 
the mutant r1_445 at 15, 20 and 25 °C. Fish were infected by bath 
at a final concentration of  105  TCID50/mL. Values are expressed as 
mean ± SD (n = 3). Asterisk indicates significant differences (p < 0.05).
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Although at 25  °C the mutant r1_445 caused signifi-
cantly fewer mortalities which were delayed in time with 
respect to those caused by the non-mutated strain a 
complete attenuation was not achieved. Unfortunately, it 
was not possible to challenge fish at 30 °C because of the 
scarce tolerance of sole to temperatures above 25 °C [33] 

and thus the effect of this increased temperature on viral 
virulence remains unknown.

One of the steps of the viral cycle that could be 
affected by temperature increase is the attachment to 
host cell surfaces. However, the adsorption capacity 
of the mutant r1_445 to E-11 cells was not affected by 
high temperatures (25 and 30  °C). This result agrees 
with a previous study showing similar level of bind-
ing of the four NNV genotypes at the aforementioned 
temperatures [10]. The interaction between NNV and 
host cells is produced through the P-domain of the 
capsid protein [34] and the wt strain shows two amino 
acid substitutions in this region which have been dem-
onstrated to affect the interaction with sole neural cells 
[35]. Further studies will analyze if this interaction is 
affected by increasing temperature.

Results of this study clearly demonstrated that modi-
fication of amino acids in region 1–445 of a reassortant 
betanodavirus RdRp can affect the outcome of viral 
infection at high temperatures. This poor adaptation 
to high temperatures might be related to difficulties 
in the formation of the complex replication. However, 
although the amino acid positions of the reassortant 
were changed to RGNNV-type, mutant r1_445 did show 
significantly lower replication than RGNNV strain at 25 
and 30  °C, suggesting that genomic regions other than 
1–445 may be involved in NNV thermotolerance. The 
identification of these genomic determinants could lead 
to the obtention of a complete attenuated virus that in 
turn could be used in vaccine formulations for prevent-
ing VER outbreaks.
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