B. Rjab, Characterization of experts in crowdsourcing platforms, The 4th International Conference on Belief Functions, vol.9861, pp.97-104, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01372142

P. Skene-;-dawid and A. M. Skene, Maximum likelihood estimation of observer error-rates using the em algorithm, vol.28, pp.20-28, 1979.

. Dempster and A. P. Dempster, Upper and lower probabilities induced by a multivalued mapping. The annals of mathematical statistics, pp.325-339, 1967.
DOI : 10.1214/aoms/1177698950

URL : https://doi.org/10.1214/aoms/1177698950

[. Essaid, A distancebased decision in the credal level, Artificial Intelligence and Symbolic Computation -12th International Conference, pp.147-156, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01110349

. Fagin, Comparing and aggregating rankings with ties, twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp.47-58, 2004.
DOI : 10.1145/1055558.1055568

J. Howe-;-howe and . Ipeirotis, Machine-learning for spammer detection in crowd-sourcing, HCOMP '10 Proceedings of the ACM SIGKDD Workshop on Human Computation, vol.14, pp.1-4, 2006.

, Modulated noise reference unit (MNRU), 1996.

S. Jouili-;-jouili and . Jousselme, Indexation de masses de documents graphiques : approches structurelles, vol.2, pp.91-101, 2001.
URL : https://hal.archives-ouvertes.fr/tel-00597711

M. Kendall-;-kendall, The treatment of ties in ranking problems, Biometrika, pp.239-251, 1945.

. Le, Ensuring quality in crowdsourced search relevance evaluation: The effects of training question distribution, Workshop on Crowdsourcing for Search Evaluation, pp.17-20, 2010.

V. C. Raykar, S. Yu, and . Raykar, Eliminating spammers and ranking annotators for crowdsourced labeling tasks, Journal of Machine Learning Research, vol.13, pp.1297-1322, 2010.
DOI : 10.1109/ncvpripg.2011.14

G. Shafer-;-shafer, A mathematical theory of evidence, vol.1, 1976.

P. Smets-;-smets, The combination of evidence in the transferable belief model, vol.12, pp.447-458, 1990.

, Inferring ground truth from subjective labelling of venus images, Advances in Neural Information Processing Systems, vol.7, pp.1085-1092, 1995.