D. Thanou, P. A. Chou, and P. Frossard, Graph-based compression of dynamic 3D point cloud sequences, IEEE Transactions on Image Processing, vol.25, issue.4, pp.1765-1778, 2016.

Y. Huang, J. Peng, C. C. Kuo, and M. Gopi, A generic scheme for progressive point cloud coding, IEEE Transactions on Visualization and Computer Graphics, vol.14, issue.2, pp.440-453, 2008.

R. De-queiroz and P. A. Chou, Transform Coding for Point Clouds Using a Gaussian Process Model, IEEE Transactions on Image Processing, vol.7149, 2017.

R. Mekuria, K. Blom, and P. Cesar, Design, Implementation, and Evaluation of a Point Cloud Codec for Tele-Immersive Video, IEEE Transactions on Circuits and Systems for Video Technology, vol.27, pp.828-842, 2017.

S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar et al., Emerging MPEG Standards for Point Cloud Compression, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol.9, issue.1, pp.133-148, 2019.
DOI : 10.1109/jetcas.2018.2885981

URL : https://hal.archives-ouvertes.fr/hal-02009345

G. Lavoue, E. Gelasca, F. Dupont, A. Baskurt, and T. Ebrahimi, Perceptually driven 3D distance metrics with application to watermarking, in SPIE, vol.6312, issue.1, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01528572

G. Lavoué, A Multiscale Metric for 3D Mesh Visual Quality Assessment, Computer Graphics Forum, vol.30, issue.5, pp.1427-1437, 2011.

Z. Wang and A. C. Bovik, Modern Image Quality Assessment, vol.2, 2006.

S. Daly, The visible differences predictor: an algorithm for the assessment of image fidelity, Digital images and human vision, pp.179-206, 1993.

R. Mantiuk, K. J. Kim, A. G. Rempel, and W. Heidrich, HDR-VDP-2 : A calibrated visual metric for visibility and quality predictions in all luminance conditions, 2011.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.
DOI : 10.1109/tip.2003.819861

URL : http://www.cns.nyu.edu/~zwang/files/papers/ssim.pdf

M. Narwaria, M. Perreira, P. L. Callet, M. Narwaria, M. Perreira et al., HDR-VQM : An Objective Quality Measure for High Dynamic Range Video, Signal Processing: Image Communication, vol.35, pp.46-60, 2015.
DOI : 10.1016/j.image.2015.04.009

URL : https://hal.archives-ouvertes.fr/hal-01149516

M. Corsini, E. D. Gelasca, T. Ebrahimi, and M. Barni, Watermarked 3-D Mesh Quality Assessment, IEEE Transactions on Multimedia, vol.9, issue.2, pp.247-256, 2007.
DOI : 10.1109/tmm.2006.886261

URL : http://vcg.isti.cnr.it/%7Ecorsini/publications/ieeetmultimedia2007-preprint.pdf

L. Vá?a and J. Rus, Dihedral Angle Mesh Error: a fast perception correlated distortion measure for fixed connectivity triangle meshes, Computer Graphics Forum, vol.31, issue.5, 2012.

D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, Geometric distortion metrics for point cloud compression, ICIP, pp.3460-3464, 2018.

E. Alexiou and T. Ebrahimi, Point Cloud Quality Assessment Metric Based on Angular Similarity, pp.1-6, 2018.
DOI : 10.1109/icme.2018.8486512

N. Mitra and A. Nguyen, Estimating Surface Normals in Noisy Point Cloud Data, Symposium on Computational geometry, 2003.

J. L. Blanco and P. K. Rai, nanoflann: a C++ header-only fork of FLANN, a library for nearest neighbor (NN) with kd-trees, 2014.

T. Ebrahimi and E. Alexiou, On the performance of metrics to predict quality in point cloud representations, Applications of Digital Image Processing XL, p.53, 2017.

E. Alexiou, M. V. Bernardo, A. Luis, S. Cruz, and L. G. Dmitrovi, Point cloud subjective evaluation methodology based on 2D rendering, International Conference on Quality of Multimedia Experience, 2018.
DOI : 10.1109/qomex.2018.8463406