A. Bagnall, H. Dau, J. Lines, M. Flynn, J. Large et al., The great time series classification bake off : a review and experimental evaluation of recent algorithmic advances, vol.31, pp.606-660, 2017.

A. Bagnall, J. Lines, J. Hills, and A. Bostrom, Time-series classification with cote : The collective of transformation-based ensembles, IEEE Transactions on Knowledge and Data Engineering, vol.27, issue.9, pp.2522-2535, 2015.

M. Baydogan and G. Runger, Learning a symbolic representation for multivariate time series classification, DMKD, vol.29, issue.2, pp.400-422, 2015.
DOI : 10.1007/s10618-014-0349-y

L. Breiman, ;. Dau, D. Silva, F. Petitjean, G. Forestier et al., Optimizing dynamic time warping's window width for time series data mining applications. Data Mining and Knowledge Discovery, Machine Learning, vol.24, pp.1074-1120, 1996.

I. Jolliffe and J. Cadima, Principal component analysis : a review and recent developments, Philosophical Transactions of the Royal Society of London Series A, vol.374, 2016.

E. Keogh and M. Pazzani, Derivative Dynamic Time Warping, pp.1-11, 2001.
DOI : 10.1137/1.9781611972719.1

URL : https://epubs.siam.org/doi/pdf/10.1137/1.9781611972719.1

M. Kadous and C. Sammut, Classification of multivariate time series and structured data using constructive induction. Machine Learning, vol.58, pp.179-216, 2005.

J. Lin, E. Keogh, L. Wei, and S. Lonardi, Experiencing sax : a novel symbolic representation of time series, DMKD, vol.15, issue.2, pp.107-144, 2007.

O. Le-maître, M. Süssner, and C. Zarak, Evaluation of tire wear performance, SAE Technical Paper, 1998.

S. Malinowski, T. Guyet, R. Quiniou, R. Tavenard, ;. Ordóñez et al., Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm, Advances in Intelligent Data Analysis XII, vol.47, pp.1-26, 2008.

A. Plaud, E. N. Mephu, and J. Charreyron,

. Mts-mgrams, , 2019.

H. Sakoe, S. Chiba, ;. Shah, A. Khan, A. Shah et al., A review on image contrast enhancement techniques using histogram equalization, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.26, issue.1, pp.1297-1302, 1978.

P. Schäfer and U. Leser, Multivariate time series classification with WEA-SEL+MUSE

. Corr, , 2017.

M. Shokoohi-yekta, J. Wang, and E. Keogh, On the Non-Trivial Generalization of Dynamic Time Warping to the Multi-Dimensional Case, pp.289-297

C. Tan, Y. Wang, and C. Lee, The use of bigrams to enhance text categorization. Information Processing & Management, vol.38, pp.529-546, 2002.

D. Yagoubi, R. Akbarinia, F. Masseglia, and T. Palpanas, Dpisax : Massively distributed partitioned isax, ICDM : International Conference on Data Mining, pp.1-6, 2017.
DOI : 10.1109/icdm.2017.151

URL : https://hal.archives-ouvertes.fr/lirmm-01620125

L. Ye and E. Keogh, Time series shapelets : A new primitive for data mining, Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.947-956, 2009.

K. Yang and C. Shahabi, A pca-based similarity measure for multivariate time series, 2Nd ACM International Workshop on Multimedia Databases, pp.65-74, 2004.
DOI : 10.1145/1032604.1032616

Q. Yin, S. Wu, and L. Wang, Unified subspace learning for incomplete and unlabeled multi-view data, Pattern Recognition, vol.67, pp.313-327, 2017.
DOI : 10.1016/j.patcog.2017.01.035

P. Zhou and K. Chan, A feature extraction method for multivariate time series classification using temporal patterns, Advances in Knowledge Discovery and Data Mining, pp.409-421, 2015.

J. Zbigniew and Z. Holger, The debs 2014 grand challenge, Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems, DEBS '14, pp.266-269, 2014.

J. Zhao, X. Xie, X. Xu, and S. Sun, Multiview learning overview : Recent progress and new challenges. Information Fusion, vol.38, pp.43-54, 2017.
DOI : 10.1016/j.inffus.2017.02.007