P. Ordez, M. Desjardins, C. Feltes, C. U. Lehmann, and J. Fackler, Visualizing multivariate time series data to detect specific medical conditions, AMIA Annu Symp Proc, pp.530-534, 2008.

O. Le-maître, M. Sssner, and C. Zarak, Evaluation of Tire Wear Performance. SAE Technical Paper, 1998.

J. Zbigniew and Z. Holger, The DEBS 2014 Grand Challenge, Proceedings of the 2014 ACM International Conference on Distributed Event-based Systems, pp.266-269, 2014.

H. Sakoe and S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.26, issue.1, pp.43-49, 1978.
DOI : 10.1109/tassp.1978.1163055

J. Lin, E. Keogh, L. Wei, and S. Lonardi, Experiencing SAX: a novel symbolic representation of time series, Data Mining and Knowledge Discovery, vol.15, issue.2, pp.107-144, 2007.

A. Bagnall, J. Lines, J. Hills, and A. Bostrom, Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles, IEEE Transactions on Knowledge and Data Engineering, vol.27, issue.9, pp.2522-2535, 2015.

A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances, Data Mining and Knowledge Discovery, vol.31, issue.3, pp.606-660, 2017.

E. Keogh and M. Pazzani, Derivative Dynamic Time Warping, Proceedings of the 2001 SIAM International Conference on Data Mining, pp.1-11, 2001.
DOI : 10.1137/1.9781611972719.1

URL : https://epubs.siam.org/doi/pdf/10.1137/1.9781611972719.1

M. Shokoohi-yekta, J. Wang, and E. Keogh, On the Non-Trivial Generalization of Dynamic Time Warping to the Multi-Dimensional Case, Proceedings of the 2015 SIAM International Conference on Data Mining, pp.289-297, 2015.

L. Breiman, Bagging Predictors, Machine Learning, vol.24, issue.2, pp.123-140, 1996.
DOI : 10.1007/bf00058655

URL : https://link.springer.com/content/pdf/10.1007%2FBF00058655.pdf

K. Yang and C. Shahabi, A PCA-based Similarity Measure for Multivariate Time Series, Proceedings of the 2Nd ACM International Workshop on Multimedia Databases, pp.65-74, 2004.
DOI : 10.1145/1032604.1032616

M. Baydogan and G. Runger, Learning a symbolic representation for multivariate time series classification, Data Mining and Knowledge Discovery, vol.29, issue.2, pp.400-422, 2015.
DOI : 10.1007/s10618-014-0349-y

P. Schäfer and U. Leser, Multivariate Time Series Classification with WEASEL+MUSE. CoRR, 2017.

I. Jolliffe and J. Cadima, Principal component analysis: A review and recent developments, Philosophical transactions Series A Mathematical physical and engineering sciences, vol.374, p.20150202, 2016.

P. Y. Zhou and K. Chan, A Feature Extraction Method for Multivariate Time Series Classification Using Temporal Patterns, Advances in Knowledge Discovery and Data Mining, pp.409-421, 2015.
DOI : 10.1007/978-3-319-18032-8_32

M. Kadous and C. Sammut, Classification of Multivariate Time Series and Structured Data Using Constructive Induction, Machine Learning, vol.58, issue.2, pp.179-216, 2005.

A. Bagnall, H. Dau, J. Lines, M. Flynn, J. Large et al., The UEA multivariate time series classification archive, 2018.

L. Ye and E. Keogh, Time series shapelets: a new primitive for data mining, Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.947-956, 2009.

G. Shah, A. Khan, A. Shah, M. Raza, and M. Sharif, A review on image contrast enhancement techniques using histogram equalization, Science International, vol.29, pp.1297-1302, 2015.

C. Tan, Y. Wang, and . Lee, C: The use of bigrams to enhance text categorization. Information Processing and Management, vol.38, pp.529-546, 2002.

B. K. Yi and C. Faloutsos, Fast time sequence indexing for arbitrary lp norms, Proceedings of the 26th international conference on very large databases, vol.10, pp.385-394, 2000.

Q. Yin, S. Wu, and L. Wang, Unified subspace learning for incomplete and unlabeled multi-view data, Pattern Recognition, vol.67, pp.313-327, 2017.
DOI : 10.1016/j.patcog.2017.01.035

Q. Zhao, X. Xie, X. Xu, and S. Sun, Multi-view learning overview: Recent progress and new challenges. Information Fusion, vol.38, pp.43-54, 2017.
DOI : 10.1016/j.inffus.2017.02.007

V. Cerqueira, L. Torgo, F. Pinto, and C. Soares, Arbitrated Ensemble for Time Series Forecasting, Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2017, vol.10535, 2017.
DOI : 10.1007/978-3-319-71246-8_29