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Abstract
1.	 To successfully perform their long‐distance migrations, migratory birds require 

sites along their migratory routes to rest and refuel. Monitoring the use of so‐
called stopover and staging sites provides insights into (a) the timing of migration 
and (b) the importance of a site for migratory bird populations. A recently devel-
oped Bayesian superpopulation model that integrates mark–recapture data and 
ring density data enabled the estimation of stopover timing, duration, and popula-
tion size. Yet, this model did not account for heterogeneity in encounter (p) and 
staying (ϕ) probabilities.

2.	 Here we extended the integrated superpopulation model by implementing finite 
mixtures to account for heterogeneity in p and ϕ. We used simulations and real 
data (from 2009–2016) on red knots Calidris canutus, mostly of the subspecies 
piersmai, staging in Bohai Bay, China, during spring migration to (a) show the im-
portance of accounting for heterogeneity in encounter and staying probabilities to 
get unbiased estimates of stopover timing, duration, and numbers of migratory 
birds at staging sites and (b) get accurate stopover parameter estimates for a mi-
gratory bird species at a key staging site that is threatened by habitat 
destruction.

3.	 Our simulations confirmed that heterogeneity in p affected stopover parameter 
estimates more than heterogeneity in ϕ, especially when most birds had low p. 
Bias was particularly severe when most birds had both low ϕ and p. Bias was larg-
est for population size, intermediate for stopover duration and negligible for stop-
over timing.

4.	 A total of 50,000–100,000 red knots were estimated to annually stop for 5–9 days 
in Bohai Bay between 10 and 30 May. This shows the key importance of this stag-
ing site for this declining species. There were no clear changes in stopover param-
eters over time, although stopover population size was substantially lower in 2016 
than in preceding years.
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1  | INTRODUC TION

To successfully perform their seasonal long‐distance migrations, 
migratory birds require sites along the flyway to rest and refuel. 
Sites primarily used for resting are referred to as “stopover sites” 
(where individuals stay only briefly, i.e., for 1–2 days), whereas sites 
used for refueling are referred to as “staging sites” (Warnock, 2010). 
Duration of stay of migratory birds at such staging sites (hereafter 
called stopover duration) may range from several days up to sev-
eral weeks. Habitat deterioration at staging sites has been shown 
to have major impact on the survival of migratory birds (Baker et 
al., 2004; Piersma et al., 2016) and may cause delays in migratory 
schedules and timing of arrival at the breeding grounds, with likely 
consequences for reproductive success (Daan, Dijkstra, Drent, & 
Meijer, 1989; Drent, Both, Green, Madsen, & Piersma, 2003; Smith & 
Moore, 2005). Monitoring stopover timing, duration, and population 
size of migratory birds at such staging sites is therefore important 
to detect changes in these parameters and guide conservation and 
management actions in order to better protect these sites and the 
migratory species that rely on them (Piersma & Baker, 2000).

While timing and duration of stopover can be directly measured 
for individuals with radio or satellite transmitters, in most cases, 
stopover duration is estimated from mark–recapture data of individ-
ually marked animals. To derive accurate estimates of timing and du-
ration of stopover from marked individuals, it is important to account 
for imperfect detection, as individuals may have been present be-
fore their first observation and may have stayed for some time after 
their last observation (Kaiser, 1999). As a result, the time passed 
between the first and last observation of an individual (also known 
as “minimal stopover duration”) gives underestimated stopover du-
rations (Kaiser, 1999; Schaub, Pradel, Jenni, & Lebreton, 2001) and 
the date of first observation is usually later than the true arrival date.

A flexible modeling framework to estimate timing and duration 
of stopover from individually marked birds is the superpopulation 
parameterization of the Jolly–Seber model (Jolly, 1965; Schwarz & 
Arnason, 1996; Seber, 1965). This model estimates entry and survival 
probabilities, while accounting for imperfect detection (by modeling 
encounter probabilities) and the fact that some individuals may have 
been missed entirely (i.e., especially those that stayed for a relatively 
short period). In the case of resightings of individually marked birds 
during migration at a staging site, entry and survival probabilities 
are interpreted as arrival and staying probabilities, assuming that 

mortality is negligible during the relatively short period of stopover 
(Lyons et al., 2016).

While estimates of timing and duration of stopover can be derived 
from encounters of individually marked birds at a staging site, addi-
tional information is required to estimate the total number of birds 
using a staging site. This can be achieved by capturing and mark-
ing new individuals at regular intervals at a staging site (Matechou, 
Morgan, Pledger, Collazo, & Lyons, 2013; Schwarz & Arnason, 1996), 
but this is usually impractical and may cause undesirable disturbance 
at a critical phase of the birds’ annual cycle. Another possibility is to 
perform daily counts of the total number of birds present at a site, 
which, when divided by stopover duration, gives the total number of 
birds using a site (Frederiksen, Fox, Madsen, & Colhoun, 2001). This 
method has the advantage that it is less time‐consuming and disturb-
ing, but counting all birds present at a staging site, especially if the site 
is large and birds move around a lot, is prone to considerable errors. 
As an alternative, Lyons et al. (2016) recently developed an integrated 
model that combines observations of individually marked animals that 
have been marked away from the study site with scans of marked and 
unmarked individuals to estimate total stopover population size. In this 
model, the individual resighting data were analyzed using a Bayesian 
formulation of the Jolly–Seber model to estimate timing and duration 
of stopover as well as the number of marked individuals. To get from 
estimated number of marked birds to total number of birds (i.e., marked 
and unmarked birds combined), the Jolly–Seber model was combined 
with a binomial model that estimates the proportion of marked ani-
mals in the population from the scans of marked and unmarked birds.

The model of Lyons et al. (2016) assumes that individuals have 
equal encounter and staying probabilities. However, individuals 
may vary in their reliance on particular staging sites, with some in-
dividuals staying only for 1–2 days (e.g., while waiting for favorable 
weather conditions to continue migration), whereas others use the 
area for refueling and stay much longer. This will result in groups of 
birds with contrasting staying probabilities. In addition, birds may 
differ in space use within staging sites, causing some individuals to 
be more easily observed (because their feeding or roosting sites are 
better accessible to observers, e.g. close to the shore, or in publicly 
accessible areas as opposed to privately owned lands) than others, 
resulting in groups of birds with contrasting encounter probabilities.

Heterogeneity in encounter probabilities has already been shown 
to result in severe biases in population size estimates (Carothers, 
1973). In the current paper, we extend the Bayesian model 

5.	 Our study shows the importance of accounting for heterogeneity in both encoun-
ter and staying probabilities for accurately estimating stopover duration and popu-
lation size and provides an appropriate modeling framework.

K E Y W O R D S

heterogeneity, Jolly–Seber, mark–recapture, migration, population size, red knot, state–space 
model, stopover duration
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developed by Lyons et al. (2016) by implementing finite mixtures to 
account for individual heterogeneity, that is the presence of groups 
of individuals with contrasting encounter and staying probabilities. 
Finite mixtures enable the modeling of hidden classes of individuals 
with contrasting encounter and/or staying (or survival) probabilities 
and have previously been shown to adequately remove bias in pa-
rameter estimates of CJS models (Abadi, Botha, & Altwegg, 2013; 
Pledger, Pollock, & Norris, 2003) and Jolly–Seber models (Pledger, 
Pollock, & Norris, 2010) in the presence of individual heterogeneity. 
We use simulated and real data of red knots Calidris canutus, mostly 
of the subspecies piersmai, staging along the Luannan Coast of Bohai 
Bay, China, during spring migration to (a) show the importance of 
accounting for heterogeneity in encounter and staying probabilities 
to get unbiased estimates of stopover timing, duration, and numbers 
of migratory birds at staging sites and (b) get accurate estimates of 
stopover duration, timing, and population size for a migratory bird 
species at a key staging site that is threatened by habitat destruction 
(Piersma et al., 2016; Rogers et al., 2010), but that is currently listed 
to be conserved (Crockford, 2018).

2  | MATERIAL AND METHODS

2.1 | Study system

Red knots that spend the winter in northwest Australia migrate 
along the East Asian–Australasian flyway to breed in the High Arctic 
(Figure 1; Piersma, 2007; Rogers et al., 2010). Between 2005 and 
2016, 1,186 red knots Calidris canutus, mainly of subspecies piers‐
mai but also of the morphologically distinct rogersi subspecies 
(Verhoeven, van Eerbeek, Hassell, & Piersma, 2016), were individu-
ally color‐banded at their nonbreeding grounds in Roebuck Bay and 

80 Mile Beach, Northwest Australia (18–19°S, 120–122°E). Birds 
were caught using cannon nets, marked with a unique combination 
of color bands and a flag, and released within a few hours after cap-
ture (see Piersma et al., 2016 for details).

From 2009 onward, data were collected each year during the 
spring migration period on the presence of individually color‐marked 
red knots and on numbers of marked and unmarked birds at a key 
spring staging site, the Luannan Coast (covering the territories of the 
villages of Beipu, Nanpu and Zuidong) in northern Bohai Bay, China 
(39°N 118°E, Figure 1) (Yang et al., 2011). During this fieldwork, 2–4 
observers visited the intertidal feeding areas and high tide roosts 
daily to collect the observations (see field reports available at www.
globalflywaynetwork.com.au). Observers always carefully noted 
whether scans of the number of marked and unmarked birds per-
formed on the same day involved different parts of the population 
(sampling without replacement) or whether scans were random sam-
ples of the population (sampling with replacement). Samples without 
replacement were merged into one large sample.

As years differed in the first and last date of fieldwork, we used 
data from 10 to 30 May to allow comparison between years and to 
have sufficient data to estimate daily arrival and encounter prob-
abilities. Moreover, this is the core period of stopover of the sub-
species piersmai, whereas the rogersi subspecies usually stops over 
earlier and longer (Rogers et al., 2010) and contains much fewer 
color‐banded individuals as this subspecies mainly winters in New 
Zealand (Figure 1). The number of different individuals of red knots 
observed per year during the selected period (10–30 May) ranged 
from 70 in 2009 to 312 in 2015. For a summary of the collected data, 
see Table 1 and Supporting Information Figures S1 and S2. Note that 
in 2010, no scans of numbers of marked and unmarked birds were 
performed.

F I G U R E  1   Maps of (a) the schematic 
northward migration routes of the red 
knot subspecies C. c. piersmai and C. c. 
rogersi, (b) the location of the study area 
in the Bohai Bay, and (c) the study area. 
Modified from Rogers et al. (2010)
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2.2 | Jolly–Seber model to estimate migration 
parameters: assessing the presence of heterogeneity

We used open‐population Jolly–Seber models to estimate arrival 
(β), staying (ϕ), and encounter (p) probabilities, as well as number 
of marked red knots present at the study site per day (Mt) and in 
total (M*). A key assumption of the Jolly–Seber model is homogene-
ity of β, ϕ, and p for marked and unmarked birds, which is critical 
for unbiased abundance estimation. Goodness‐of‐fit tests for the 
Jolly–Seber model are the same as those for the Cormack‐Jolly–
Seber model (Pollock, Hines, & Nichols, 1985). We used the tests 
for CJS models to each year's data using R (R Core Team, 2015) and 
package R2ucare (Gimenez, Lebreton, Choquet, & Pradel, 2018). We 
separately show the results of Test3.SR and Test2.CT (as well as the 
overall test) as these tests tend to become significant when there is 
heterogeneity in, respectively, ϕ and p. The transience test (Test3.
SR) was significant in 2014 only (χ2 = 30.36, df = 16, p = 0.016), 
whereas the trap dependence test (Test2.CT) was significant in 
2012 (χ2 = 32.37, df = 15, p = 0.006) and 2015 (χ2 = 55.84, df = 18, 
p < 0.001). An overview of all test results is listed in Supporting 
Information Table S1.

In addition to these tests, we investigated support for individual 
heterogeneity by comparing models with and without hidden classes 
of individuals (finite mixtures) with contrasting ϕ and p. To do so, we 
first explored support for daily variation in ϕ and p by comparing 
constant versus time‐dependent parameterizations using the com-
putationally efficient frequentist formulation of the JSSA model as 
implemented in program MARK (the POPAN model). Arrival proba-
bilities were modeled time‐dependent in all models, as we consid-
ered it biologically unrealistic that arrival probabilities would be the 
same at all days. In all years, the most parsimonious model (i.e., the 
model within ΔAICc < 2 with the fewest parameters) had constant 
ϕ and daily variation in p (βtϕ.pt) (Supporting Information Table S2).

We then constructed the Jolly–Seber model in program E‐Surge 
(Choquet, Rouan, & Pradel, 2009) to enable the modeling of finite 
mixtures in the computationally efficient frequentist framework 
(Gimenez, Cam, & Gaillard, 2018). To implement open‐population 
models in E‐Surge, the option “conditional on first occasion” (in-
stead of “conditional on first capture”) should be selected. For the 
model without mixtures, we defined three states: “not yet arrived,” 
“arrived,” and “departed.” The parameters were modeled as in the 
best‐supported model described above (βtϕpt). To implement the fi-
nite‐mixture model with two classes of individuals, we defined four 
states: “not yet arrived,” “arrived in class 1,” “arrived in class 2,” and 
“departed.” We then compared models in which the two classes of in-
dividuals were assumed to vary (in an additive way) either or both in 
ϕ and p (βtϕhpt, βtϕ. pt+h and βtϕhpt+h). As models were prone to local 
minima, each model was run five times with different initial values.

Models with two mixtures in p were supported in the years 
2012–2015, with especially strong support in 2012 and 2015 
(ΔAICc = 34.7 and 27.9) and considerable support in 2013 and 2014 
(ΔAICc = 11.7 and 18.2) (Table 2). In 2012, there was additional sup-
port for heterogeneity in ϕ (Table 2).TA
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2.3 | Bayesian formulation of finite‐mixture Jolly–
Seber model combined with ring density model

To account for the individual heterogeneity in ϕ and p that we 
detected in our dataset, we refined and extended the Bayesian 
model developed by Lyons et al. (2016) to include finite mixtures. 
This model uses the hierarchical state–space formulation with 
data augmentation developed by Royle and Dorazio (2008) and 
implemented by Kéry and Schaub (2012). The state process is 
defined using latent state variable zi,t for individual i in the aug-
mented dataset, where zi,t = 0 means that the individual has not 
yet arrived or has departed, whereas zi,t = 1 means that the indi-
vidual is present at the site. Index i ranges from 1 to A (number of 
individuals in the augmented dataset) and index t from 1 to K (the 
number of sampling occasions, i.e., days). The inclusion of each 
individual in the augmented dataset is estimated by the latent vari-
able wi, modeled as:

where Ψ is the inclusion probability (being a function of the length of 
the augmented dataset, A). The total number of marked individuals 
in the population is then estimated as

We set A at three times the observed number of marked individ-
uals. To verify that A was chosen sufficiently large (A >> M*), we visu-
ally verified that the posterior distribution of M* was not truncated 
(Kéry & Schaub, 2012).

The mixture class h that individual i belongs to is modeled as

where Ω is a vector describing the discrete distribution of the mix-
ture classes. The length of the vector reflects the number of mixture 
classes, which in our (particular) study case is set to two.

The state process is modeled as

and the observation process as

Stopover duration of each individual was derived from the latent 
state variables zi,t as

The mean stopover duration of the population was calculated 
as

This calculation of mean stopover duration differs from Lyons et 
al. (2016). While Lyons et al. (2016) calculated mean stopover dura-
tion only over the individuals that were seen at least once, here, it is 
calculated over all individuals that were estimated to have stayed for 
at least one day, including those never observed. As a result, stop-
over duration estimates of the Lyons et al. (2016) model were posi-
tively biased, as never observed individuals were more likely to have 
stayed for a relatively short time.

(1)wi∼Bernoulli(Ψ)

(2)M̂∗ =

A∑

i=1

wi

(3)hi∼Categorical(Ω)

(4)zi,t|zi,t−1∼Bernoulli(�t,hi
zi,t−1)

(5)yi,t|zi,t∼Bernoulli(zi,tpt,hi ).

(6)Ŝi=

K∑

t=1

wizi,t.

(7)Ŝ=

∑A

i=1
Ŝi

M∗
.

Year Model K ΔDev ΔAICc Year Model K ΔDev ΔAICc

2009 βtϕ.pt 35 12.69 0.44 2013 βtϕ.pt 40 18.89 11.63

βtϕ.pt+h 37 12.27 9.19 βtϕ.pt+h 42 2.14 0.00

βtϕhpt 37 3.09 0.00 βtϕhpt 42 11.09 8.95

βtϕhpt+h 38 0.00 1.59 βtϕhpt+h 43 0.00 0.45

2010 βtϕ.pt 40 6.67 0.00 2014 βtϕ.pt 42 22.66 15.62

βtϕ.pt+h 42 3.43 4.04 βtϕ.pt+h 44 2.25 0.00

βtϕhpt 42 0.00 0.61 βtϕhpt 44 19.64 17.40

βtϕhpt+h 43 3.00 7.34 βtϕhpt+h 45 0.00 0.17

2011 βtϕ.pt 42 1.31 0.00 2015 βtϕ.pt 43 36.86 27.90

βtϕ.pt+h 44 0.05 4.41 βtϕ.pt+h 45 3.95 1.77

βtϕhpt 44 0.00 4.36 βtϕhpt 45 15.62 13.44

βtϕhpt+h 45 0.02 7.26 βtϕhpt+h 46 0.00 0.00

2012 βtϕ.pt 42 41.96 34.69 2016 ϕ.pt 43 6.45 0.00

βtϕ.pt+h 44 6.61 4.18 ϕ.pt+h 45 1.48 0.53

βtϕhpt 44 36.83 34.40 ϕhpt 45 5.33 4.39

βtϕhpt+h 45 0.00 0.00 ϕhpt+h 46 0.00 1.85

Note. Each year's most parsimonious model is written in bold.
K = number of parameters; ΔDev = difference in deviance with the model with the lowest deviance 
of the same year; ΔAICc = difference in AICc with the model with the lowest AICc of the same year.

TA B L E  2   Model selection results of 
the JS‐model accounting for 
heterogeneity (h) in staying (ϕ) and/or 
encounter (p) probabilities by modeling 
two mixture classes, compared to the 
best‐supported model without 
heterogeneity, which for all years was the 
model with constant staying probability 
(ϕ.) and daily variation in entry (βt) and 
encounter (pt) probabilities (Supporting 
Information Table S2)
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The arrival probabilities (βt), reflecting the proportion of the 
overall population using the site that arrives at each day t, are mod-
eled as in Lyons et al. (2016).

2.3.1 | Binomial model for ring density data

The proportion of marked individuals in the population (𝜋̂) is esti-
mated from the ring density data (i.e., counts of marked and un-
marked individuals) as

where ms refers to the number of marked animals in the scan sample 
and Ns to the total number of animals (marked and unmarked) scanned. 
It is assumed that the proportion of marked individuals is constant over 
the season. The estimated proportion of marked individuals is then 
used to estimate the total population size (N̂∗) at the staging site:

A key assumption of the Jolly–Seber model to produce unbiased 
parameter estimates, in particular of population size, is that all in-
dividuals (marked and unmarked) have the same entry, staying and 
encounter probabilities. By including mixtures in the model, we now 
account for heterogeneity in the form of two hidden groups that 
have distinct encounter and/or staying probabilities. With respect 
to the unmarked birds, it must now be assumed that the proportions 
of individuals in each mixture class are the same among marked and 
unmarked birds. This appears to be a reasonable assumption since 
the marking occurred at the wintering grounds; hence, the marked 
individuals have no (negative) association with certain areas or hab-
itats at the staging site.

The JAGS code of the two‐mixture superpopulation model that 
accounts for heterogeneity in both ϕ and p is provided in Supporting 
Information Appendix S1.

The Bayesian integrated model was analyzed using Markov 
chain Monte Carlo simulations as implemented in JAGS (Plummer, 
2003) via R (R Core Team, 2015) using R2jags (Su & Yajima, 2015). 
For each year of red knot data, two chains of length 30,000 were 
simulated and we used the last 20,000 iterations (excluding 10,000 
burn‐in iterations) to describe the posterior distributions of the 
model (and derived) parameters. We used uninformative priors for 
all parameters. Convergence was assessed graphically and from 
the R‐hat values, assuming convergence when R‐hat values were 
smaller than 1.2 (Kéry & Royle, 2016). In addition, we checked that 
the Jolly–Seber model parameter estimates were similar when an-
alyzed using MARK, E‐Surge, or JAGS (see Appendix S2 for an ex-
ample of this check for the model βt ϕ. pt on the 2015 data).

2.4 | Simulation study

We used simulations to assess the bias in model parameter esti-
mates when heterogeneity in staying and encounter probabilities 

is ignored. To reflect the situation of the red knots in Bohai Bay, 
we assumed 15 occasions, 500 marked individuals, and two groups 
of individuals that differed in either or both encounter probability 
(p = 0.2 vs. p = 0.8) and staying probability (ϕ = 0.5 vs. ϕ = 0.9), with 
the proportion of individuals in the two groups being either low 
(0.2) or high (0.8). For the cases without heterogeneity, we assumed 
p = 0.5 and ϕ = 0.7. Arrival, staying, and encounter probabilities 
were assumed to be constant over time. This resulted in eight dif-
ferent scenarios, as summarized in Table 3. For each scenario, 1,000 
mark–recapture datasets were simulated (nsim = 1,000) and analyzed 
with the Jolly–Seber model in program MARK (White & Burnham, 
1999) using R (R Core Team, 2015) and RMark (Laake, 2013). In ad-
dition, we analyzed 50 simulated datasets under scenario 1 and 5 of 
Table 3 with the Bayesian superpopulation model with two mixture 
classes to assess its performance in removing the bias. R‐code of 
the simulations is provided in Supporting Information Appendix S3.

Relative bias and associated mean square error (MSE) of parame-
ter estimates are reported and calculated as follows:

3  | RESULTS

3.1 | Red knots in Bohai Bay

The Bayesian analysis of the integrated superpopulation model 
showed that in the years 2009 to 2016, a total of 50,000–100,000 red 
knots annually stopped along the Luannan Coast in Bohai Bay (China) 
for about 6 to 9 days between 10 and 30 May (Figures 2 and 3). We 
applied the two‐mixture model for the years with support for heter-
ogeneity in p and/or ϕ (2012–2015, see Section 2). In these years, a 
small proportion of birds (0.06–0.35) was estimated to have relatively 
high encounter probabilities (Figure 4). Ignoring heterogeneity in p re-
sulted in underestimated staying probabilities, stopover duration, and 
population size (Figures 2 and 3, black vs. blue dots). Assuming that 
the mixture models provided unbiased estimates, parameter estimates 
were negatively biased by 1%–3% for ϕ, 8%–12% for stopover duration 
and 13%–19% for stopover population size (calculated from the mean 
values in Figures 2 and 3).

In 2012, there was support for heterogeneity in both p and ϕ. 
In this year, the majority of birds (65%) had relatively high staying 
(Figure 2) and low encounter probabilities (Figure 4). Assuming that 
the two‐mixture model with heterogeneity in p and ϕ provided un-
biased estimates, when ignored, this linked heterogeneity resulted 
in slightly underestimated population sizes (bias of −7%, Figure 3, 
black dots vs. red dots) but more strongly underestimated stopover 
duration (bias of −17%) compared to years with only heterogeneity 
in p (−8 to −12%, Figure 2).

Timing of stopover, calculated as the first day at which 50% of 
the population had arrived (assessed from the cumulative sum of 

(8)ms∼Binomial(Ns,𝜋̂).

(9)N̂∗ = M̂∗∕𝜋̂.

Relative bias=
1

𝜃nsim

nsim∑

i=1

𝜃̂𝚤−𝜃

MSE=
1

𝜃2nsim−1

nsim∑

i=1

(𝜃̂𝚤−𝜃)2
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the entry probabilities), was similar between years. Ignoring the 
heterogeneity in encounter and/or staying probabilities caused lit-
tle bias in estimates of timing of stopover (Supporting Information 
Figure S3).

3.2 | Simulation study

The simulation study showed that heterogeneity in p and ϕ caused 
negligible bias in estimated mean arrival dates (<2.8% for all sce-
narios, Table 3) and that the extent of bias in population size and 
stopover duration estimates strongly depended on the proportions 
of birds with low and high p and/or ϕ.

With heterogeneity in only p (scenarios 1 and 2 in Table 3), the 
scenario where 80% of the individuals had p = 0.2 and 20% had 
p = 0.8 resulted in the largest (negative) biases, with ϕ being un-
derestimated by 7.4%, stopover duration (calculated as −1/ln(ϕ)) by 
17.5% and population size by 28.2% (Table 3). When 80% instead of 
20% of the individuals had p = 0.8, biases were much smaller, with 
ϕ, stopover duration, and population size being underestimated by 
1.6%, 3.9%, and 9.4%, respectively.

Heterogeneity in staying probabilities alone (scenarios 3 and 4 in 
Table 3) caused only small bias of population size estimates (−3.2% 
and −2.7%), but the scenario where the minority of individuals had 
high staying probabilities (scenario 3) caused considerable overesti-
mation (by 17.1%) of stopover duration.

Heterogeneity in both p and ϕ (scenarios 5 to 8, Table 3) caused 
most severe bias when the minority of birds had high encounter and 
staying probabilities (scenario 5, Table 3), with population size being 
underestimated by 50.5% and stopover duration being overestimated 
by 41.3%. In all four scenarios, stopover duration was considerably 
biased (in either direction), with absolute bias ranging from 16.8% to 
41.3% (Table 3).

Analyzing the simulated datasets of scenarios 1 and 5 (i.e., the sce-
narios that caused the most severe biases when heterogeneity was ig-
nored, see Table 3) with the Bayesian superpopulation model with two 
mixture classes strongly reduced the bias in estimates of population size 
and stopover duration to values below 12% (Supporting Information 
Table S3). This implied a reduction in bias of 60%–97% compared to the 
models that did not account for heterogeneity (Table 3).

4  | DISCUSSION

4.1 | General conclusions

In this study, we extended the Bayesian superpopulation model de-
veloped by Lyons et al. (2016) by accounting for heterogeneity in 
encounter and staying probabilities through finite mixtures in order 
to provide unbiased estimates of stopover timing, duration, and 
population size of migratory birds. Using a combination of analyses 
of simulated and real data, we showed that heterogeneity in en-
counter and staying probabilities is present in real datasets and can 
cause severely biased parameter estimates, especially of stopover 
duration and population size. Accounting for heterogeneity where 

needed, the model estimated that between 10 and 30 May, a total 
of 50,000–100,000 red knots used the Luannan Coast of Bohai Bay 
(China) for about a week (6 to 9 days), to refuel for their (presumably) 
final migratory flight to the New Siberian Islands.

4.2 | Statistical considerations

Our findings are in agreement with previous studies that showed that 
heterogeneity in encounter probabilities can severely bias popula-
tion size estimates (Carothers, 1973; Cubaynes et al., 2010; Pledger 
et al., 2010), and to a lesser extent survival probabilities (Abadi et 
al., 2013). Bias in parameter estimates was particularly severe when 
a small group of birds had high p (scenario 1, Table 3), and most se-
vere when this same group also had relatively high ϕ (scenario 5, 
Table 3). Such linked heterogeneity in p and ϕ may be common in 
natural populations, when the highly detectable individuals are the 
most dominant or most active, hence potentially the better surviving 
(or longer staying) individuals. Such linked heterogeneity was indeed 
found in a study of wolves Canis lupus (Cubaynes et al., 2010).

Moreover, while bias of ϕ was relatively small for most simulated 
scenarios, its exponential relationship with stopover duration (or life 
expectancy) makes bias of stopover duration (or life span) estimates 
much larger, especially when staying (or survival) probabilities are 
high. This is similar to a small difference in survival probability result-
ing in a much larger difference in population growth rate, especially 
among long‐lived species (Fletcher et al., 2012).

The heterogeneity in p among red knots in the years 2012–2015, 
with the majority of birds having low encounter probabilities, comes 
closest to simulated scenario 1 in Table 3. Yet, the difference in en-
counter probabilities of red knots was less extreme (approximately 
0.15 vs. 0.4) than in the simulation (0.2 vs. 0.8). This may explain why 
the bias of parameter estimates in the red knot case study was in the 
same direction, but smaller than in the simulated scenario. This was 
confirmed by a simulated scenario more similar to the red knot situa-
tion (scenario 9, Table 3). In 2012, individuals differed in both p and ϕ, 
with the majority having high staying and low encounter probabilities, 
similar to scenario 8 of Table 3. However, in contrast to scenario 8, 
where ignoring such heterogeneity resulted in an overestimation of 
population size, the population size of red knots in 2012 was (slightly) 
underestimated. This can be explained by the relatively small differ-
ence in staying probabilities of red knots (0.92 vs. 0.98) compared to 
the simulation (0.5 vs. 0.9). A simulation with parameter values more 
similar to the red knot case confirmed that in this situation, popula-
tion size becomes negatively biased (scenario 10, Table 3).

Depending on the main interest, different parameterizations of 
the Jolly–Seber model can be used. We used the superpopulation 
parameterization that allows direct modeling of entry probabilities, 
thereby allowing these probabilities to be modeled as a (non)linear 
function (instead of daily variation). When, on the other hand, inter-
est lies in age‐dependent staying probabilities (one could imagine 
that staying probabilities decrease with the time already spent at the 
site (Pledger, Efford, Pollock, Collazo, & Lyons, 2009)), the multistate 
parameterization (and implemented in E‐Surge) may be better suited, 
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as it enables the state “arrived” to be divided into multiple states “ar-
rived since 1 day”, “arrived since 2 days”, etc. (Pradel, 2009), subse-
quently allowing the effect of age to be constrained by some (linear) 
function. In both cases, mixtures can be implemented to account for 
heterogeneity in encounter and/or staying probabilities.

The yearly estimates of total number of red knots (Figure 3c) 
were rather imprecise, which is due to the very low proportion of 
marked birds π (0.002–0.006, Figure 3b). The lower π is, while the un-
certainty around this estimated proportion (SE) stays the same, the 
more imprecise the total population size estimate becomes. In our 
study, there was evidence for a (slight) positive temporal trend in π. 
However, because of the relatively low number of birds scanned per 
day, adding an additional parameter to the binomial model to account 
for this temporal trend considerably decreased the precision of π.

4.3 | Biological considerations

Our estimate of stopover population size of red knots stopping 
along the Luannan Coast reflects the part of the population that 
uses the site between 10 and 30 May. Most red knots staging during 
this period were assigned to the subspecies piersmai (Rogers et al., 
2010 and Supporting Information Figure S1). While the majority of 
marked piersmai birds were observed for the first time after 10 May, 

some individuals were known to have arrived earlier, especially in 
the years 2012, 2015, and 2016 (Supporting Information Figure S1). 
Most of these birds presumably stayed for a longer time, as snow 
only starts to melt at the High Arctic breeding grounds of piersmai 
red knots around 10 June (Piersma et al., 2016), and the Luannan 
Coast is probably one of the final staging sites before the birds fly 
nonstop (over land) to the breeding grounds (Hua, Piersma, & Ma, 
2013). However, we cannot exclude the possibility that some of 
these birds moved to a different site within the Yellow Sea area after 
visiting the Luannan Coast in early May. As such, the cut‐off at 10 
May may have led to an underestimation of the total stopover popu-
lation size of the piersmai subspecies of red knots and to an underes-
timation of their stopover duration, excluding part of the data of the 
long stayers that were present already before 10 May. Yet, due to 
the presence of large numbers of unmarked rogersi red knots in April 
and early May (Rogers et al., 2010), the proportion of marked birds 

F I G U R E  2   Estimated (a) staying probabilities and (b) stopover 
duration (in days) of models that did not account for heterogeneity 
(in black), and of two‐mixture models that accounted for 
heterogeneity in encounter probabilities (in blue) or heterogeneity 
in both encounter and staying probabilities (in red). The open 
and filled red dots in panel (a) represent the estimated staying 
probabilities of the two mixture classes, with an estimated 
35% (21%–53%) of the population having relatively low staying 
probabilities in 2012. Posterior means and 95% credible intervals 
are shown
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during this early period of the spring migration season was very low 
(Supporting Information Figure S2) and the scanning effort insuffi-
cient to get precise estimates of this marked proportion to translate 
to meaningful estimates of stopover population size.

On the other hand, significant numbers of piersmai red knots 
were known to be still present after 30 May. Yet, to allow compar-
ison among years, with expeditions terminated at 28–30 May in 
2009–2011, we selected data until 30 May. We investigated the 
change in model estimates when analyzing the data until 6 June 
(for the years with available data after 30 May). While it hardly af-
fected stopover duration, analyzing the data until 6 June resulted in 

somewhat higher stopover population sizes (Supporting Information 
Figure S4). This indicates that new birds are still arriving by the end 
of May and beginning of June.

Despite the large‐scale land reclamations and associated disap-
pearance of shorebird foraging areas along the Yellow Sea (Murray, 
Clemens, Phinn, Possingham, & Fuller, 2014; Piersma et al., 2016), and 
an estimated population decline of red knots in this flyway (Studds et 
al., 2017), there are no obvious changes in stopover duration, timing, 
and numbers of red knots using Bohai Bay (Figures 2 and 3). One 
possibility is that red knots become more and more concentrated 
at the few remaining sites along the flyway, with the Luannan Coast 

F I G U R E  4    Estimates of encounter probabilities of the best‐supported models per year (βt ϕ. pt for 2009–2011 and 2016, βt ϕ. pt+h for 
2013–2015, and βt ϕh pt+h for 2012). For the years with heterogeneity in p (2012–2015), estimates are plotted separately for the poorly 
resightable (in black) and highly resightable birds (in red), where Ωhigh is the proportion of highly resightable individuals in the population. 
Posterior means and 95% credible intervals are shown
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being one of them, providing a super‐abundant food source (Yang 
et al., 2013), potentially enabling birds to persist in this area despite 
the disappearance of some of the foraging areas. If true, this implies 
that the proportion of the population relying on the Luannan Coast 
has increased over the years, a concentration process that may have 
started before the first year of this study, 2009 (Yang et al., 2011).

With the total population size of red knots (including both the piers‐
mai and rogersi subspecies) being estimated at approximately 100,000 
birds (Studds et al., 2017), of which about half are piersmai red knots, this 
implies that between 2009 and 2016, 50%–100% of the entire red knot 
population, and about the entire population of the piersmai subspecies, in 
this flyway relies on the mudflats and saltplans of the Luannan Coast for 
refueling their impressive long‐distance migrations. As such, this study 
shows the immediate priority of protecting this staging area to prevent 
further land reclamation to help conserve the red knots in this flyway.

ACKNOWLEDG MENTS

We thank the key people (Adrian Boyle, Matt Slaymaker, Bob Loos, 
Ying‐Chi Chan, Hong‐Yan Yang, Weipan Lei and Bing‐Run Zhu, and 
Zheng‐Wang Zhang) involved in the fieldwork on the Luannan Coast 
in Bohai Bay to do the ring‐reading and scanning. In Australia, catching 
and marking could not have been achieved without the many Broome 
Bird Observatory (BBO) and Australasian Wader Study Group (AWSG) 
volunteers, especially Clare Morton. We thank the Yawuru, Karajarri, 
and Nyangumarta Traditional Owners for permission to access 
their lands, and the Department of Biodiversity, Conservation and 
Attractions for permits and logistical support. We thank Dick Visser 
for preparing Figure 1. Fieldwork in Bohai Bay was funded by grants 
to T.P. to support Global Flyway Network activities in the region from 
WWF (Netherlands and China branches) and BirdLife‐Netherlands, 
by a TOP‐grant from NWO (Shorebirds in space, ALW‐854.11.004), 
and by the Spinoza Premium 2014 from the Netherlands Organisation 
for Scientific Research (NWO). The present analysis was financially 
supported by NWO‐Rubicon grant no. 82514022 awarded to T.L.

CONFLIC T OF INTERE S T

None declared.

AUTHOR CONTRIBUTIONS

T.L. conceived the ideas and T.L., R.P., and O.G. developed the model. 
T.P. planned and raised the financial support for the color‐marking of 
red knots in Northwest Australia and the fieldwork in Bohai Bay, all 
carried out by field teams led by C.H. T.L. analyzed the data and led 
the writing of the manuscript. All authors contributed critically to 
the drafts and gave final approval for publication.

DATA ACCE SSIBILIT Y

Data are available from the Dryad Digital Repository https://doi.
org/10.5061/dryad.dq7495s.

ORCID

Tamar Lok   https://orcid.org/0000-0003-3753-8501 

Theunis Piersma   https://orcid.org/0000-0001-9668-466X 

Roger Pradel   https://orcid.org/0000-0002-2684-9251 

Olivier Gimenez   http://orcid.org/0000-0001-7001-5142 

R E FE R E N C E S

Abadi, F., Botha, A., & Altwegg, R. (2013). Revisiting the effect of capture 
heterogeneity on survival estimates in capture‐mark‐recapture stud-
ies: Does it matter? PLoS ONE, 8, e62636.

Baker, A. J., González, P. M., Piersma, T., Niles, L. J., de Lima Serrano do 
Nascimento, I., Atkinson, P. W., … Aarts, G. (2004). Rapid population 
decline in red knots: Fitness consequences of decreased refuelling 
rates and late arrival in Delaware Bay. Proceedings of the Royal Society. 
Series B Biological Sciences, 271, 875–882.

Carothers, A. D. (1973). Effects of unequal catchability on Jolly‐Seber 
estimates. Biometrics, 29, 79–100.

Choquet, R., Rouan, L., & Pradel, R. (2009). Program E‐SURGE: A soft-
ware application for fitting multievent models. In D. L. Thomson, E. 
G. Cooch, & M. J. Conroy (Eds.), Modeling demographic processes in 
marked populations (pp. 845–865). New York, NY: Springer.

Crockford, N. (2018). More game‐changing good news on coastal wetland 
conservation – a policy perspective: From Yellow Sea to global conser-
vation OR how an IWSG conference talk can catalyse conservation ac-
tion. Wader Study, 125, 158–161. https://doi.org/10.18194/ws.00128

Cubaynes, S., Pradel, R., Choquet, R., Duchamp, C., Gaillard, J. M., 
Lebreton, J. D., … Gimenez, O. (2010). Importance of accounting for 
detection heterogeneity when estimating abundance: The case of 
French Wolves. Conservation Biology, 24, 621–626.

Daan, S., Dijkstra, C., Drent, R. H., & Meijer, T. (1989). Food supply and the 
annual timing of reproduction. In Proceedings of the XIXth International 
Ornithological Congress (pp. 392–407). Ottawa, ON: Ottawa Press.

Drent, R., Both, C., Green, M., Madsen, J., & Piersma, T. (2003). Pay‐offs 
and penalties of competing migratory schedules. Oikos, 103, 274–292.

Fletcher, D., Lebreton, J. D., Marescot, L., Schaub, M., Gimenez, O., 
Dawson, S., & Slooten, E. (2012). Bias in estimation of adult survival 
and asymptotic population growth rate caused by undetected cap-
ture heterogeneity. Methods in Ecology and Evolution, 3, 206–216. 
https://doi.org/10.1111/j.2041-210X.2011.00137.x

Frederiksen, M., Fox, A. D., Madsen, J., & Colhoun, K. (2001). Estimating 
the total number of birds using a staging site. Journal of Wildlife 
Management, 65, 282–289. https://doi.org/10.2307/3802907

Gimenez, O., Cam, E., & Gaillard, J. M. (2018). Individual heterogene-
ity and capture‐recapture models: What, why and how? Oikos, 127, 
664–686.

Gimenez, O., Lebreton, J. D., Choquet, R., & Pradel, R. (2018) R2ucare: 
Goodness‐of‐fit tests for capture‐recapture models. Methods in 
Ecology and Evolution, 9, 1749–1754.

Hua, N., Piersma, T., & Ma, Z. (2013). Three‐phase fuel deposition in a 
long‐distance migrant, the red knot (Calidris canutus piersmai), before 
the flight to High Arctic breeding grounds. PLoS ONE, 8, e62551. 
https://doi.org/10.1371/journal.pone.0062551

Jolly, G. M. (1965). Explicit estimates from capture‐recapture data with 
both death and immigration‐stochastic model. Biometrika, 52, 225–
247. https://doi.org/10.1093/biomet/52.1-2.225

Kaiser, A. (1999). Stopover strategies in birds: A review of methods for 
estimating stopover length. Bird Study, 46, 299–308. https://doi.
org/10.1080/00063659909477257

Kéry, M., & Royle, J. A. (2016). Applied hierarchical modeling in ecology: 
analysis of distribution, abundance and species richness in R and BUGS. 
London, UK: Academic Press.

https://doi.org/10.5061/dryad.dq7495s
https://doi.org/10.5061/dryad.dq7495s
https://orcid.org/0000-0003-3753-8501
https://orcid.org/0000-0003-3753-8501
https://orcid.org/0000-0001-9668-466X
https://orcid.org/0000-0001-9668-466X
https://orcid.org/0000-0002-2684-9251
https://orcid.org/0000-0002-2684-9251
http://orcid.org/0000-0001-7001-5142
http://orcid.org/0000-0001-7001-5142
https://doi.org/10.18194/ws.00128
https://doi.org/10.1111/j.2041-210X.2011.00137.x
https://doi.org/10.2307/3802907
https://doi.org/10.1371/journal.pone.0062551
https://doi.org/10.1093/biomet/52.1-2.225
https://doi.org/10.1080/00063659909477257
https://doi.org/10.1080/00063659909477257


6188  |     LOK et al.

Kéry, M., & Schaub, M. (2012). Bayesian population analysis using 
WinBUGS: A hierarchical perspective. Waltham, MA: Academic Press.

Laake, J. L. (2013). RMark: An R Interface for Analysis of Capture‐Recapture 
Data with MARK. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 
Seattle, WA.

Lyons, J. E., Kendall, W. L., Royle, J. A., Converse, S. J., Andres, B. A., 
& Buchanan, J. B. (2016). Population size and stopover duration es-
timation using mark–resight data and Bayesian analysis of a super-
population model. Biometrics, 72, 262–271. https://doi.org/10.1111/
biom.12393

Matechou, E., Morgan, B. J. T., Pledger, S., Collazo, J. A., & Lyons, J. E. 
(2013). Integrated analysis of capture‐recapture‐resighting data and 
counts of unmarked birds at stop‐over sites. Journal of Agricultural 
Biological and Environmental Statistics, 18, 120–135. https://doi.
org/10.1007/s13253-013-0127-0

Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P., & Fuller, 
R. A. (2014). Tracking the rapid loss of tidal wetlands in the Yellow 
Sea. Frontiers in Ecology and the Environment, 12, 267–272. https://
doi.org/10.1890/130260

Piersma, T. (2007). Using the power of comparison to explain hab-
itat use and migration strategies of shorebirds worldwide. 
Journal of Ornithology, 148, S45–S59. https://doi.org/10.1007/
s10336-007-0240-3

Piersma, T., & Baker, A. J. (2000). Life history characteristics and the con-
servation of migratory shorebirds. In L. M. Gosling, & W. J. Sutherland 
(Eds.), Behaviour and conservation (pp. 105–124). Cambridge, UK: 
Cambridge University Press.

Piersma, T., Lok, T., Chen, Y., Hassell, C. J., Yang, H.‐Y., Boyle, A., … Ma, 
Z. (2016). Simultaneous declines in summer survival of three shore-
bird species signals a flyway at risk. Journal of Applied Ecology, 53, 
479–490. https://doi.org/10.1111/1365-2664.12582

Pledger, S., Efford, M., Pollock, K., Collazo, J., & Lyons, J. (2009). Stopover 
duration analysis with departure probability dependent on unknown 
time since arrival. In D. L. Thomson, E. G. Cooch, & M. J. Conroy 
(Eds.), Modeling demographic processes in marked populations (pp. 
349–363). Berlin, Germany: Springer.

Pledger, S., Pollock, K. H., & Norris, J. L. (2003). Open capture‐recapture 
models with heterogeneity: I. Cormack‐Jolly‐Seber model. Biometrics, 
59, 786–794. https://doi.org/10.1111/j.0006-341X.2003.00092.x

Pledger, S., Pollock, K. H., & Norris, J. L. (2010). Open Capture‐Recapture 
Models with Heterogeneity: II. Jolly‐Seber model. Biometrics, 66, 
883–890. https://doi.org/10.1111/j.1541-0420.2009.01361.x

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphi-
cal models using Gibbs sampling. In K. Hornik, F. Leisch, & A. Zeileis 
(Eds.), 3rd International Workshop on Distributed Statistical Computing. 
Vienna.

Pollock, K. H., Hines, J. E., & Nichols, J. D. (1985). Goodness‐of‐fit tests 
for open capture‐recapture models. Biometrics, 41, 399–410. https://
doi.org/10.2307/2530865

Pradel, R. (2009). The stakes of capture‐recapture models with state 
uncertainty. In D. L. Thomson, E. G. Cooch, & M. J. Conroy (Eds.), 
Modeling demographic processes in marked populations (pp. 781–795). 
New York, NY: Springer.

R Core Team (2015). R: A language and environment for statistical comput‐
ing. Vienna, Austria: R Foundation for Statistical Computing.

Rogers, D. I., Yang, H. Y., Hassell, C. J., Boyle, A. N., Rogers, K. G., Chen, 
B., … Piersma, T. (2010). Red Knots (Calidris canutus piersmai and C. 
c. rogersi) depend on a small threatened staging area in Bohai Bay, 
China. Emu, 110, 307–315.

Royle, J. A., & Dorazio, R. M. (2008). Hierarchical modeling and inference 
in ecology. The analysis of data from populations, metapopulations and 
communities. New York, NY: Academic Press.

Schaub, M., Pradel, R., Jenni, L., & Lebreton, J. D. (2001). Migrating birds 
stop over longer than usually thought: An improved capture‐recap-
ture analysis. Ecology, 82, 852–859.

Schwarz, C. J., & Arnason, A. N. (1996). A general methodology for the 
analysis of capture‐recapture experiments in open populations. 
Biometrics, 52, 860–873. https://doi.org/10.2307/2533048

Seber, G. A. F. (1965). A note on the multiple recapture census. Biometrika, 
52, 249–259. https://doi.org/10.1093/biomet/52.1-2.249

Smith, R. J., & Moore, F. R. (2005). Arrival timing and seasonal reproduc-
tive performance in a long‐distance migratory landbird. Behavioral 
Ecology and Sociobiology, 57, 231–239. https://doi.org/10.1007/
s00265-004-0855-9

Studds, C. E., Kendall, B. E., Murray, N. J., Wilson, H. B., Rogers, D. I., 
Clemens, R. S., … Fuller, R. A. (2017). Rapid population decline in 
migratory shorebirds relying on Yellow Sea tidal mudflats as stop-
over sites. Nature Communications, 8, 1–7. https://doi.org/10.1038/
ncomms14895

Su, Y. ‐S., & Yajima, M. (2015). R2jags: Using R to Run ‘JAGS’. R package 
version 0.5‐7. https://CRAN.R-project.org/package=R2jags 

Verhoeven, M. A., van Eerbeek, J., Hassell, C. J., & Piersma, T. (2016). 
Fuelling and moult in red knots before northward departure: A visual 
evaluation of differences between ages, sexes and subspecies. Emu, 
116, 158–167. https://doi.org/10.1071/MU15035

Warnock, N. (2010). Stopping vs. staging: The difference between a 
hop and a jump. Journal of Avian Biology, 41, 621–626. https://doi.
org/10.1111/j.1600-048X.2010.05155.x

White, G. C., & Burnham, K. P. (1999). Program MARK: Survival estima-
tion from populations of marked animals. Bird Study, 46, S120–S139. 
https://doi.org/10.1080/00063659909477239

Yang, H. Y., Chen, B., Barter, M., Piersma, T., Zhou, C. F., Li, F. S., & Zhang, 
Z. W. (2011). Impacts of tidal land reclamation in Bohai Bay, China: 
Ongoing losses of critical Yellow Sea waterbird staging and winter-
ing sites. Bird Conservation International, 21, 241–259. https://doi.
org/10.1017/S0959270911000086

Yang, H. Y., Chen, B., Ma, Z. J., Hua, N., van Gils, J. A., Zhang, Z. W., & 
Piersma, T. (2013). Economic design in a long‐distance migrating mol-
luscivore: How fast‐fuelling red knots in Bohai Bay, China, get away 
with small gizzards. Journal of Experimental Biology, 216, 3627–3636. 
https://doi.org/10.1242/jeb.083576

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article. 

How to cite this article: Lok T, Hassell CJ, Piersma T, Pradel 
R, Gimenez O. Accounting for heterogeneity when estimating 
stopover duration, timing and population size of red knots 
along the Luannan Coast of Bohai Bay, China. Ecol Evol. 
2019;9:6176–6188. https://doi.org/10.1002/ece3.5139

https://doi.org/10.1111/biom.12393
https://doi.org/10.1111/biom.12393
https://doi.org/10.1007/s13253-013-0127-0
https://doi.org/10.1007/s13253-013-0127-0
https://doi.org/10.1890/130260
https://doi.org/10.1890/130260
https://doi.org/10.1007/s10336-007-0240-3
https://doi.org/10.1007/s10336-007-0240-3
https://doi.org/10.1111/1365-2664.12582
https://doi.org/10.1111/j.0006-341X.2003.00092.x
https://doi.org/10.1111/j.1541-0420.2009.01361.x
https://doi.org/10.2307/2530865
https://doi.org/10.2307/2530865
https://doi.org/10.2307/2533048
https://doi.org/10.1093/biomet/52.1-2.249
https://doi.org/10.1007/s00265-004-0855-9
https://doi.org/10.1007/s00265-004-0855-9
https://doi.org/10.1038/ncomms14895
https://doi.org/10.1038/ncomms14895
https://CRAN.R-project.org/package=R2jags
https://doi.org/10.1071/MU15035
https://doi.org/10.1111/j.1600-048X.2010.05155.x
https://doi.org/10.1111/j.1600-048X.2010.05155.x
https://doi.org/10.1080/00063659909477239
https://doi.org/10.1017/S0959270911000086
https://doi.org/10.1017/S0959270911000086
https://doi.org/10.1242/jeb.083576
https://doi.org/10.1002/ece3.5139

