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Abstract - Instantaneous teleportation - the transmission and reconstruction over arbitrary distances of 

an unknown state without any type of disambiguation based on classical bits - is demonstrated, 

supporting the fact that instantaneous information transfer via an Einstein-Podolsky-Rosen channel is 

definitely possible. In other words, quantum correlations can be used to send signals, reinforcing the 

existence of an action at a distance, hence, paving the way for a better understanding of quantum 

entanglement and its consequent impact on Quantum Internet, as well as, on a realistic relationship 

between Special Relativity and Quantum Mechanics.  
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1.  Introduction 

 

Quantum entanglement [1-3] is at the center of a great controversy, which consists of the apparent 

violation of the local realism and causality [4, 5]. As a simple example of this, if we make a local 

measurement of the state of one of two entangled particles (e.g., the orientation of its spin) there is an 

instant notification to its counterpart, which adopts the opposite state of the first one (i.e., spin in the 

opposite orientation), even when both are at a distance where said notification required a trip at a 

faster-than-light speed [6, 7] to be instantaneous. According to Special Relativity [8] this is 

impossible. Such disagreement gives rise to the main cause of conflict between Quantum Mechanics 

[9] and Special Relativity [2, 5, 10]. As a result, there is a general consensus among scientists that this 

link cannot be used to transmit useful information at a superluminal speed [11-14]. However, an 

exception seems to represent a procedure known as quantum teleportation [15-19], which requires two 

classical bits of disambiguation to locally reconstruct the teleported state. This is done at the expense 

of a classical channel, therefore, the complete teleportation procedure itself is subject to the speed of 

the transmission for this channel, which, as it is evident, is the speed of light. In summary, 

teleportation does not represent a faster-than-light quantum communication procedure [15] at all. 

 

Two no-go theorems, No-Signaling [20-24] and No-Communication [6, 25], establish that it is 

impossible to obtain an instantaneous notification about the result of a local measurement regarding 

the state of one of the two entangled particles between observers separated by distances such that said 

notification should travel to a faster-than-light speed. An instant notification would contradict the local 

realism [4] and causality [5] established in the EPR paradox (Einstein-Podolsky-Rosen) [26] which is 

absolutely consistent with Special Relativity [8]. In this context, the EPR paradox interprets the 

entanglement as a spooky action at a distance by virtue of the violation of the locality [27, 28], and it 

can only justify it by means of the existence of local hidden variables [29]. Bell's Theorem [30] and its 

later improvement through the Clauser-Horne-Shimony-Holt (CHSH) procedure [31] give an 

experimental framework to pass the problem to the initial locality hypotheses which will be tested in 

the light of subsequent experiments. These theorems establish unequal paths that if experimentally 

violated would prove the non-existence of local hidden variables and, at the same time, the non-

locality nature of entanglement. However, this violation does not say anything about the possible 

existence of non-local hidden variables as established by several theories in this regard [32, 33], in 

particular, one of them of a deterministic nature [34]. 
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The creators of the teleportation protocol [15] in the first lines of their paper’s Introduction, literally, 

say: The existence of long range correlations between Einstein-Podolsky-Rosen (EPR) [26] pairs of 

particles raises the question of their use for information transfer. Einstein himself used the word 

"telepathically" in this context [35]. It is known that instantaneous information transfer is definitely 

impossible [36]. Here, we show that EPR correlations can nevertheless assist in the "teleportation" of 

an intact quantum state from one place to another, by a sender who knows neither the state to be 

teleported nor the location of the intended receiver.  

 

If we delve further into the literature that deals with the subject of quantum teleportation, then we can 

see that all the conclusions about the impossibility of sending useful information through an EPR 

channel revolve, directly or indirectly, around quantum measurement [37, 38]. This is evident, since as 

a consequence of what is measured on one side, we are, apparently, faced with the impossibility of 

reconstructing the correct information instantaneously on the other side. This apparent impossibility in 

relation to entanglement will be put to the test in this work. In fact, it seems incredible that all the 

literature on this subject has not yet explained how a random phenomenon can be synchronized 

between two elements in a completely indifferent way to the distance that separates them, since what 

is important here is that nature communicates instantaneously and how this happens, no matter, 

whether or not, man can take advantage of these principles in a system for an instant communication. 

As a species, we face the same kind of problem that we have always faced: being in front of a 

wonderful force of nature and trying to control it for our benefit, and this is the keyword: control, 

which will be covered in depth from Section 3 onwards.  

 

Showing up next, a setup with all the inexcusable tools needed to analyze this problem in depth is 

outlined in Section 2. In Section 3, we introduce the supporting experiments of Section 2 respect to 

quantum entanglement and quantum teleportation. In Section 4, we provide additional experiments, 

which constitute applications related to quantum internet. Section 5 is exclusively reserved to two 

techniques of quantum repeaters and a third technique resulting from the combination of the previous 

ones, and called hybridization. Finally, Section 6 provides a conclusion and future work proposals. 

 

2.  Entropic analysis 

 

Although in the previous section we put quantum measurement at the center of the problem, what we 

are really talking about is information, given that while we do not measure the elements of the 

entangled pair, they are found in a combination of states, but when we measure them, i.e., we try to 

inform ourselves of its situation, the first particle randomly takes one of the following determined 

states: spin-up or spin-down, which is accompanied by the end of the entanglement. Once the state of 

the first particle is established, the state of the second one is deterministic and instantaneously 

determined as the opposite of the first one, regardless of the distance between them. Since, we are 

dealing with information, the best tools to use are Entropy and Mutual Information [1], through which 

we will carry out an entropic analysis of the problem posed in the previous section.  

 

For a better understanding of all the concepts to be developed from now on, we will organize this 

section through the following subsections:  

2.1 Setup: we will enunciate the minimum amount of necessary Quantum Information Processing 

tools [39], and we will define the concepts of Entropy and Mutual Information [1] on the basis of 

which we will develop the entropic analysis, which will be applied according to the degree of 

correlation between the particles, in the following subsections: 

2.2 Completely independent particles, 

2.3 Classically-correlated particles, and 

2.4 Entangled particles. 

2.5 Consequences on Quantum Communications: we will make important preliminary conclusions 

regarding the previous case. 

 

Finally, before proceeding to the exhaustive entropic analysis of the problem raised in Section 1, we 

need to make some considerations: 
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1. From what was mentioned above, we can recognize the importance of organizing the analysis 

according to the existence of three well-defined populations in relation to the degree of correlation 

between particles. So that, if we go from the lowest to the highest degree of correlation, we will 

have independent, classically-correlated, and entangled particles [1]. As is evident, for all three 

cases, every known physical quantity must be conserved, namely: spin, mass, energy, moment of 

spin or torque, etc. As we will see, the three mentioned populations will hold their condition (i.e., 

independent, classically-correlated, and entangled) regardless of the distance between the particles. 

However, the third population (i.e., entangled particles) carries an added attribute, which consists 

of an effect of maximum correlation between said particles involved, with an instantaneous 

synchronization between them, and which is maintained even when the distance separating these 

entangled particles is infinite. Therefore, in order for the entanglement to be concomitant with this 

situation, we must raise a couple of hypotheses: 

 

a. If an effect is independent of distance, even if it is infinite, it is because something (or many 

things) related to that effect (i.e., some other physical entities) also accompanies the distance 

in that infinite potential increase of range in order to sustain said effect. This is evident, since 

the space in Physics is always linked with everything else: time, energy, etc. 

 

b. Everything must be conserved, without exception, because if something potentially infinite is 

involved, then that something must be compensated so that with each entanglement the 

universe is not unbalanced. 

 

These two items are in themselves a principle of exclusion, given that nothing in Physics can get 

out of range alone and decompensated without having serious consequences. While in the other 

two cases (independent, and classically-correlated) there is no need to make the effort to sustain 

any effect, therefore nothing needs to accompany a distance out of range. 

 

2. Consistent with entropy, we will use a scalar notation based on spins in order to preserve a greater 

correspondence between the tools associated with entropy (as in the case of Mutual Information) 

and the spins themselves. 

 

2.1. Setup 

 

We will begin with the definition of the minimum amount of tools that are essential in this section. For 

pure states, that is, states on the Bloch’s sphere [39-41] of Figure 1, any wave-function  

 

10                               (1) 

 

arises from the superposition of the so-called Computational Basis States (CBS) and qubit basis states 

 0 1, , which are located at the poles of the already mentioned sphere with 2 2
1   , such that 

α ∧ β ∈ ℂ of a Hilbert’s space [39]. Strictly, the complete wave-function will be 

 

 0 1 0 1
2 2 2 2

i i ie cos e sin e cos cos i sin sin        
         

   
                     (2) 

 

where 0   , 0 2     [39]. However, we can ignore the factor ie   of Eq.(2), because it has no 

observable effects [40], and for that reason we can effectively write 

 

0 1
2 2

icos e sin 
                                (3) 

 

with  2
cos    and  2

ie sin   , being then equal to the Eq.(2). The numbers   and   define a 

point on the unit three-dimensional sphere, as shown in Figure 1. 
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Figure 1 Bloch’s Sphere. 
 

 

Now, we can represent the mentioned poles in different ways. In fact, we introduce an alternative and 

very useful version for the task to be developed, which is a scalar way to represent the poles based on 

the orientation of the spins: 

 

 0

1
0 1

0
Spin up North pole
  

         
  

                                   (4) 

 1

0
1 1

1
Spin down South pole
  

          
  

                                  (5) 

 

being 
0

  and 
1

  the scalar versions of the spin up 0  and the spin down 1 , respectively, in such a 

way that the sum of both spins that represent the poles is null (i.e., it is conserved): 
0 1

0   , 

similarly to the case when a spinless particle decays in two new entangled particles with opposite spins 

[1, 2, 39]. We can see both spins (up and down) in the poles of Figure 1. The scalar notation based on 

 is arithmetically more ductile than the Dirac’s notation [39] based on <bra| and |ket> and allows us 

to work better with magnitudes and signs which will be fundamental in the analysis that we will do. In 

fact, in this notation, we associate the sign of with the mentioned spin orientation or polarization of 

the different particles. These 's will have as much generality as the Dirac’s notation in regards to its 

validity for all types of particles. Therefore, in this work, the letter μ will represent this concept, 

exclusively, and does not necessarily mean muon. Moreover, and based on CBS, we can define 

another basis, which will be very useful for the rest of this work as well as for quantum information in 

general [39], and quantum teleportation and superdense coding in particular [1, 15-19, 39, 42, 43]. 

Taking into account the interaction of two subsystems A and B, considering that their components are 

pure states and using their scalar versions here too, we will obtain, 

 

  2

0 0 0
0 0 0 0 0 0 0 0 1A B A,B

A B A B A B A B,           
 

                       (6a) 

  2

1 1 1
1 1 1 1 1 1 1 1 1A B A,B

A B A B A B A B,            
 

                                              (6b) 

 

where ⨂ is the Kronecker’s product, and 
0 0A B  and 

1 1A B  are the scalar version of 0 0A B  and 1 1A B , 

respectively, with 
0 0 1 1

0A B A B   , i.e., here also the spin is conserved between 
0 0A B  and 

1 1A B . 

The rule of the signs that support the equivalences and equalities seen so far is very simple, however, 

extremely strict and important. Consequently with this, and being 
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1 0 0 0

1 1 0 0 0 0 1 0 0 0 1 1
00 11 01 10

0 0 0 1 1 0 0 1 1 1 0 0

0 1 0 0

, , ,

       
       

                                                                      
       
       

                     (7) 

 

we are going to use them to build the famous Bell’s bases [1-3], with 2-qubit vectors, the combined 

Hilbert space will be 2 2

A B A B    , and then we will have the following four vectors, 

 

 
   

   

00 10

01 11

1 1
00 11 00 11

2 2

1 1
01 10 01 10

2 2

, ,

, .

 

 

         

         

                              (8) 

 

Moreover and considering that a maximally entangled pair emerges from a spinless particle, it is 

evident that the bases of the Eq.(8) must also comply with the conservation of the spin. Thus, for 

00  and 
10  we have 

 

 
0 0 1 1

1
0 0 1 1 0

2
A B A B

A B A B         
 

 ,                                   (9) 

 

while that for 
01  and 

11  we will have, 

 

 
0 1 1 0

1
0 1 1 0 0

2
A B A B

A B A B         
 

 ,                     (10) 

 

which confirms the conservation of the spin for maximally entangled states. Finally, we must note that 

the negative sign in the middle of the simple bases 0 0A B  and 1 1A B  of Eq.(9) do not matter, nor do 

the negative sign in the middle of the simple bases 0 1A B  and 1 0A B  of Eq.(10).  

 

Next, the concepts necessary for a better understanding of the next subsections will be developed. 

These concepts are: density matrix, entropy and mutual information [1]. The last one is important as a 

metric to ponder the degree of correlation between two subsystems. In this way, we recognize three 

levels of correlation between two subsystems: completely independent, classically-correlated and 

entangled subsystems. Besides, and as we have already said, we definitively opt for the scalar notation 

over the Dirac’s notation based on <bra| and |ket> [39] since the former respects orientation (thanks to 

the sign of ), magnitude (thanks to the value of ) and is much more practical and flexible from the 

arithmetic point of view. Although we will refer to both types of notations (Dirac and scalar), 

deductions about the next subsections will be exclusively carried out through scalar notation from now 

on. Besides, since both entropy and mutual information are scalar magnitudes [1, 44], the use of scalar 

notation will be closer to an elegant treatment of the problem posed. Consequently, we are going to 

begin with the density matrix of the subsystems treated individually, 



 
1 01 1 1

0 0 1 1
0 12 2 2

A B I 
 

      
 

,                      (11)      

 

where the scalar version of this operator, but based on the above defined µ, will be 

  
2 2 2 2

0 1 0 11 1

2 2 2

A Br r
   



    
     
   
   

,                                               (12) 
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where η = 2 is an adjustment parameter necessary to compensate the misadjustments existing between 

the traditional and scalar versions of the density matrix. We must note that r
A
 = r

B
 = ½, which is 

consequent with the matrix nature of Eq.(11), in particular, in the context of the entropy that we will 

see later. However, with respect to the case of the system composed of two subsystems, its density 

matrix will depend on whether or not these subsystems are entangled. Therefore, for the non-entangled 

case, we will have: 

 
A B A B     ,                                                  (13) 

      

but for the entangled case, the density matrix will be, 

 
A B A B     .                             (14) 

 

This operator will depend on each of the 3 cases that will be analyzed in the next subsections. Now, 

with respect to the entropy, we begin with the traditional definition [1], that is,  

 

   A B A A B BS S tr log tr log          
   

,                         (15) 

 

then, replacing Eq.(11) into Eq.(15), yields, 

 

1 0 1 01 1
1

0 1 0 12 2

A BS S tr log
     

        
      

,                         (16) 

 

while the scalar version of the entropy is, 

 

   A B A A B BS S r log r r log r        
   

,                         (17) 

 

where,   is another adjustment parameter. Therefore, replacing Eq.(12) into Eq.(17), and remembering 

that: 
0 1

1    , we will have a   = 2,  which yields,  

 

 
2 2 2 2

0 1 0 11 1 1 12 2 1
2 22 2 2 2

A BS S log log
      

           
           

   
.                   (18) 

 

In the same way, for a composed system, the entropy is, 

 

   A B A B A B A B A BS tr log r log r            
   

.                          (19) 

 

In this case,   depends on the degree of correlation (completely independent, classically-correlated, 

and entangled subsystems) between both subsystems. Moreover, in both worlds: the classical and the 

quantum, the correlations between the subsystems are those established by the additional information.  

 

In the case of composite quantum systems, the mutual information 
A BS 

 is introduced to quantify that 

additional information, allowing us to obtain the degree of correlation between both subsystems
 
[1],  

 

0A B A B A BS S S S     .                           (20) 

 

Therefore, the entropy of the composite system 
A BS 

 indicates that the uncertainty of a state 
A B  is 

less than the two subsystems 
AS  and 

BS added together. In other words, 
A BS 

 tells us how much 
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more information the composite system can store compared to the individual subsystems that         

compose it. Besides, 
A BS 

 measures the distance between the state 
A B  and the non-entangled state

 

A B   [1]. If states like Eq.(13) are separable states, then the reduced density matrices of Eq.(11) 

are pure states, thus the entropy of the state is zero. The nonzero value of the entropy of the reduced 

density matrix therefore is an indication of the possible existence of entanglement. 

 

The entropy of the subsystems 
AS  and 

BS  is equal to one in all cases (i.e., 1A BS S  ); while the 

entropy of the composite system 
A BS 

 will have different values for each and every of the three cases. 

For the sake of simplicity, the subsystems are firstly expressed in qubits, to then be replaced by their 

corresponding spins. Making use of Eq.(20), the main idea is to relate correlations and entanglement to 

the entropy, and in particular, to the mutual information 
A BS 

. Then, in the next subsections, we will 

present the mutual information of the three types of subsystems: completely independent, classically 

correlated, and entangled, where the last one is critical for the development of subsequent subsections.  

 

2.2. Completely independent subsystems 

 

In this case, both subsystems have absolute and complete independence between them, i.e., 
A B 

 is a 

Kronecker’s product of density matrices like Eq.(13). We can clearly see this independence in Figure 

2. Therefore, there are no correlations between such subsystems. 

 

 

 

Figure 2 Completely independent subsystems. 

 

 

In the computational basis of 
A B  , 

A B  takes the following form, 

 

 
1 1

0 ,0 0 ,0 0 ,1 0 ,1 1 ,0 1 ,0 1 ,1 1 ,1
4 4

A B A B A B A B A B A B A B A B A B I      ,      (21) 

 

where I is a 4x4 identity matrix. Then, replacing Eq.(21) into Eq.(19), 
A BS 

will be 

 

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 01 1
log 2

0 0 1 0 0 0 1 04 4

0 0 0 1 0 0 0 1

A BS tr

     
     
                        

.                    (22) 

 

Now, introducing the results of Eq.(18) and (22) into Eq.(20), we will have, 

 

1 1 2 0A B A B A BS S S S        .                                     (23) 

 

The result of Eq.(23) endorses the complete independence of the subsystems. In fact, if we remember 

the equivalences of Subsection 2.1, where 
0

0   , 
1

1    
0 0

0 0 A B

A B   , and 
1 1

1 1 A B

A B   , then, 

the scalar version of Eq.(21) will be, 
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, , , ,

, ,

0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1

2 2 2 2

0 0 0 1 0 1 1 0 1 0 1 1

4 2 2 2 2 4

0 0 1 1 0 1

1

4

1

4 4

1

4

A B A B A B A B A B A B A B A B

A B A B A B A B A B A B A B A B

A B A B A B A B

A Br 

   
 
 
 

                                
  
 

   



       



           

     



, , , , , ,

2
4 2 2 4 2 2

0 0 1 1 0 1

2

2

4 4

A B A B A B A B A B A B
      

      
     
     

     

   (24) 

 

where η = 4 for the purpose of adjusting its subsequent use into entropy. Besides, we must make the 

following deduction considering that: , ,

2 2

0 1
1A B A B   . Then, replacing Eq.(24) into the scalar 

version of Eq.(19) with   = 4, and 2A BS   from Eq.(22), we will have, 

 

 
, , , ,

2 2
2 2 2 2

0 1 0 1

2 4
4 4

A B A B A B A B

A B A B A BS r log r log  

      
                  

       

   
            (25) 

 

Then, we begin a series of actions on Eq.(25): simplifications, additions on both sides of the equal 

sign, selective passages of terms and replacements considering that , ,

2 2

0 1
1A B A B   , 

 

, ,

, ,

2 2

0 1

2

2 2

0 1

4

4

A B A B

A B A B

log

 
  
     

 

 

 

                     (26) 

 

, , , , , ,

, ,

2 2 2 2 2 2

0 1 0 1 0 1

2

2 2

0 1

4

2 2 4 2 2

A B A B A B A B A B A B

A B A B

log log log log log

         
              
                     

 

     

 

    (27) 

 

, ,

, ,

2 2

0 1

2 2

0 1

2 21 1 1

4

A B A B

A B A B

log

 
 
   
 
 
 
 

 

 
                  (28) 

 

, ,

, ,

2 2

0 1

2 2

0 1

1
A B A B

A B A B

log

 
  
 
 

 

 
                  (29) 

 

Finally, 

 

, ,

,

, ,

2 2

0 0 1 10 1 0 0 0 0 0 0 1 1
2 1

2 2

0 1 0 0 0 0
0 0 1 1

1
2

2 2 2

A B A BA B A B A B A B A B A B

A B A B

A B A B A B A B
A B A B



  

   
        

    
 

      
 

    

    (30) 
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From Eq.(30), we can see that an entropic reflex appears as a consequence of this analysis, which, in 

reality, comes in a pair:  

 

, ,

2 2
A B A B A B A B     

          
   
              (31) 

 

Equation (30) does not immediately expose the twin entropic reflex since this analysis was based on 

mutual information instead of complete information. Moreover, from here on, we can refer to these 

entropic reflexes as spectra, ghosts, shadows, alter-egos, or avatars. We choose avatars. Those avatars 

represented by Eq.(31) are second-degree-equivalent spins, i.e., second-degree avatars, for completely 

independent subsystems with a value of ½. As we will see later, there will also be first-degree avatars. 

It is evident that it would have been impossible to deduce the avatars with the Dirac’s notation based 

on <bra| and |ket> or the tensor analysis [51]. Figure 3 represents the graphic interpretation of Eq.(30). 

 

 
 

Figure 3 Original second-degree spins and their corresponding second-degree-equivalent spins (
2
) or second-

degree avatars for completely independent particles. Besides, we can see the distances between them. 
 

Figure 3 shows that 
0 0A B  is in position A, and 

1 1A B  is in position B, where, the intersection of 

both light green lines allows us to determine the value of both second-degree avatars of Eq.(31), 

according to Eq.(30). But, what about their positions? To answer this question we will resort to the 

conservation of torque between the present spins of Figure 3 and their corresponding lever arms,   

 

' '0 0 1 1
0 A B A B A B A Bi i A A B B

i

d d d d d
   



                                    (32) 

 

A direct consequence of the conservation of torque is that the avatars are the entropic expression of the 

originals, i.e., for the entropic analysis performed, the originals behave entropically as if they were the 

avatars, in fact, each original particle has its own avatar,  

 

'0 0A B A BA Ad d
 

                     (33a) 

'1 1A B A BB Bd d
 

              (33b) 

 

thus, 

0 0 0 0

'

0 0

2
2

A B A B

A B A B

A A A Ad d d d

 

  

 

 
         (34a) 
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1 1 1 1

'

1 1

2
2

A B A B

A B A B

B B B Bd d d d

 

  

 

 
          (34b) 

 

From the entropic point of view, it is the avatars which will actually get involved in some degree of 

correlation. As we can see, the avatars are smaller than the originals and are further away from each 

other than the originals are. Therefore, the avatars are even more independent between them that the 

originals are between themselves and are more disconnected than them. In other words, the entropic 

analysis further deepens the independence situation between the particles, highlighting an absolute 

degree of decorrelation between them. 

 

Now, based on Figure 4, if we move 
1 1A B  from position B to B, and we leave 

0 0A B  in its original 

position A≡A, and reapply Eq.(30) to this new configuration, we will see that a new ,

2
A B A B  

   

appears as a result of the two new intersected light green lines, passing from position A' to A'', which 

has a value of ½ again, i.e., similar to the previous case of Figure 3, while ,

2
A B A B  

    will 

move from position B' to B''. 

 

 
 

Figure 4 Completely independent subsystems with an increase in the separation of the original spins. 
 
 

We can see this new result in Figure 4, where, the pink lines are parallel to the thick black line of the 

base and perpendicular to the arrows representing the spins. In other words, the pink lines indicate that 

the heights of the arrows that represent the spins A B 
  are preserved regardless of the distance 

between both original particles (
0 0A B ,

1 1A B ) on which Eq.(30) is applied. This indicates that the 

entropic reflexes or avatars are completely insensitive to the distance between the two original spins. 

Now, if we apply square root to both sides of Eq.(30), we will obtain the first-degree-equivalent spins 

or first-degree avatars,   

, , ,

, , , ,

, ,

,

,

2 2

0 1 0
2

2 2 02

0 1
0

1

2
,

2

1

A B A B A B

A B A B A B A B A B

A B A B

A B

A B

    


            
     

 
 
 

  
     

 




    (35) 
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where 

 

,

,

2

0

1

1

1
A B

A B



 
 
 
 







                          (36) 

 

is an scale factor [45-47], which is absolutely consequent with the contraction that suffers the avatars 

respect to the originals, 

 

, ,

, ,

0

1

A B A B

A B A B









  

  
                         (37) 

 

Moreover, the upper part of Figure 5 shows the second-degree spins (
2
), while the lower part of the 

same figure shows the first-degree spins (). 

 

 

 
 
Figure 5 Upper part shows the second-degree spins (

2
), while, lower part shoes the first-degree spins (), 

including distances for completely independent subsystems. 

 

 

The lower part of Figure 5 shows us the first-degree spins. The entropic analysis allows us to look 

inside what happens in a couple of subsystems, in fact, it is like taking an X-ray photograph inside 

them which will be more or less correlated. 
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In the case of the two original particles located in A and B, the lower part of Figure 5 contemplates 

the two possible states that both original particles can take, i.e., spin-up or spin-down. If we apply a 

quantum measurement by detectors on some of these particles, then its orientation will be defined by 

one of both possibilities. Something similar is seen when we measure an entangled particle, with the 

difference that when measuring is made, then nature will randomly decide by one of the two possible 

orientations, and no matter which one it is, its entangled counterpart will take the opposite state.  

 

Finally, avatars are only a reflex of the entropic behavior of the original spins, as well as a main 

witness of the degree of correlation of these, thanks to the conservation of torque, spins, energy, and 

everything else. 

 

2.3. Classically-correlated subsystems 

 

In this case, it is possible to create correlations without obtaining entanglement for 0A BS   (Figure 

6). For example, let us do this with the separable mixture of pure product states, 

 

 
1

0 ,0 0 ,0 1 ,1 1 ,1
2

A B A B A B A B A B    .          (38) 

 

 

 
 
Figure 6 Classically-correlated subsystems. 
 

 

As we can see, 
A B  of Eq.(38) contains fewer terms than the completely independent case of 

Eq.(21). In the computational basis of 
A B  , 

A B  will be: 

 

1 0 0 0

0 0 0 01

0 0 0 02

0 0 0 1

A B

 
 
  
 
 
 

.                                                  (39) 

 

Therefore, replacing Eq.(39) into Eq.(19), 
A BS 

will be 

 

1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 01 1
log 1

0 0 0 0 0 0 0 02 2

0 0 0 1 0 0 0 1

A BS tr

     
     
                        

.                          (40) 

 

Next, introducing the results of Equations (18) and (40) into Eq.(20), yields the following 

 

1 1 1 1A B A B A BS S S S        .                       (41) 

 

This result brings out a certain degree of correlation between the subsystems. Then, if we remember 

the equivalences of Eq.(6), the scalar version of Eq.(38) will be, 
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, , , ,

, , , ,

2 2 2 2

0 0 1 10 0 0 0 1 1 1 1

4 4 4 4

0 1 0 1

1 1

2 2 4

1

2 4 8

A B A B A B A BA B A B A B A B

A B A B A B A B

A Br 

                 
      

 

  
  
 
 

      



   

                  (42) 

 

where η = 4 for the same reasons as for the completely independent case, where we also consider: 

, ,

4 4

0 1
1A B A B   . Then, replacing Eq.(42) into the scalar version of Eq.(19) with   = 2, and 

1A BS    from Eq.(40), we will have, 

 

 
, , , ,

4 4 4 4

0 1 0 1

1 2
8 8

A B A B A B A B

A B A B A BS r log r log  

    
        

     
   

   
 .                   (43) 

 

Then, we begin a series of actions on Eq.(43): simplifications, additions on both sides of the equal 

sign, selective passages of terms and replacements considering that , ,

4 4

0 1
1A B A B   , 

 

 

, ,

, ,

, , , ,

4 4

0 1

4 4

0 1

4 4 3 4 4

0 1 0 1

4

8

2 3

A B A B

A B A B

A B A B A B A B

log

log log log

 
  
     

 

                   

 

 

   

                   (44) 

 

, , , , , ,

, ,

4 4 4 4 4 4

0 1 0 1 0 1
4 4

0 1

4
3 A B A B A B A B A B A B

A B A B

log log log log log                         
           

 

     

 

    (45) 

 

, ,

, ,

4 4

0 1

4 4

0 1

2 3 0 0 1
A B A B

A B A B

log

 
      
 
 

 

 
              (46) 

 

Finally, 

 

, , , , ,

,

, , , ,

4 4 4 4 4

0 1 0 0 0
2 4 1

4 4 4 4

0 1 0 0

1
2

2 2

A B A B A B A B A B

A B A B

A B A B A B A B



  
     

 

    
 

   
               (47) 

 

Anew, this would have remained hidden if not for this type of treatment: the scalar notation.  

 

On the other hand, if we did a graphic representation of Eq.(47), as the one done in the previous case 

for Eq.(30) (i.e., completely independent), such graphical representation would show us, here also, that 

the avatars are completely insensitive to the distance between the original spins, both for the second 

and first-degree spins.  

 

Now, if we apply the fourth root to both sides of Eq.(47), we obtain the final values of the first-degree 

avatars. 
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   

 
 

, ,

, , , , ,

, ,

,

,

,

,

4 4

0 1
4

4 4
4 4

0 1

0

04

0

4

1

, , , 1, , 1, 1, , 1,

1, , 1,

1, , 1,

1

A B A B

A B A B A B A B A B

A B A B

A B

A B

A B

A B

i i i i

i i

i i

    
             

   

     

 
 
 
 

 
    

 


 





                      (48) 

 

being 

 

,

,

44

0

4

1

1 1

2

1
A B

A B

 

 
 
 
 







                        (49) 

 

Here too, the avatars suffer a contraction with respect to the original spins in a factor   

 

, ,

, ,

, , ,

, , ,

0

0

0 1

0 1

i

i i

A B A B

A B A B

A B A B A B

A B A B A B













  

  

  

  

    

    

                                        (50) 

 

while, the avatars’ positions can also be calculated thanks to the torque conservation, with a set of 

equations similar to (32), (33), and (34). 

 

Finally, we will not go into detail with this degree of correlation because it does not align with the 

central idea of this work. 

 

2.4. Entangled subsystems 

 

This is undoubtedly the most important case of the three, because of its projection on quantum 

communications, which will have a separate subsection later on, for its preliminary conclusions.  

 

For this case, we are going to resort to Figure 7. First, we will take one of Bell’s states of Eq.(8) and 

as an example, specifically 
00

   , with 
A B  from Eq.(51),   

 

 
1

0 ,0 0 ,0 0 ,0 1 ,1 1 ,1 0 ,0 1 ,1 1 ,1
4

A B A B A B A B A B A B A B A B A B      .                 (51) 

 

 
 

Figure 7 Entangled subsystems. 



15 

 

Besides, given that for this case 0A BS   , we are going to introduce this value and the results of 

Eq.(16) into Eq.(20). Consequently, we will obtain the following: 

 

1 1 0 2A B A B A BS S S S        .                             (52) 

 

On the other hand, as in the other two cases (completely independent and classically correlated), we 

will use, the scalar notation where the polarizations or orientations of the spins ( and 
2
) are 

represented by the sign of a scalar: spin-up   +1 and spin-down   -1. We will start with the 

calculation of 
A Br 

, 

 

, , , , , , , ,

, , , , ,

0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1

2 2 2 2 2 2 2 2

0 0 0 1 1 0 1 1

4 2 2 4 2

0 0 1 1 0

1

4

4
4

2
1

4 4

A B A B A B A B A B A B A B A B

A B A B A B A B A B A B A B A B

A B A B A B A B A B

A Br 

   
 
 
 

                            
  
 

   
  
 
 

       



       

     ,

2
2

1

4

A B
 
 
 
 



,                  (53) 

 
where we need to use η = 4 for the same reasons that we had in the previous cases. In fact, η has 

always the same value, where we must remember that: 
2 2

0 1
1A,B A,B    . Then, replacing Eq.(53) 

into the scalar version of Eq.(19) with   = 4, we will have,  

 

 
, , , ,

, ,

, ,

2 2
2 2 2 2

0 1 0 1

2 2
2

0 12 2

0 1

0 4
4 4

1

2 4

A B A B A B A B

A B A B

A B A B

A B A B A BS r log r log

log

  

     
                
     

 
      

  
 

   


 
 

                   (54) 

 

Passing the term outside logarithm on the right side of Eq.(54) to denominator on the left side, then 
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, ,

2 2

0 1

2

2 2

0 1

0
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2

A B A B

A B A B

log

 
    
     

 

 

 

.                       (55) 

 

That is to say, on the left side of Eq.(55), the denominator tends to zero with more power than the 

numerator. In fact, the right side verifies it, because, -log(0) = ∞. From Eq.(55), we begin a series of 

simplifications, additions on both sides of the equal sign, selective passages of terms and replacements 

that do not alter the equation, 

 

, , , , , ,

2 2 2 2 2 2

0 1 0 1 0 1

2 2 4 2 2

A B A B A B A B A B A B

log log log log log

         
               
         
         

     
.                  (56) 

 

Making use of the selective replacements, we will have, 
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  

 
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                     
   
 
 

 
 

 
   

,      (57) 

 

Finally, the second-degree avatars will be 
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2
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2
A B A BA B A B A B A B

A B A B

A B A B A B A B
A B A B



  

   
       

    
 

    
 

    

                  (58) 

 

The graphic interpretation of Eq.(58) can be seen in Figure 8, which shows that 
0 0A B  is in position 

B, and 
1 1A B  is in position A, where, the intersection of both light green lines allows us to determine 

the spin values, according to Eq.(58),  

 

 
 

Figure 8 Graphic representation of entangled subsystems with scalar notation. 

 

 

Actually, Eq.(58) has two possible values, i.e.,  , which can be observed at both ends of Figure 8, 

where both light green lines are cut. Such light green lines connect the top of 
0 0A B  with the tail of 

1 1A B  and the top of 
1 1A B  with the tail of 

0 0A B . These results are shown in the Eq.(59) 

 

 , ,

2 2, , ,A B A B A B A B     

       
      
                                                     (59) 

 

Before analyzing the positions of the second-degree avatars of Eq.(59), we must remember that in 

every entanglement process there are two entangled particles (at least) as those mentioned in Eq.(8), 

e.g., a pair of 
00 , i.e., we have a duplication of the graph of Figure 8 as shown in Figure 9. 
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Figure 9 Graphic representation of an entangled subsystem for an EPR pair. 

 

 

As we will see below, the second-degree avatars are exactly in the middle of the original particles. The 

set of particles located in A represent the entangled particle 
00  in Alice's hands, while the set of 

particles located in B represent the other entangled particle 
00  of the EPR pair in Bob's hands. Their 

avatars are in the middle, all together in a single point, i.e., O, although in Figure 9, we have separated 

them a bit so as not to complicate the drawing. 

 

Figure 10 represents the entropic analysis for an EPR pair showing in detail how the cross-groupings 

of Alice’s and Bob’s elements represent the entanglement according to this analysis. In fact, from the 

entropic point of view, there is a shared rearrangement between a half of each EPR in Alice’s hands 

and the other half of each EPR in Bob’s hands, which constitutes the link cross-wise. 

 

 

 
 

Figure 10 Cross-groupings of Alice’s and Bob’s elements to represent the entanglement. 
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Now, if we move 
0 0A B  from position B to position B, we will have 

A B 
   and 

A B 
   

again. Besides, as in the case of completely independent subsystems, Figure 11 shows that A B 
  

and A B 
  are absolutely insensitive to the distance between the original spins, as long as 

0 0A B  and 

1 1A B  do not change neither in modulus nor in its orientation (polarization). Regardless how much the 

original spins separate from each other, such displacement does not alter the final result; i.e., the 

avatars: 
A B 

   and 
A B 

  . This confirms the success of Eq.(58) since it attempts to model 

the entanglement, and as we know from several laboratory experiences, entanglement does not seem to 

care about the distance between the entangled particles [48, 49]. 

 

 

 
 

Figure 11 Scalar notation for entangled subsystems with an increase in the separation between the 

original spins. 

 

 

On the other hand, if we properly apply square root to both sides of Eq.(58) and considering Eq.(59), 

then, we will obtain the four first-degree avatars. Then,  

 

, , , ,

, ,

, , , ,
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0 1 0 12
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 
   

 

   
 

   
                               (60a) 

, , , ,

, ,

, , , ,

2 2 2 2

0 1 0 12

2 2 2 2

0 1 0 1

A B A B A B A B

A B A B

A B A B A B A B

 
     

 

   
 

   
                  (60b) 

 

Equations (60a) and (60b) are identical, and from them we will obtain four solutions 
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1
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A B A B
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
    

  
 
 
 

  
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A B A B

A B

A B





       
  

 
 
 

  
    

 

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                 (61b) 
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,

,
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0 1 0

2 2 02

0 1
1

0

1

A B A B B

B B

A B A B

A B

A B


    

  
 
 
 

  
  

 

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                  (61c) 
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A B

A B





       
  

 
 
 
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    
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



                 (61d)  

 

where  

 

, ,

, ,

2 2 2

1 0

0 1

1 1 1

1
1 1

A B A B

A B A B

v

c

  

     
        

   
   



 

 

                     (62) 

 

is the Lorentz factor [50], and since , ,

2 2

0 1A B A B  , being v a generic speed, and c the speed of light, if 

v = c (as it happens in this case) then  . This shows us the relativistic nature of the avatars of 

Eq.(61), or in other words, the relativistic nature of entanglement. This could imply two things: the 

avatars do not have mass (then and according to Special Relativity [8], they should move at the speed 

of light), or else they have mass of different sign, which would mutually annul each other in a single 

point where all the avatars meet and that we will proceed to calculate, in which case, the avatars would 

be related to the wormholes’ traversability resulting from the entanglement of two black holes, or a 

black hole and a white hole [51-54]. We are talking about a very particular traversability, in fact, a 

traversability insensitive to the relative distance between both black holes. We are inclined to the 

second option, since obviously the avatars do not move. Effectively, as we can see, Eq.(58) does not 

have a component or parameter with the positions of the original spins, in fact, this equation is 

insensitive to these locations; as a result, the second-degree spins (
2
) are not present where the light 

green lines are cut. Those crosses only allow us to determine their magnitudes. This is evident, since a 

spin cannot have any projection on an axis of another nature as in the case of the axis of distance (d).  

 

As in the previous two cases (completely independent and classically correlated), we will resort again 

to the conservation of torque between the present spins of Figure 9 and their corresponding lever 

arms. Resorting to said figure, we will begin with the following equivalences: 
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0 0 1 1A B A B

A A

Ad d d               (63a) 

0 0 1 1A B A B

B B

Bd d d             (63b) 

A B A B A B A B

A A B B

Od d d d d
       

             (63c) 

 

Then, the conservation of torque will be: 

 

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 A B A B A B A B A B A B A B A B

A A A A B B B B

A B A B A B A B A B A B A B A B

A A A A B B B B

i i

i

d d d d d

d d d d



               

         

      

    

   
    (64) 

 

If we did not consider the complete EPR pair with its two components, but only a half of each 

entangled particle as in the case of Figure 8 then the torque of Eq.(64) would not be conserved. 

 

A direct consequence of the conservation of torque is that the avatars are the entropic expression of the 

original spins, i.e., for the entropic analysis performed, the original spins behave as if they were the 

avatars; in other words, each original particle has its own avatar from the entropic point of view, 

 

0 0 0 0A B A B A B A B

A A A A

d d
   

                   (65a) 

1 1 1 1A B A B A B A B

A A A A

d d
   

             (65b) 

0 0 0 0A B A B A B A B

B B B B

d d
   

                 (65c) 

1 1 1 1A B A B A B A B

B B B B

d d
   

             (65d) 

 
Then, taking into account Eq.(61), we will have, 

 

2

0 0A B A B

A A
 

                                           (66a) 

2

1 1A B A B
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 

                                      (66b) 
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0 0A B A B

B B
 

                                         (66c) 
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1 1A B A B

B B
 

                                      (66d) 

 

Consequently, 
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d

d d d
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 

   

 

   
       (67a) 
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d d d
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The result of Eq.(67) has a dramatic meaning in Quantum Communications given that the avatars are 

together at an intermediate point determined by such equation, while the original spins are, in general, 

extremely far apart from each other. In fact, the exact locations of the original spins do not matter, 

what does matter is that the avatars will always be between original spins. Summing-up, we can say 

that the avatars see the universe as if it was a point.  

 

Low part of Figure 12 shows the interiors of the EPR pairs at points A and B, i.e., of the entangled 

particles held by Alice and Bob, respectively. It is an X-ray photograph inside both EPRs while the 

entanglement is alive (prior to the quantum measurement), and all thanks to the entropic analysis. 

 

 

 
 

Figure 12 Second and first-degree originals and avatars, including distances for entangled subsystems. 
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On the other hand, in the same way that the conservation of the spin for the originals is fulfilled, it is 

evident that this also happens for the avatars, see Figure 12. Otherwise, with each entanglement the 

universe would be unbalanced, 

 

0 0 1 1 0 0 1 1
0A B A B A B A B

A A B B

                (68a) 

0A B A B A B A B

A A B B
       

                (68b) 

 

Moreover, the original spins and their avatars form an original-avatar pair. In this case, the avatars are 

the shadows of the original spins projected on the (μ2) axis with the same morphology (in this case, the 

orientation or polarization of the spins) and with infinite magnitude. The original-avatar pairs can be 

seen in Eq.(66). Unlike the case of Eq.(37) for the completely independent case where each original 

spin is contracted in a factor inasmuch as 2
2 1  , in the entangled case, Eq.(61), each original 

spin is dilated in a proportion equal to the Lorentz factor [50] for v = c, i.e.,  . 

 

The upper part of Figure 12 shows us the second-degree avatars for entangled subsystems. We can 

highlight Eq.(61) and (66) of this figure, while the lower part of Figure 12 shows the first-degree 

avatars with the same polarization and color of the original spin they represent, strictly according to 

each case of Eq.(61). An important aspect to highlight is that there are four second-degree avatars 

(Eq.66 and upper part of Figure 12) and four first-degree avatars (Eq.61 and lower part of Figure 12). 

Here also, the avatars have identity and correspondence, that is, they are unambiguously associated 

with their corresponding original spin forming an indivisible original-avatar pair. Moreover, the 

original spins are inaccessible (since they are immersed in an integrating context such as a Bell base), 

therefore, the avatars are too. If we do a quantum measurement on one of the two original EPRs, then 

the entanglement is destroyed and the avatars of Eq.(61) and (66) disappear, where another type of 

avatars appears, i.e., those of the completely independent or classically-correlated cases. The point 

here is that avatars are equivalent to the original spins from the operational point of view. This will be 

seen in detail in the next subsection. 

 

2.5. Consequences on Quantum Communications 

 

This subsection will revolve around the consequences of Eq.(67) which will have an unimaginable 

scope. The concentration of avatars at point O of Figure 12 tells us that, for these, everything looks as 

if the universe was a point, that is, the whole universe is still a point, like the primal moment of the 

Big Bang. In addition, such concentration in only one point tells us other things that impact Quantum 

Communications fully: 

 

1. Wormholes, that is, tunnels created by two entangled black holes have null length, i.e., they are 

punctual, and therefore, they have absolute traversability. 

 

2. What about the locality and non-locality? If we return, to one of Eq.(65), e.g., Eq.(65a) and replace 

the Eq.(67a) in it, then, 
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                 (69)  

 

where 
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0 0

2

A B

A

d 
 
 
 


 represents the locality contraction, or locality range of avatars, while, 

2

0 0A B

A

d
 
 
 

  represents the locality dilation, or the no-locality of the originals, which covers any 

separation that mediates between them and that undoubtedly is equivalent to the non-locality we 

know [5] in relation to them from the experiments related to Bell's theorem [30] and CHSH [31].   

 

We can see that, while Eq.(67) represents the contraction in the separation between avatars, i.e., 

the contraction of their range of locality, at the same time said contraction of locality is equivalent 

to the dilation in the locality of the original spins, which is undoubtedly equivalent to the non-

locality of these [11, 22], i.e.: 

 

(Non-locality of original spins  =  Locality dilatation of original spins)  ≡  (Locality of avatars) 

 

In other words, the original spins communicate in a non-local way, but, from the entropic point of 

view, this is equivalent to a local communication between avatars. 

 

3. What about the Bohr's complementarity principle [55, 56]? In particular, the wave-particle duality 

[57], which gives rise to another question: how is it possible that during any experiment (e.g., that 

of the double slit) when observing the acting elements, they stop acting as a wave and start acting 

as a particle? What interests us, in the context of this work, is the analysis of the complementarity 

principle of the wave-particle in relation to the Bohr’s rule [58], which establishes that 
2

  is the 

probability of the position of the particle leading to the conclusion that co-location of particle and 

wavefunction is not possible unless the wavefunction is a Dirac’s delta function. 

 

Invoking the wavefunction-spin relation [59] and given that the avatars have spins with a 

magnitude equal to infinite, then we assume they have a wavefunction with an amplitude equal to 

infinite, precisely that of the Dirac’s delta type, located at a point with a null range of locality, i.e., 

the co-location between particle and wavefunction works well for the avatars. 

 

The EPRs, instead, have a unified but deconcentrated wavefunction of dilated locality which can 

potentially spread throughout the universe (it dilates in order to be continent with the entangled 

particles fulfilling the non-locality), contrary to the concentrated wavefunction the avatars possess. 

That is, co-location does not work for EPRs according to Bohr's complementarity principle. 

 

4. From an entropic point of view, the avatars are plenipotentiary representatives of the original 

spins. It is as if the originals behaved entropically as the avatars do, which are the ones that 

actually communicate. The entire channel is reduced to the point where the avatars are, with a 

transit time for an eventual message that we will extract from the second row of Eq.(69) 
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             (71) 

 

Where vm is the speed at which a message travels on the channel, lch is the cannel length, and tch is 

the transit time of the message through the channel. According, to Eq.(70) and (71), lch and tch are 

respectively contracted, and this contraction is equivalent to the locality range of the avatars. 
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The absence of channel between avatars has dramatic consequences on quantum communications, 

since, if the channel is reduced to a point, then: 

a) what a transmitter deposits at that point is perfectly and exactly equal to what a receiver 

receives from that point, i.e., what you put at that point is equal to what you get from that point 

(WYPWYG), then, that channel has infinite bandwidth and null latency (anything that crosses 

it will do it instantaneously). In the space of avatars, we are not talking about transmitting but 

about sharing information in that punctual channel, 

b) there is no channel noise in a channel that does not exist, 

c) a channel with infinite bandwidth and zero noise has an infinite channel capacity [60], and 

d) finally: it is impossible to attack, intercept or hack a channel that does not exist, because it is 

impossible to attack the nothing. 
 

In spite of what has been said, if we put the entanglement in a practical context, for example, we 

involve it in a quantum teleportation [15-19, 61], then, the gates with which the teleportation 

protocol is implemented insert different types of noise, reducing significantly the attributes of the 

protocol as a whole. 
 

5. Equations (70) and (71) have depth implications on the old and tempestuous relationship between 

Special Relativity [8] and Quantum Mechanics [9] because of the quantum entanglement [26]. For 

example, let us consider a turtle trying to travel a null-length path, at a speed within the next range 

vm = 0.13-0.30 mph, which is clearly much smaller than the speed of light c = 670,600,000 mph, 

however, the turtle will travel the route instantaneously without resorting to any superluminal 

speed [11-14]. In other words, the paradox EPR [26] is disabled, as well as the No-Go theorems of 

No-Signaling [20-24] and No-Communications [25]. 
 

Evidently, based on everything said so far, there is no collision or contradiction between Special 

Relativity [8] and Quantum Mechanics [9] because of the quantum entanglement [26]. In fact, 

Special Relativity does not contradict Quantum Mechanics, on the contrary, it supports Quantum 

Mechanics thanks to Eq.(61, 67, 69, 70, 71) so that the latter does not violate Special Relativity.  
 

This concubinage between both theories based on the entropic analysis has other implications. 

Equation (6) corresponding to the original spins has its counterpart in the avatars world, e.g., for 

the EPR in Alice’s hands, we will find, 
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        (72) 

 

in the same way as a typical element of an EPR pair, i.e., 
 

00

2

0 0 1 1 0 0 1 1

20 0 1 1
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          (73) 

 

also has its counterpart, 
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         (74) 

 

Even though the Lorentz factor (γ) [50] comes from Eq.(62) and it is clearly a continuous variable, 

such that  ¡ , its use in Eq.(72) and (74) gives dimension to vectors thanks to the tensorial 

notation, indicating its entire character. Strictly speaking, we are talking about a ¥ , i.e., of a 

quantization of the Lorentz factor [50]. 
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Equations (61), (72) and (74) highlight the degree of symbiosis between Special Relativity and 

Quantum Mechanics, which could only be evidenced by the entropic analysis of entanglement and 

scalar notation based on spins. Besides, Eq.(72) and (74) tell us about inflation in the Bloch's 

sphere, while reaffirming that entanglement is a purely relativistic phenomenon. 

 

 
 

Figure 13 The yellow cartridges contain 
00  and 


  relative to Alice, while the green cartridges 

contain those related to Bob. 

 

Of the five items exposed in this subsection, we conclude that: 

a) the avatars are the hinge between Quantum Mechanics and Special Relativity, hinting at a possible 

path to a Theory of Everything [62], 

b) without the spine-based scalar notation the avatars would have never been revealed, 

c) the traditional symbolic logic based on the Dirac’s notation takes us away instead of approaching a 

Theory of Everything, 

d) now, we understand how nature instantly notifies the state of one of the elements of an EPR pair to 

the other one after being measured, 

e) in principle, there is not the slightest hint of impediment for an instantaneous transmission via an 

EPR channel, 

f) it is incredible that the literature has made such a statement about the impossibility of transmitting 

information instantaneously on an EPR channel without deepening enough in the use of the tools of 

Information Theory [60], 

g) given that the eventual impediment of the previous item that the literature talks about so much is 

not in a confrontation between Quantum Mechanics and Special Relativity, then the problem, if it 

really exists, must be somewhere else. 

But, if the problem of the instantaneous transmission of information does not lie in the previous items, 

then, where is it? The answer to this question is easier than it seems. Let us picture the following 

situation: three people in a room, A, B and C. A is murdered and we just proved that B could not be 

the murderer because he was unconscious before A was killed. Ergo, the killer has to be C. Then, the 

problem has to be in the same act of measuring. With quantum measurement everything is left to 

randomness [37, 38]. The detectors commonly used are passive, they report the state of what they 

detect without exercising any kind of control over what they measure. There is no control, so it is 

impossible to transmit useful information instantly, which is logical because it is impossible to 

exercise some control with passive elements such as single photon detectors (SPD) used in quantum 

teleportation [15-19, 39, 61], i.e., we cannot do a controlled disambiguation but only measure and 

transmit the measured so that on the other side of the channel that information is used in the 

reconstruction. Therefore, it is not necessary to measure but to control. We will implement some 

experiments to verify this hypothesis in the following section. 
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3.  Quantum measurement vs quantum control 

 

As we have mentioned in Section 1, by measuring one of the components of an EPR pair (which is 

constituted internally as indicated by Eq.(73) and that can be observed in the lower part of Figure 12), 

a spin-up or a spin-down will result randomly, in such a way that the other component of the EPR pair 

will adopt the opposite orientation instantly. It is evident that we have no control over the result of the 

measure, what we can only do is to report the result obtained from that measure. The only way to 

control the result is to resort to an in pectore selection of this result, and this can only be done by a 

technique well known in quantum technology and known as qubit reset procedure [63]. 

 

Fast, deterministic and active qubit reset to a target state [64] is a key operation in many quantum 

algorithms, and particularly in error correction codes [65]. Besides, it is a powerful tool to reuse 

subsequently the same qubit [66]. There are two types of qubit reset: passive and active [67], however, 

the active version is up to ~ 100 times faster than the passive initialization [68]. On the other hand, the 

initial state preparation (and reset) of the registers on the physical quantum computer will generate 

entropy due to Landauer's erasure principle [69]. For a qubit preparation, a qubit reset and a quantum 

measurement, incoherent operations are required [70]. Fast and reliable reset of a qubit is a key 

prerequisite for any quantum technology [71], where faster qubit reset is almost a synonymous of 

smaller errors. Currently, there are several techniques [68, 72, 73] and protocols [74-76], including its 

simulated version on several platforms [77-83] to obtain this. In fact, Rigetti [82] is the only company 

that allows us to use a qubit reset on their quantum processing unit (QPU) but only at the beginning of 

the process in order to prepare the different qubits to be used. 

 

Next, we will analyze the intervention in a comparative way of quantum measurement [37-39] vs qubit 

reset [63] for two cases: EPR pairs [1-3] and quantum teleportation [15-19, 39, 61]. 

 

3.1. EPR pair 

 

3.1.1  Quantum measurement 

 

Let us suppose that we have two corrals with one cow in each, as shown in Figure 14. Each corral 

only has two gates: a spin-up and a spin-down. We open both gates in both corrals. The experiment 

begins with the corral on the left, where we have a 50% chance of the cow coming out of any of the 

gates. 

 

 
 

Figure 14 The experiment begins with the corral on the left. That cow has a 50% chance of leaving 

through any of both gates. When that cow decides to leave, e.g., through the spin-up gate, then the cow 

from the corral on the right will exit through the spin-down gate with a 100 % of certainty. 
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Now, experience tells us that if the cow in the corral on the left exits through the spin-up gate, then the 

cow from the corral on the right will exit through the spin-down gate with 100% certainty. At the 

beginning, we have an uncertainty of 50% regarding which gate the cow will use to leave the corral on 

the left, but absolute certainty about the gate the cow will use to leave the corral on the right once we 

find out where the first cow exits from. That is, the decision of the cow on the left conditions the 

departure of the cow on the right, that is, we have no control over the outcome of the experiment. It is 

clear that we yield the control of the result of experiment to the cow on the left, instead of us. 

 

The same experiment can be implemented on the Quirk platform [78] and is represented in Figure 15. 

We have chosen this platform because it is the most pedagogical and has the best graphic expression 

of all simulators, however, this experiment can be reproduced with identical results on an optical table. 
 

 

 
 

Figure 15 Quirk implementation, where, D0 detects a spin-up, then instantaneously D1 detects a spin-

down, both with vertical polarization. Entanglement dies as a consequence of the detection process. 

 

 

Figure 15 shows two qubits (q[0] and q[1]) and the generation of an EPR pair thanks to the 

combination of a Hadamard’s gate (H) and a CNOT gate. D0 and D1 represent a pair of detectors with 

vertical polarization. Detector D0 represents the pair of eyes of the corral on the left of Figure 14, 

while detector D1 represents the pair of eyes of the corral on the right of the same figure. DM means 

density matrix, Po|1> means percent of |1>, and BS means Bloch’s sphere. It is evident that the three 

witnesses at the output of EPR generation block, i.e., DM, Po|1> and BS show behavior in both qubits 

q[0] and q[1] typical of an EPR pair. Then, if D0 detects (continuing with the example of Figure 14) a 

spin-up |0> for q[0], then q[1] resulting from detector D1 is absolutely defined as a spin-dow |1>, as 

this is evidenced by DM, Po|1> and BS at the output of both detectors. All the laboratory experiments 

carried out during the last decades support this result. 

 

3.1.2  Quantum control via qubit reset 

 

This experiment revolves around Figure 16, where we again have two corrals with a cow in each of 

them. Here, too, the experiment begins with the corral on the left, however, now we only open the 

spin-up gate. Instantly, the cow on the right, which has both gates open, will go out through the spin-

up gate with 100% certainty. We do not need to measure, detect or transmit anything. It is us who are 

in total control of the experiment, instead of the animal. Figure 17 shows us the implementation of 

this experiment on Quirk platform. It is evident that the qubit reset gate [|0>] is neither reversible nor 

unitary, in fact, this gate, according to IBM Q [79], will be, 
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        
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                         (75) 

converts any arbitrary qubit in the ground state |0>. While, its counterpart, 
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1

1
~

j

     
               

                 (76) 

converts any arbitrary qubit in |1>. This will be used in Figure 18. 



28 

 

 
 

Figure 16 Here too, the experiment begins with the corral on the left. We open the spin-up gate only, 

then the only possibility that that cow has is to exit through that gate. The cow on the right has both 

gates open, however, it will exit through the spin-up gate with a 100 % of certainty. 

 

 

 
 

Figure 17 Quirk implementation, where, the qubit reset gate [|0>] converts qubit q[0] in spin-up, then 

instantaneously qubit q[1] imitates it. Entanglement also dies as a consequence of this gate. 

 

 

While qubit reset gate [|0>] of Figure 17 puts the qubit q[0] in spin-up and instantaneously the qubit 

q[1] results in the same orientation, Figure 18 shows that the action of the qubit reset gate [|1>] on the 

qubit q[0], puts it in spin-down and as a consequence of this, instantaneously q[1] adopts the same 

orientation. 

 

 

 
 

Figure 18 Quirk implementation, where, the qubit reset gate [|1>] converts qubit q[0] in spin-down, 

then instantaneously qubit q[1] imitates it. Entanglement also dies as a consequence of this gate. 

 

 

There is a fourth possibility, although this is not control but simply an annulment of the entanglement 

and the subsequent recovery of the original ground states |0>. This can be seen in Figure 19. The 

block highlighted in light blue is exactly the counterpart of its namesake in orange. However, for the 

purposes of this work, this possibility has no major significance. 
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Figure 19 Quirk implementation, where, the light blue block is the counterpart of the orange block, 

which is responsible of the EPR generation. Then, the light blue block only recovers the original 

ground states |0>, i.e., it does not represent any type of control.  
 

 

Additional implementations in other platforms also with cloud services give the same results obtained 

with Quirk. Figure 20 shows the results of experiment of Figure 17 on IBM Q platform [79], where 

the implementation was carried out under the following parameters: shots = 100, and seed = random. 
 

 

  
 

Figure 20 IBM Q implementation of experiment of Figure 17. Quantum circuit on the left represents 

the drag & drop structure, while, the graph on the right represents the probability bar, which confirms 

the results obtained with Quirk.  
 

 

Figure 21 shows the captured screen for the implementation on Rigetti’s quantum virtual machine 

(QVM) [82], where, the probabilities match those in Figure 20 for IBM Q. Figure 22 shows an 

implementation on Quantum Programming Studio platform [80], which gives identical results to the 

previous platforms, which can be seen in the Bloch’s spheres on the right of Figure 22. 

 

 

Figure 21 Captured screen with amplitudes and probabilities on Rigetti’s platform [82]. 

 

 

  
 

Figure 22 Implementation of the experiment of Figure 17 on Quantum Programming Studio. 

Quantum circuit on the left represents the drag & drop structure, while, the graph on the right 

represents the set of angles, Probabilities of |1> and the Bloch’s spheres, which also confirms the 

results obtained with Quirk. 
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3.2. Quantum teleportation 
 

In this subsection, we will see if what has been demonstrated for the case of the EPR pair, with and 

without control, is maintained by putting entanglement in its most famous context: Quantum 

Teleportation protocol [15-19, 39, 61]. In fact, we will consider two types of protocols: 

 

- Uncontrolled quantum teleportation: the traditional non-instantaneous protocol, and 

- Controlled quantum teleportation: the improved and instantaneous protocol. 

 

3.2.1. Uncontrolled quantum teleportation 
 

We will describe this protocol in a procedural way based on Figure 23. First, an EPR pair is created 

and distributed between Alice and Bob.  

 

 

 
 

Figure 23 Uncontrolled quantum teleportation using two classical bits for disambiguation. 

 

 

The horizontal green line of Figure 23 separates Alice’s and Bob’s sides, and it can represent any 

arbitrary distance between them [15-19, 39, 61]. Besides, in Figure 23 SPD block means single 

photon detector set, {X , Z} are Pauli’s matrices activated by the bits {b2, b1} respectively [1, 15-19], 

and EPR is the source of the entangled particles of Eq.(8). In fact, any of the EPRs of the Bell’s basis 

complete set [1, 39] can be chosen, however, we will use 
00

   . 

 

Alice’s side:  

 

1) Alice gets an arbitrary and unknown state to be teleported, 

 

 0 1
T

                              (77) 

 

where (•)
T
 means transpose of  (•), and remembering from Section 2.1: 

2 2
1    and   £  

of a Hilbert’s space [39]. 

 

2) 0 1    and 
00  enter to a Bell State Measurement (BSM) block constitutes by a CNOT 

gate, a Hadamard’s (H) gate and the SPD, then, a 3-partite state results in, 
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where “ ” is the Kronecker’s product [39]. For simplicity [1-3, 39-41], from now on, we will 

adopt x y x y   in a generic form. 

 

3) A CNOT gate is applied to 
0 , 
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          (79) 

 

4) A Hadamard’s  (H) gate is applied to 
1 , 
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     (80) 

 

From the last four rows of Eq.(80), we can draw the following conclusions: 

a) they represent the quantum measurement carried out by Alice and the suggestion that she makes to 

Bob by transmitting the classical bits of disambiguation, by a classical channel, to reconstruct the 

teleported state [15-19], 

b) the result of quantum measurement arises randomly and the four possible results are equally likely 

to appear, 

c) the projections of the four bases are overlapping in relation to the detectors of the SPD [84], and 

d) given that the teleportation protocol begins with the distribution of an EPR pair, the quantum 

measurement kills the entanglement (i.e., it destroys the original arbitrary state on Alice’s side) so 

as not to violate the No-Cloning Theorem [85], which implies that in order to teleport another state 

it must again distribute another EPR pair, and thus, the process continues indefinitely. 

 

Table I synthesizes the complete quantum teleportation protocol. 

 

Table I  Alice’s side: measurement of the base, classical transmission of bits, and the collapse of states.                                                                                        

Bob’s side: classical reception of bits, gates application for the final recovery of the arbitrary state. 
Alice’s 

measurement 

Alice  

transmits  
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With the same pedagogical commitment as in the case of the EPR pair of Subsection 3.1.1, we will 

analyze quantum measurement in the context of quantum teleportation through the example of the cow 

in the corral. We begin the experiment by leaving the four gates of the corral in Figure 24 open. The 

cow will have an identical probability of exiting by any of the four gates. Once the cow decides on a 

gate, e.g., |00>, Alice observes it and transmits the result to Bob in the form of two classical bits (b1 = 

0, and b2 = 0) sent by a classical channel, so that Bob can reconstruct the teleported state. 

 

 

 
 

Figure 24 The corral has the four gates open. The cow has the same chance of exiting through any of 

the four gates. When the cow decides to leave, e.g., through the |00> gate, then Alice observes and 

transmits the result to Bob in the form of two classical bits, in this case, b1 = 0, and b2 = 0. 

 

 

It is evident that the last four rows of Eq.(80), Table I and Figure 24 are related to the point that the 

three, finally, represent the same thing, which consists that we exclusively have a state of observation 

without control over the experiment. As it will be seen in the next subsection, this is the reason for the 

need for a classical connection between Alice and Bob in addition to the EPR channel. 

 

Meanwhile, we will implement the protocol of Figure 23 on two platforms, e.g., Quirk [78] and IBM 

Q [79], in order to verify what has been said, although this protocol has been tested with total success 

during the last two decades [16-18]. For both platforms, we choose the same state to be teleported, in 

order to compare outcomes, which results from: 
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with 
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Figure 25 shows the implementation of the uncontrolled (standard) quantum teleportation protocol of 

Figure 23 on Quirk simulator [78]. The blocks in color mean: orange for EPR generation, light blue 

for qubit generation (to be teleported), pink for BSM, gray for classical channel, and light green for the 



33 

 

unitary transforms to be applied by Bob to recover the teleported state. The complete coincidence 

between both sets of witness tools shows that the state is perfectly teleported. 

 

 

 
 

Figure 25 Uncontrolled (standard) quantum teleportation implemented on Quirk [X] simulator. 

 

 

Figure 26 is the quantum circuits for the same experiment but on IBM Q simulator [79]. The results 

can be seen in the probability bars of Figure 27, where, we have obtained: 0.250+0.220+0.170+0.150 

= 0.790 for |0> and 0.060+0.060+0.060+0.030 = 0.210 for |1>, which differs from the values of 

Eq.(81) because of decoherence [38]. It is important to emphasize that this implementation was done 

on the IBM Q [79] simulator since its quantum processing unit (QPU) or physical quantum machine 

cannot implement the if-then-else statement. In fact, this is something that Rigetti's QPU cannot do 

either [82]. The implementation was carried out under the following parameters: shots = 1024, and 

seed = random. Finally, the barrier in Figure 26, between qubit preparation and BSM blocks, serves to 

avoid per se optimizations of the simulator. 

 

 

 
 

Figure 26 Uncontrolled (standard) quantum teleportation implemented on IBM Q [79] simulator. 

 

 

 
 

Figure 27 Probability bars for the experiment of Figure 26.  

 

 

Additional confirmations on other platforms such as Rigetti [82], Quantum Programming Studio [80], 

or Intel & QuTech's Inspire [83] are obviously unnecessary. 



34 

 

3.2.2. Controlled quantum teleportation 
 

We will describe this protocol highlighting the critical differences with the standard (uncontrolled) 

version of Figure 23. Figure 28 represents the controlled protocol of quantum teleportation, which 

also begins with the creation and distribution of an EPR pair between Alice and Bob.  

 

 

 
 

Figure 28 Controlled quantum teleportation using two qubit reset [|0>] gates. 

 

 

On Alice’s side, the CNOT, Hadamard’s (H) and both qubit reset [|0>] gates form the Bell State 

Control (BSC) block, which is the first important difference with the standard (uncontrolled) version. 

The action of both qubit reset [|0>] gates eliminates the last three lines of the Eq.(80) and also the 

entanglement. A direct and instantaneous consequence of such action is that Bob does not require any 

kind of message from Alice to know which unitary transformation he must prepare to reconstruct the 

teleported state given that it will always be the same due to both qubit reset [|0>] gates. Consequently, 

the unitary transformation is reduced to the identity matrix. Besides, as we will see later, the 

elimination of the last three lines of Eq.(80) allows the controlled version to have greater robustness 

respect to the decoherence compared to the uncontrolled version. 

 

Figure 29 shows how the BSC works. Alice and Bob agree (before the experiment) that the gate |00> 

will always open exclusively. Then, since the cow can only exit through said gate, Alice does not need 

to observe or transmit to Bob the gate, i.e., the random (uncontrolled) was replaced by the control. 

 

 

 
 

Figure 29 The corral only has the gate |00> open. Then, the cow can only exit by that gate with a 100 

% of probability. Alice does not observe or transmit anything to Bob since it is not necessary because 

it is prearranged in an anti-causal way (controlled) so the cow will always go out through it. 
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Next, we are going to implement the controlled protocol of quantum teleportation of Figure 28 on the 

following three quantum platforms with services on the cloud: Quirk [78], IBM Q [79], and Rigetti 

[82]. However, before implementations, we will clarify some things: 

 

1. Quirk [78] simulator is a formidable tool for the graphical implementation of quantum circuits, in 

fact, it is the most pedagogical one with the best graphical interface, which allows us to make drag 

and drops operations without any type of coding, however, and as we saw in the previous case, 

Quirk does not consider decoherence. This is the reason why in Figure 25, both of them: the qubit 

to be teleported (prepared) and the reconstructed qubit (teleported) are identical. Clearly, this is not 

what happened on the IBM Q platform [79], since the probability bars of Figure 27 are a little 

different to the percentages of Eq.(81). 

 

2. IBM Q [79] has not implemented the qubit reset gate even on its physical quantum machine or 

Quantum Processing Unit (QPU) yet, therefore, we will resort to its simulator. On the other hand, 

all its topologies (of 5, 9, 14, 21, 32, or more qubits) perform qubit reset in a per se way at the 

beginning of the process and transparent to the user, in order to quickly put to ground state all the 

qubits to be used, as soon as possible, and in this way make the most of the coherence time. Both 

the previous implementations and the one we will do next, were encoded in Quantum Assembly 

language (qasm). In fact, even if IBM Q implemented the qubit reset gate on its QPU, there would 

be no need to resort to Quantum Information Science Kit (qiskit), because we only need three 

qubits, then we could take advantage of the 5 qubits topologies like Tenerife or Yorktown [79]. It is 

important to clarify that IBM Q [63] has the technology to be able to implement the qubit reset gate 

on its QPUs [paper Jay Gambetta and Chow], which should only be put into service. 

 

3. A similar case to that of IBM Q happens with Rigetti [82], that is, the qubit reset gate cannot be 

freely used on any part of the quantum circuit in all its lattices [82] but only at the beginning. 

Therefore, here we will also resort to its QVM instead of its QPU. Apparently, Rigetti would also 

possess the technology to do so in a future. 

 

4. There is a slight difference between the mathematical value of the qubit to be prepared in Eq.(81) 

 q[0] = 85.3553% 0 14 6447 1, . % , and that we can see in the qubit prepared by Quirk [78] (Figure 

30)  q[0] = 85.4% 0 14 6 1, . % , and that prepared by IBM Q (Figure 31)  q[0] = 86% 0 14 1, % . The 

difference is minimal, however, we must highlight it because the experiment is by comparison 

between the simulators. This is not something that we can control, because it is the interpretation 

that each simulator makes for that combination of matrices. 

 

 

Figure 30 Qubit preparation of Eq.(81) on Quirk [78]. 

 

 

 

 

 
 

Figure 31 Qubit preparation of Eq.(81) on IBM Q [79]. Execution parameters: shots = 1024, seed = 7. 
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As happened in the previous cases, we are going to give to Quirk [78] the possibility of implementing 

the protocol of Figure 28 first. 

 

 

 
 

Figure 32 Controlled quantum teleportation protocol implemented on Quirk [X] simulator. 

 

 

Figure 32 shows the Quirk [78] implementation of the controlled quantum teleportation protocol of 

Figure 28. The coincidence between the state of q[0] after qubit preparation block and q[2], at the end 

of protocol, is total. In fact, the three metrics (DM, Po|1>, and BS) in both points, are similar, which 

indicates that the teleportation was successful. Both qubits reset gates of BSC eliminates the 75 % of 

the projections that come out from BSC, establishing a survival rate of 25 %, which can be seen on the 

right-down corner of Figure 32. Although Quirk's qubit preparation values differ from those of the 

purely mathematical version of Eq.(81), the important thing here, is that the qubit to be teleported q[0] 

and the teleported qubit q[2] are identical. Obviously, decoherence and/or gates' noise is not taken into 

account on this platform. 

 

The IBM Q [79] implementation of Figure 28 protocol can be seen in Figure 33. IBM Q only allows 

measurements at the end of a process (as indeed all simulators do with a strong practical commitment), 

then, between the blocks of qubit preparation and Bell State Control (BSC) there is only a barrier, 

instead of the metrics for the qubit’s status evaluation to be teleported which was in the same place for 

the Quirk case. Figure 34 represents the probability bars for this experiment, which are identical to the 

output of qubit preparation block on the right of Figure 31. The execution parameters were: shots = 

1024 and seed = 7. 

 

 
 

Figure 33 Controlled quantum teleportation protocol implemented on IBM Q [79] simulator. 

 

 
 

Figure 34 Probability bars for the experiment of Figure 33.  
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Next, we analyze the results obtained on Rigetti’s platform [82], which can be seen in Figure 35, and 

they are: wavefunction, amplitudes, and probabilities.  

 

 

 
 

Figure 35 Captured screen with wavefunction, amplitudes, and probabilities on Rigetti platform [82].  

 

 

The first relevant aspect that we can observe from Figure 35 consists of the absolute coincidence 

between the values delivered by this platform and those of the Eq.(81) due to the purely mathematical 

version. The relationship between the wavefunction, the density matrix and the probabilities is 

exposed in Equations (83), (84) and (85). 
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                 (85) 

 

where  
*

•  means conjugate transpose of  • , Po|0> means Probability of |0>, and Po|1> means 

Probability of |1>. Therefore, we can say that the original qubit of Eq.(81) has been prepared and 

impeccably teleported on Rigetti’s platform [82] as in any other platform.  

 

3.3. Some preliminary reflections 
 

It is evident that from an uncontrolled process like quantum measurement any signaling activity is 

impossible. It is simply a mechanism of observation of nature, which does not allow the control or use 

of any attribute of said nature as the instant communication between entangled particles. We saw this, 

in detail, both for the case of EPR pair in Subsection 3.1.1 and for the uncontrolled (standard) quantum 

teleportation protocol in Subsection 3.2.1. 

 

Although all the implementations were carried out on simulators, both gate noise and decoherence do 

not affect the instantaneity of the controlled quantum teleportation protocol, given that, as we have 

seen in Subsections 2.4 and 2.5, this instantaneity is somewhat innate of the very nature of quantum 
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entanglement, that is, of the characteristics of avatars and their location. However, and returning for a 

moment to Subsection 2.5, if we put the entanglement in a practical context such as the quantum 

teleportation, due to the implementation of the latter through noisy gates, this non-zero noise interacts 

with the infinite bandwidth of the entanglement to give a finite channel capacity [60], that is, the noise 

degraded the attributes of the link, as it could not be otherwise. 

 

The Bell State Measurement (BSM) block used by the uncontrolled (standard) quantum teleportation 

protocol produces an ambiguity, which is expressed as a purely random and equiprobable process. 

Quantum measurement starts the disambiguation process from which two bits arise that will be 

transmitted to Bob through a classical channel and at the same time destroys the entanglement. These 

two classical bits indicate on which of the four bases the qubit to be teleported is projected, i.e., by 

which of the four gates the cow of Figure 24 came out. Besides, the same quantum measurement 

process avoids the violation of No-Cloning Theorem [85], since when the entanglement dies and 

therefore all the projections of the treated qubit die too, the only surviving qubit will be on Bob's side 

when applying the corresponding unitary transformations according to the instructions sent by Alice. 

 

On the other hand, in the case of the controlled version of quantum teleportation protocol, the in 

pectore action of the qubit reset gates, ad referendum of the Bell State Control (BSC), does not 

generate ambiguity and does not violate the No-Cloning Theorem. The intervention of the qubit reset 

gates is equivalent to always leaving the gate |00> of Figure 29 open exclusively, eliminating the 

entanglement and establishing a control over the experiment by which Bob knows in advance which 

gate the cow comes out of, i.e., what unitary transformation applies, which in this case is equal to the 

identity matrix, thus, Bob does not need to do anything to recover the teleported state. 

 

Finally, we should not confuse the controlled quantum teleportation protocol presented in this work, 

which allows an instantaneous communication, with that made by Valivarthi et al [86] and what was 

implemented in [87], since the latter implies a statistical analysis after the experiment was ended using 

a gate present in Quirk [78] and known as “post-select |0><0|”. This experiment does not imply an 

instantaneous teleportation at all, in fact, it is slower than the uncontrolled or standard version (that 

disambiguates via classic channel), since, the result is achieved once the experiment is finished. Then, 

there is no teleportation whatsoever but a conclusion. Alice and Bob finally exchange results using 

another channel (or meet at the end of the experiment) and everything is reduced to a statistical 

analysis, because, if Alice and Bob did not share data, then Bob would have to guess Alice's statistical 

results. 

 

4.  Other experiments 

 

Next, we will evaluate a series of Quantum Communication tools, some of which will incorporate the 

control concept seen so far and that will help us to face the technology necessary for an efficient 

implementation of Quantum Internet [88-94]. 
 

4.1. Robust quantum teleportation 
 

In this subsection, we will analyze the following cases of quantum teleportation, namely: 

- Noiseless non-robust uncontrolled quantum teleportation: this case was seen in Subsection 3.2.1, 

- Noiseless non-robust controlled quantum teleportation: this case was seen in Subsection 3.2.2, 

- Noisy non-robust uncontrolled quantum teleportation: this case will be seen in the Subsection 4.1.1, 

- Noisy non-robust controlled quantum teleportation: this case will be seen in the Subsection 4.1.2, 

- Noiseless robust uncontrolled quantum teleportation: this case will be seen in the Subsection 4.1.3, 

- Noiseless robust controlled quantum teleportation: this case will be seen in the Subsection 4.1.4, 

- Noisy robust uncontrolled quantum teleportation: this case will be seen in the Subsection 4.1.5, and 

- Noisy robust controlled quantum teleportation: this case will be seen in the Subsection 4.1.6. 
 

When we say noisy, we actually refer to foreseeing the presence of noise from the very deduction of 

the quantum teleportation protocol. 
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4.1.1. Noisy non-robust uncontrolled quantum teleportation 

 

So far, we have talked about the noise introduced by the gates used by the quantum teleportation 

protocols, but we have not mentioned them in particular. Specifically, there are three types of noise: 

 

- Bit flip, 

- Phase flip (or phase damping), and 

- Bit-phase flip 

 

However, we will model all the noise present in the protocols associated with the EPR pair, that is, 

00 , since the entangled pair is present at each point of said protocols. Therefore, based on Figure 

23, we will consider a noise of the type, 

 

00 00 11
n

A B                (86) 

 

where subscript n means noise, and 

 
2 2

1A B  ,               (87) 

 

with  A B . Then, repeating Eq.(78) but with 
00 n
  instead of 

00 , we will have 
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   
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        (88) 

 

Now, a CNOT gate is applied to Eq.(88), resulting in 

 

1 000 110 011 101A A B B                  (89) 

 

Then, we apply a Hadamard’s gate to the elements of Eq.(89), 
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where, 

 

0 0n A               (91) 

1 1n B               (92) 

0 1n n n                 (93) 

     0 0 0 0 0 0 0 0 0 0 0 0n n n n n n A A A                    (94) 

     1 1 1 1 1 1 1 1 1 1 1 1n n n n n n B B B                                 (95) 

 

From here on, we will follow a similar procedure to that of Table I in Subsection 3.2.1 but taking into 

account how sensitively the state is affected by noise. In fact, seeing Eq.(90), it is evident that it is 

almost impossible to recover the state   in an exact way. This is what we have seen in Figure 27 in 

Subsection 3.2.1, which shows the probability bars of IBM Q [79] implementation. 

 

4.1.2. Noisy non-robust controlled quantum teleportation 

 

Although in the three implementations of Subsection 3.2.2 there is no difference between the state to 

be teleported and the state received by Bob, the reality is that there is a difference, which is hidden 

because the implementations were made on simulators. This protocol involves eliminating the last 

three rows of Eq.(90), however, the line that remains, associated with the base  , is undoubtedly 

affected by the noise of n and n. Besides, the state to be teleported will not generally be on a sphere, 

much less a unitary sphere, because it will generally not be fulfilled: 

 
2 2 2 2

1n n A B                  (96) 

 

4.1.3. Noiseless robust uncontrolled quantum teleportation 

 

In this new protocol, Figure 36, we produce 
00   instead of 

00   used in the previous 

versions. We must highlight as a fundamental contrast between this version of quantum teleportation 

and the previous one that the Kronecker product “ ” is not commutative [39], then, 
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         (97) 

 

 

 

Figure 36 Robust uncontrolled quantum teleportation using two classical bits for disambiguation. 
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Now, a CNOT gate is applied to Eq.(97), and the result will be present on the Alice’s lower branch, 

because in her upper branch will be 
00 ,  
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It is evident from Figure 36 that the Hadamard’s gate only involves to the Alice’s upper branch, then, 
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            (99) 

 

We can draw some conclusions based on Eq.(98): 

- the qubit to be teleported only has projection on 0 , 

- there is not overlapping of bases (or projections) that happened in Eq.(80) and Eq.(90),  

- although the cow can only exit through the gate |+0>, Alice must still measure to eliminate the 

entanglement and transmit that information to Bob. In this way, the No-Cloning Theorem is not 

violated when reconstructing the teleported state from Bob's side thanks to an unitary transform, and 

- the previous items simplify the data collection on the SPD block of the BSM. 

 

Figure 37 shows the implementation of this protocol on Quirk [78]. The absolute equivalence between 

the qubit to be teleported and the recovered one, can only be explained by working on a simulator that 

does not consider noise or decoherence. 

 

 

 
 

Figure 37 Robust uncontrolled quantum teleportation protocol implemented on Quirk [78] simulator. 

 

 

 
 

Figure 38 Robust uncontrolled quantum teleportation protocol implemented on IBM Q [79] simulator. 
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In contrast, Figures 38 and 39 take decoherence into account, although they also come from a 

simulator, such as IBM Q [79]. In particular, the probability bars in Figure 39 give us the following 

values: 0.222+0.206+0.205+0.200 = 0.833 for |0> and 0.050+0.041+0.041+0.035 = 0.167 for |1>, 

which differs slightly from the values of the prepared qubit, i.e., 0.86 for |0> and 0.14 for |1>. The 

execution parameters were: shots = 1024 and seed = 7. 

 

 

 
 

Figure 39 Probability bars for the experiment of Figure 38. 

 

 

Finally, Figure 40 shows the implementation of the new protocol on Rigetti’s platform [82]. As we 

can see, the captured screen of Figure 40 shows very similar results to those of Figure 35. The future 

implementation of the qubit reset gate on the physical quantum machines (QPU) of Rigetti [82] and 

IBM Q [79] will allow us to evaluate the true impact of the decoherence on these protocols.  

 

 

 
 

Figure 40 Captured screen with wavefunction, amplitudes, and probabilities on Rigetti platform [82]. 

 

4.1.4. Noiseless robust controlled quantum teleportation 

 

The controlled version of the previous protocol is also based on the use of two qubit reset gates [|0>] at 

the output of the Bell's State Control (BSC) block (Figure 41) with identical criteria to the case of 

Figure 28. 

 

 
 

Figure 41 Robust controlled quantum teleportation using two qubit reset [|0>] gates. 
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This protocol, like the previous case, is based on the last row of Eq.(99). The action of both qubit reset 

gates is equivalent to the control of the experiment at the output of the BSC, thus eliminating the need 

for any measurement or transfer of classical information from Alice to Bob. The same control process 

eliminates the entanglement. However, on Bob's side, the state recovers perfectly and instantaneously 

without the need to apply any unitary transformation. 

 

Figure 42 represents the implementation of this protocol on Quirk platform [78]. The most notable 

difference with respect to the previous case is at the height of the BSC, where, despite that Eq.(99) 

only shows projection on a base, the action of both qubit reset gates eliminates 75% of the elements to 

the output of said BSC, which is shown in red as: fails 75%. 

 

 

 
 

Figure 42 Robust controlled quantum teleportation protocol implemented on Quirk [78] simulator. 

 

 

Figure 43 represents the quantum circuits of this protocol. As we can see, the details of the action of 

both qubit reset gates is not as graphic or explicit as in the case of Quirk, however, the probability bars 

of Figure 44 tell us of an exact teleportation of the state, i.e., Bob gets: 0.86 for |0> and 0.14 for |1>, 

with the same execution parameters of the previous case: shots = 1024 and seed = 7. 

 

 

 
 

Figure 43 Robust controlled quantum teleportation protocol implemented on IBM Q [79] simulator. 

 

 

 
 

Figure 44 Probability bars for the experiment of Figure 43. 

 

 

Captured screen of Figure 45 shows us the wavefunction, amplitudes and probabilities on Rigetti’s 

platform [82], which are practically the same values of Figure 40 for the previous protocol. 
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Figure 45 Captured screen with wavefunction, amplitudes, and probabilities on Rigetti platform [82]. 

 

4.1.5. Noisy robust uncontrolled quantum teleportation 

 

For this case, we will resort again to the base 
00 n

 of Eq.(86), to which, we assign the noise of the 

protocol as a whole, then, 
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Now, a CNOT gate is applied to Eq.(100), and the result will be present on the Alice’s lower branch 

again, because in her upper branch will be 
00 n

 , 
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where  

 

 00 10C A B  .           (102) 

 

In this case again, the Hadamard’s gate only involves to the Alice’s upper branch, then, 
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In other words, the noise causes that the state to be teleported is projected on a pair of bases at the exit 

of the BSC, as opposed to the noiseless case that it did on a single base. On the other hand, the state 

recovered from Bob's side will always be on a sphere although not necessarily a unitary one.  

 

4.1.6. Noisy robust controlled quantum teleportation 

 

The action of the qubit reset gates at the output of the BSC on the third row of Eq.(102) does not 

modify the result between both versions. It only makes the controlled version instantaneous, compared 

to the speed limitations of the uncontrolled version because of the classical channel used between 

Alice and Bob. In other words, the transmission of classical bits of disambiguation on the classical 

channel is limited by the speed of light. 
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4.2. Interfaces 
 

In the quantum internet context [88-94], we will need to teleport classical information too, in an 

instantaneous way, if it is possible. Then, we will need Classical-to-Quantum (Cl2Qu) and Quantum-

to-Classical (Qu2Cl) interfaces, which must comply with a series of conditions, for an optimal 

treatment and recovery of data. For reasons of spatial and temporal sequentiality, we will be very 

demanding with the conditions to be met by the Cl2Qu interface, given that its performance strongly 

conditions the performance of the chosen teleportation protocol, as well as, the performance of the 

Qu2Cl interface, which finally retrieves the teleported data. Therefore, all Cl2Qu interface must meet, 

sine qua non conditions such as the following: 
 

a) Traceability: every bit to be teleported must not lose the necessary traceability throughout the 

entire process, which will also be seen as an inexcusable link between the bit and its location in the 

organization of data at all times. What is the reason for such a mandatory condition? The reason is 

that no physical quantum computer allows intermediate instances of quantum measurement. In 

other words, if the outcomes are not what we expected, then there is no way to go back and identify 

the source of the problem in the process. This is clearly in tune with the fact that the quantum world 

and its implementation in gates that respond to the different Algebras [1, 39] (Clifford, Pauli, etc.) 

represents an eclectic environment. 
 

b) Homotopical relation: every bit of the set to be teleported (digital, i.e., classical) must maintain a 

homotopical relation of type 2bit [Cl Qu] bit qubit    with its counterpart within the physical 

quantum computer, for the same reason mentioned above.  
 

c) Automatic intake: every bit to be teleported (digital, i.e., classical) must be converted to its 

quantum counterpart in an automatic way. The reason is more than obvious, just picture, as an 

example, the possibility of transmitting a color image of 1920x1080 pixels (i.e., 1920x1080x3x8 

bits), then, the data volume of qubits to be prepared would be approximately of 50 Million. Who 

can and/or wants to prepare 50 Million of qubits by hand? 
 

d) Facilitation in the design of the Quantum-to-Classical (Qu2Cl) interface: this condition is 

evidently essential for a correct recovery of outcomes, considering the problem of quantum 

measurement [37, 38] and complementarity [55, 56], which only ensure a complete accuracy in the 

recovery of the measured qubits if they have projection on a single axis exclusively, as is the case 

of the CBS, i.e., {|0>,|1>}. In other words, if the three previous conditions are met, then the Qu2Cl 

interface (i.e., which recovers the outcomes) is extremely simple. In fact, a quantum measurement 

exclusively on the z axis of the Bloch’s sphere (Figure 1) is precisely how the physical quantum 

computers currently in service work. See Rigetti [82] and IBM Q Experience [79]. 

 

The Cl2Qu interface that we will propose requires an EPR pair for each pair of bits to be converted 

into qubits. This may seem that we will not fulfill the previous (c) condition as efficiently as required, 

however, it is simply a first step in the right direction, given that at least for proof of concept, it has 

proven to have a remarkable performance.  

 

On the other hand, and as is evident, the only way to comply with such demands is to work with CBS, 

i.e., {|0>,|1>}. Then, an alternative to which we can resort is the Superdense Coding (SDC) protocol 

[39], from which emerges an extraordinary pair of interfaces for a direct relationship between classical 

bits and CBS, and vice-versa. Figure 46 shows the SDC protocol, which is composed of two well-

defined blocks: one which is light blue and the other one pink. The light blue block works as a Cl2Qu 

interface, while the pink block works as a Qu2Cl interface. All this, of course, is exclusively defined 

to be used with classical bits, and in consequence, with CBS. 

 

As we can see in Figure 46, the problem with this Cl2Qu interfaces is that it requires an EPR pair for 

each pair of classical bits to be converted into CBS. However, an improved version is being developed 

right now [95], which will allow us to dramatically increase the efficiency of this interface by 

requiring a single EPR pair to convert an unlimited number of classical bits (at first) in CBS.  
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Figure 46 SDC protocol and the detail of both interfaces: Cl2Qu and Qu2Cl. 

 

 

If we cut the SDC protocol, in such a way to extract the Cl2Qu interface, we will obtain Figure 47, 

which completely complies with all the conditions required by a Cl2Qu interface and that were 

previously enunciated. 

 

 

 
 

Figure 47 Classical-to-quantum (Cl2Qu) interface. 

 

 

The Cl2Qu interface of Figure 47 is derived from the SDC protocol and therefore can only convert 

two classical bits to its CBS counterpart, that is,    1 2 1 22b ,b Cl Qu b , b  , being this a completely 

homotopic way, however, both the interface and its explanation are absolutely transferable to any 

number of bits, as it will happen in Subsection 5.2. 

 

We create an EPR pair (i.e., two 
00  entangled states) from two ground states |0>. Then, we have two 

possibilities according to b2, i.e., 0 or 1. If b2 = 0, then, at the output of the Pauli’s gate X, we will have 

00  again. See Figure 47. But, if b2 = 1, then, at the output of the Pauli’s gate X, we will have, 
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 

1 1
2 2

1
2

00 1
2

1 1
2 2

0 0 1 0 0

0 00 1 1 0 0 0 0 1

0 01 0 0 1 1 0 0 0

0 1 0 0 0

x I

      
      

                              
      

      

 
       (104) 

 

If, at the output of the Pauli’s gate Z, b2 = 0 and b1 = 0, then, we will obtain 
00 . But if b2 = 0 and b1 = 

1, we will have, 

 

 

1 1 1
2 2 2

00

1 1 1
2 2 2

1 0 0 0

0 0 01 0 1 0 0 1 0 0

0 0 00 1 0 1 0 0 1 0

0 0 0 1

z I

      
      

                               
      

      

 
       (105) 

 

Now, if b2 = 1 and b1 = 1, we will use the result of Eq.(104) to obtain the state at the output of the 

Pauli’s gate Z, 

 

 
1 1 1 1

2 2 2 2

1 1 1 1
2 2 2 2

0 0 1 0 0 0 0 0

1 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0

0 0 0 0 0 1 0 0

z I

         
         

                                    
         

         


       (106) 

 

Evidently, the result at the output of the Pauli’s gate Z is the same as that one at the input of the CNOT 

gate in the upper right sector of Figure 47. The four obtained results, according to the values of b2 and 

b1, are attached to the entrance of the aforementioned CNOT gate under the generic name of 
1 2b b , 

that is, at this point we have reached a first conversion of the type:   
1 21 2 b bb ,b   . 

 

Now, applying CNOT gate to these results, we will obtain,  

 
1 1

2 2

1
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1
2

1 0 0 0

00 1 0 0 0

00 0 0 1

0 0 1 0 0

    
    
    
    
    

    

        (for b2 = 0 and b1 = 0)                   (107) 

 
1 1
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1
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1 0 0 0

00 1 0 0 0

00 0 0 1

0 0 1 0 0

    
    
    
    
    
    

   (for b2 = 0 and b1 = 1)                   (108) 
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0 1 0 0

00 0 0 1

0 0 1 0 0

    
    
     
    
    

     

       (for b2 = 1 and b1 = 0)                   (109) 
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00 0 0 1
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    
    
     
    
    
     

   (for b2 = 1 and b1 = 1)                   (110) 

 

Now, we will apply the Hadamard’s gate to the last set of equations according to Figure 47 [1, 39], 

then, we will have 

 

for b2 = 0 and b1 = 0: 
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 
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                                    
      

      

 
 

                 
 
 

     (111) 

 

for b2 = 0 and b1 = 1: 
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      

      

 
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 
 

      (112) 

 

for b2 = 1 and b1 = 0: 
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     (113) 

 

for b2 = 1 and b1 = 1: 
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     (114) 

 

In this way, we obtained the equivalent qubits. Essentially, Cl2Qu interface is a block that performs a 

transfer of type    1 2 1 2, ,b b b b  for CBS, i.e.,    0,1 0 , 1 . Moreover, since Cl2Qu works 

with said CBS, then the Quantum-to-Classical (Qu2Cl) interface is reduced to that of Figure 48, that 

is, a simple quantum measurement on the z axis of the Bloch’s sphere. 

 

Next, we will involve both interfaces in the quantum teleportation of classic information. 
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Figure 48 Quantum-to-Classical (Qu2Cl) interface. 

 

4.3. Teleporting classical information 
 

In this section, we will analyze the teleportation of classical information through an EPR channel in an 

instantaneous way. Specifically, this analysis will be especially oriented to the security of information. 

For this purpose, we will use the interfaces developed in the previous subsection. 

 

4.3.1. Teleporting classical bits 

 

Figure 49 shows on the left side 8 qubits ground state |0>. From q[0] and q[1] we construct b1 and b2. 

This possibility is exclusive to Quirk platform [78] which consists in using a quantum measurement on 

a CBS to obtain the corresponding bit. From q[2] to q[7] we have the ancilla states for the different 

EPR generation. We can clearly see four blocks in Figure 49: 

- EPR and bits generation, 

- Cl2Qu interface, 

- Robust controlled quantum teleportation of both bits, and 

- Qu2Cl interface. 

 

 

Figure 49(a) Robust controlled quantum teleportation of a classical pair {b1,b2}={0,0} on Quirk [78]. 

 

 

Figure 49(b) Robust controlled quantum teleportation of a classical pair {b1,b2}={0,1} on Quirk [78]. 
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Figure 49(c) Robust controlled quantum teleportation of a classical pair {b1,b2}={1,0} on Quirk [78]. 

 

 

 
 

Figure 49(d) Robust controlled quantum teleportation of a classical pair {b1,b2}={1,1} on Quirk [78]. 

 

 

The four options of Figure 49 show all four possible combinations of classical bits to be teleported, 

i.e., (b1,b2) ∈ {(0,0); (0,1); (1,0); (1,1)}. On the right side of Figures 49, we can see that at the end of 

the Qu2Cl interface (i.e., the threads corresponding to q[5] and q[7]) we have exactly the same bits 

that those at the end of quantum measurement corresponding to q[0] and q[1] at the left side of the 

same figure, which indicates that the teleportation was perfectly done. The best witness of this are the 

Bloch’s sphere (showing spin up for 0 and spin down for 1) and the Po|1> or Chance blocks (showing 

OFF for 0 and ON for 1) in each case. We must note that all quantum measurement are always at the 

end of each thread.  

 

Figure 50 represents the same implementation of Figure 49 but on IBM Q platform [79]. 

 

  

Figure 50(a) Robust controlled quantum teleportation of a classical pair {b1,b2}={0,0} on IBM Q [79]. 
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Figure 50(b) Robust controlled quantum teleportation of a classical pair {b1,b2}={1,0} on IBM Q [79]. 

 

  

Figure 50(c) Robust controlled quantum teleportation of a classical pair {b1,b2}={0,1} on IBM Q [79]. 

 

  

Figure 50(d) Robust controlled quantum teleportation of a classical pair {b1,b2}={1,1} on IBM Q [79]. 

 

Unlike the implementation on Quirk platform[78] of Figures 49 that represent everything on the same 

graph, Figures 50 show the result of the teleportation of two classical bits on IBM Q platform [79] in 

two graphs: on the left we have the quantum circuit, while, on the right, we have the probability bars. 

Although with fewer witness tools than in the case of Quirk, the implementation on IBM Q gives 

similar results, allowing us to check the success in the teleportation of classical information. The 

experiment parameters were: shots = 1024, and seed = 7. A fundamental fact to keep in mind is that 

we do not have the possibility of using quantum measurement in any arbitrary point of the quantum 

circuit on IBM Q platform, but in the end only. Besides, we cannot create pairs of classical bits in a so 

ductile way as we did on Quirk platform. Therefore, the action of the classical bits is interpreted here 

as the appearance and disappearance of Pauli's X and Z gates in Figures 50. 

 

The success of these implementations will allow us to use these tools in Quantum Key Distribution 

(QKD) [96, 97], which will play a fundamental role in Quantum Internet [88-94]. 
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4.3.2. Instantaneous QKD based on entanglement 

 

Clearly, the problem of quantum teleportation, in all its forms, lies in the difficulties of logistics and 

distribution of EPR pairs, therefore, it is impractical to use it to teleport large volumes of data, since 

we must distribute an EPR pair by every qubit to teleport. Although in this work we have shown that 

teleportation has an instantaneous version, it can only be true once the EPR pair that holds the channel 

(link by entanglement) has been distributed. Something that we have not mentioned so far is that this 

distribution will always be subject to the natural limit that implies the speed of light in the form of a 

photon emitted by the air, optical fiber, among other means. With this background, we can only think 

of a practical use of teleportation in information security. In addition, one thing is to think quantum 

internet between cities of a continent and another very different is to try to get quantum internet to 

Mars from Earth. 

 

In other words, until solving the problem of distribution of the EPR pairs, the only argument that 

supports quantum internet is security. With the controlled quantum teleportation presented in this work 

we eliminate a channel, the classical channel, and thus automatically raise the level of security. With 

the uncontrolled quantum teleportation scheme, the only route exposed to hackers is the classical 

channel that transports the classical bits of disambiguation with which Bob reconstructs the teleported 

state thanks to a unitary transformation on the EPR channel. Then, the hacker cannot get the 

information but can alter the classical bits of the classical channel preventing Bob from having the 

correct information either. 

 

The problem of the distribution of the EPR pairs is not a trivial issue at all, because we must remember 

that in all the versions of quantum teleportation the entanglement is eliminated to be able to complete 

the teleportation and not to violate the No-Cloning Theorem [85]. In fact, to date, there is not even any 

procedure under study in the world that can lead to avoid a new distribution of an EPR pair once the 

entanglement has died when wanting to teleport the next qubit of information. We can think of the 

entanglement is like a cow, to take advantage of its meat, first we have to kill it and if we want to 

make another barbecue we need another cow to kill. 

 

The procedure for the teleportation of classical information named in the previous subsection is, in 

itself, a new method of quantum key distribution (QKD), where entangled photons are sent by some 

optical channel without useful information inside and at the speed of light. Instead, the message with 

the useful information travels secretly and instantaneously through a single channel, the EPR channel.  

 

Notwithstanding what has been said, we must always transmit an element of the EPR pair just before 

the distribution of the key, to generate the secure and instantaneous EPR channel that allows such 

distribution. Next, we will test a procedure, which requires transmitting an element of the EPR pair 

only the first time for the distribution of the first key. From the second case onwards, we will resort to 

a process of virtualization of the entanglement, which will free us from the repeated, uncomfortable 

and impractical transmission of an element of the EPR pair before the distribution of the next key. 

 

4.3.3. Entanglement virtualization for a more practical QKD 

 

In every process of QKD, we identify two aspects: the tactical and the strategic. The tactical aspect is 

typically represented by the transmission of the key itself, which can be done by: 

 

- an uncontrolled quantum teleportation, at the speed of light due to the transmission of the classical 

bits of disambiguation through a channel that is also classical, or  

 

- a controlled quantum teleportation, which is instantaneous, without classical bits of disambiguation 

traveling at the speed of light, and that was already presented in this work,  

 

and the strategic one, which puts the whole QKD procedure in a more general context, but always 

limited to the speed of light because of the distribution of the EPR pair by air or optical fibers. 
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In the strategic aspect, we are always limited by the speed of light, then, we will take advantage of this 

situation in the most practical way possible using the best version of the tools seen. This simply 

means, to continue using a classical channel for sending encrypted information, but with a series of 

important differences based on Figure 51: 

 

- we distribute an EPR pair, then the first and only key k0 is teleported safely and unalterably thanks to 

a controlled teleportation. The key can be at both ends of the link simultaneously without violating 

the No-Cloning theorem because it is composed of CBSs exclusively [98].  

 

- On Alice’s side:  

• with the plaintext PTi and the previous key ki-1 function F builds the new key ki, 

• with the plaintext PTi and the new key ki function G builds the ciphertext CTi, 

 

- On Bob’s side: 

• with the ciphertext CTi and the previous key ki-1 function F builds the new key ki,  

• with the ciphertext CTi and the new key ki  function G rebuilds the plaintext PTi. 

 

It is evident that there is an entanglement between functions F and G on both sides of the classical 

channel according to the four equivalent bases of Bell in this new context: 

 
A B A B

FFB F F G G              (115) 

A B A B

FGB F F G G             (116) 

A B A B

GFB F G G F              (117) 

A B A B

GGB F G G F             (118) 

 

where, a b  means interaction between a and b, c d means complementation between c and d, 

and, c d means anti-complementation between c and d, i.e., they are not the known operators of 

union and intersection in sets theory. The action of the operators: interaction, complementation and 

anti-complementation, allows a satisfactory encryption and a perfect recovery of the plaintext in a 

perfect deterministic synchrony, which raises the level of sensitivity of the channel, in such a way that 

an apocryphal presence would be detected as a lack of coherence in the received message. 

 

 

 
 

Figure 51 Virtualization of entanglement after the real quantum teleportation of the first key. 
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That elevation in the sensitivity level imitates the action of an observer in a quantum measurement 

context, where, we must remember that every quantum measurement alters what is measured. In other 

words, we are creating an artificial entanglement and we are keeping it alive by the action of the 

operators { , ,   } and functions {F, G} as if the flow of QKD was never interrupted. 

 

When we say that the functions {F, G} work with the plaintext or the ciphertext, in reality what we 

mean is that F and G are able to use: everything, part or a characteristic of said texts within each 

function. The most innocent of such a feature could be some amount of something (e.g., sum of any 

character of the texts). Anyway, we must understand that by putting all this in its corresponding 

context, i.e., quantum internet, the information will definitely be organized in frames and layers (and 

quantum internet protocol datagrams), so that we will have a series of other tools to play with. 

 

When a hacker acting in the middle of the classical channel, which does not have the functions {F, G} 

or the strategy between them, i.e., the correct used base  FF FG GF GGB , B , B , B , and tries to 

measure the message, the result of that measurement will be like a random martingale, which emulates 

the also random result of a quantum measurement on an entangled particle. In addition, decoherence in 

the plaintext recovered by Bob will indicate an apocryphal presence in the channel. Although the 

analysis of Bob can be done on a witness element, which is complementary to the plaintext and before 

obtaining it, which can acts as a flag indicating the integrity of the procedure. 

 

Since the whole procedure depends, in some way, on a whimsical creation of the message to be 

transmitted, the practical effect of the whole procedure is equivalent to the permanent change of the 

encryption and decryption algorithms with each message. Moreover, we can configure the procedure 

so that everything changes with each frame or subframe. Therefore, users should not memorize keys, 

nor think new ones, being the security transparent to all of them, because nobody knows its key and 

nevertheless it always changes capriciously and randomly with each frame (or another think controlled 

by clocks to both sides of classical channel) of the message, i.e., permanently. 

 

For all that said, and although the procedure in Figure 51 is about the teleportation of keys, it is in 

some way also a mechanism for teleportation of messages with important information. 

 

Perhaps the least intuitive of the three operators { , ,   } is that of anti-complementation, freedom 

or compensation, however, in all three operators, we leave each future user free to select the finest 

identity and combination of them to obtain the best result according to the use they want to give them. 

 

What about the impact of noise on the procedure in Figure 51? This question has two answers: 

 

- classic: the same impact that any classical communication system has, for which we can resort to the 

whole arsenal of tools tending to mitigate errors such as error correcting codes, use of parity bits, etc,  

 

- quantum: the same impact expected in a quantum system when we must coexist with noisy gates and 

decoherence as a result of quantum measurement [37, 38] at the end of the process. 

 

Finally, we will use this procedure within a complete information security protocol in subsection 5.4. 

 

4.4. Entanglement and teleportation swapping 
 

Entanglement swapping [99-105] is the technique traditionally used in quantum repeaters [106-108], 

evidently from uncontrolled quantum teleportation [15-19]. Here, we will present both versions seen 

in Section 3, i.e., uncontrolled and controlled techniques working together with: 

 

- Entanglement Swapping, properly speaking, and 

- Teleportation Swapping, i.e., the exchange of two teleported qubits between Alice and Bob in order 

to try bidirectionality within the quantum teleportation. 
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4.4.1. Entanglement swapping 

 

Figure 52 represents the entanglement swapping thanks to the uncontrolled technique on Quirk [78], 

where, on the left side of that figure, we can see the generation of two pairs of entangled particles. The 

first EPR pair results from q[0] and q[1] qubits, which are first at ground state |0>. The second EPR 

pair arises from q[2] and q[3] qubits, also at ground state at the beginning. 
 

 

 
 

Figure 52 Entanglement swapping via the uncontrolled technique on Quirk platform [78]. 
 

 

After the blocks that generate the EPR pairs, we can see a BSM block. Finally, to the right of Figure 

52, qubits q[0] and q[3] end up being entangled. Instead, Figure 53 shows the same configuration of 

Figure 52 but implemented on IBM Q [79]. Figure 54 represents the distribution of probabilities for 

this experiment where the results were: 0.132+0.126+0.124+0.109 = 0.491 ~ 0.5 for |00> on the right, 

and 0.133+0.131+0.124+0.121 = 0.509 ~ 0.5 for |11> on the right side too, with the following 

experiment parameters: shots = 1024, and seed = 7. Although the action of decoherence is evident, 

given that the outcomes are not exactly 0.5, however, the results obtained are quite good. We must 

bear in mind that in every real physical implementation, a very important factor in relation to quantum 

internet will appear being the coherence time of the EPR pairs, and their relation with the distances to 

be covered during the distribution of these, which will further degrade the outcomes. 
 

 

 
 

Figure 53 Entanglement swapping via the uncontrolled technique on IBM Q platform [79]. 
 

 

 

Figure 54 Distribution of probabilities for the experiment of Figure 53. 
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Figure 55 shows the entanglement swapping thanks to the controlled technique on Quirk [78]. The 

only difference with Figure 52 is to replace the BSM with the BSC based on the use of the qubit reset 

gates [|0>]. Here also and clearly, q[0] and q[3] end up entangled as can be seen on the right of Figure 

55. Figure 56 represents the same configuration of Figure 55 but on IBM Q platform [79]. This 

implementation is much more robust than that of Figure 53, as can be seen in the probability 

distribution of Figure 57 with values of 0.498 for |00> and 0.502 for |11>, that is, both closer to 0.5 

than those of the uncontrolled version. The experiment parameters were: shots = 1024, and seed = 7. 

 

 

 
 

Figure 55 Entanglement swapping via the controlled technique on Quirk platform [78]. 

 

 

 
 

Figure 56 Entanglement swapping via the controlled technique on IBM Q platform [79]. 

 

 

 
 

Figure 57 Probability distribution for the experiment of Figure 56. 

 

4.4.2. Teleportation swapping 

 

As we have mentioned before, this technique represents an effort to give bidirectionality to quantum 

teleportation. That is Alice and Bob interexchange qubits at the end of the process. We are going to 

start with the implementation of the uncontrolled protocol on Quirk platform [78], as we can see in 

Figure 58. Now, let us suppose that Alice generates a qubit q[0] = (85.4 % |0>, 14.6 % |1>), and Bob 

generates another qubit q[5] = (14.6 % |0>, 85.4 % |1>). Then we have a block for the generation of 

two EPR pairs and then another module with a pair of SWAP gates. The following two uncontrolled 

quantum teleports will cross-transmit the corresponding qubits in such a way that at the end of the 

whole process Alice will receive in q[0] the qubit generated by Bob, while Bob will receive in q[5] the 

qubit generated by Alice. Figure 59 shows us the uncontrolled protocol implemented on IBM Q 

platform [79], while Figure 60 represents the probability distribution for the experiment of Figure 59. 
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Figure 58 Uncontrolled teleportation swapping on Quirk platform [78]. 
 

 

 

Figure 59 Uncontrolled teleportation swapping on IBM Q platform [79]. 
 

 

 
 

Figure 60 Probability distribution for the experiment of Figure 59. 
 

 

The results of Figure 60 are: q[0] = (16.4 % |0>, 83.6 % |1>), and q[5] = (83.6 % |0>, 16.4 % |1>), 

where the experiment parameters are: shots = 1024, and seed = 7. The impact of decoherence in this 

experiment is evident as the number of quantum measurements [37, 38] needed increases. 

 

As a superior alternative, Figure 61 shows the controlled teleportation swapping on Quirk platform. 

The simplicity of implementation for this version versus that of Figure 58, is visually obvious. In fact, 

we expect less decoherence here than with the uncontrolled version, since the controlled version uses a 

smaller quantity of quantum measurements, although this cannot be verified on Quirk, then, we resort 

to IBM Q platform of Figure 62, where Figure 63 gives us its probability distribution. This last figure 

gives us the following results: q[0] = (15.1 % |0>, 84.8 % |1>), and q[5] = (84.8 % |0>, 15.1 % |1>), 

where the experiment parameters are: shots = 1024, and seed = 7. As we had predicted, the impact of 

decoherence in this experiment is evidently less than the previous case (uncontrolled) since 2 quantum 

measurements were used instead of 6 as in the uncontrolled case of Figure 59. This implies the 

superiority of the controlled version of Figure 62 over the uncontrolled version of Figure 59 not only 

by the instantaneity but also by the accuracy. 
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Figure 61 Controlled teleportation swapping on Quirk platform [78]. 

 

 

 
 

Figure 62 Controlled teleportation swapping on IBM Q platform [79]. 

 

 

 
 

Figure 63 Probability distribution for the experiment of Figure 62. 

 

5.  Quantum repeaters for quantum internet 

 

 In this section we will present three protocols of quantum repeaters, namely: 

 

- Relay race or satellite posts: it is a sequential protocol, which allows us to chain satellites in order to 

take the qubit to be teleported to any arbitrary distance, 

 

- Teleportation of EPRs: in this protocol we first teleport an EPR pair (which arise from a pivot point) 

to two satellites in two diametrically opposed locations of the space, so that at one end we introduce 

the qubit to be teleported, while at the other end we receive it. It is a parallel system, which works 

across the width in order to divide the distribution time of the EPRs by half, taking better advantage 

of the coherence time. On the other hand, multiplying the number of pivot points, the range has no 

limits, assuring us that the complete procedure will always be within the coherence time. Finally, the 

pivot points can be on a planet, or on other satellites. 

 

- Hybridization: It is a mix between the previous two versions. 
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5.1. Relay race or satellite posts 

 

This protocol is clearly sequential and works just like a relay race, and just like in rugby the pass of 

information is always forward, in an exclusive manner. According to Figure 64, which represents the 

implementation of this protocol on Quirk platform [78], the qubit q[0] to be teleported is prepared to 

act on point (1). The first qubit teleporter puts the qubit on point (2), then, the second qubit teleporter 

puts the qubit on point (3), i.e., the final destination on q[4]. 

 

 

 
 

Figure 64 Uncontrolled satellite post on Quirk platform. 

 

 

Notwithstanding the above, the segmentation of the quantum circuit that we can see in the lower part 

of Figure 64 is not entirely accurate. The reality is that we must perform a regrouping of blocks more 

in line with reality according to the real responsibility of each actor involved: Alice on land, quantum 

satellite, and Bob on land, where the latter is obviously in a different location and it is very distant 

from Alice. We will only perform this regrouping for this case in order not to overload or complicate 

the subsequent figures corresponding to other protocols. This regrouping can be seen in detail in 

Figure 65. The first macro-block highlighted in red includes: the qubit to be teleported, the first EPR 

generation and distribution, and the first BSM which will transmit the disambiguation bits to the 

quantum satellite via a radio channel. This first macro-block will be labeled as Alice on land. The 

second macro-block highlighted in light green and labeled as quantum satellite includes: a unitary 

transformation thanks to which we will reconstruct the teleported state from an element of the first 

EPR pair and the classical bits received by radio, and the generation of a second entangled pair and a 

second BSM, which will transmit the disambiguation bits to Bob on land via another radio channel. 

Finally, the third macro-block highlighted in blue and labeled as Bob on land includes a second 

unitary transformation, which received the second element of the second EPR pair as well as the 

disambiguation bits thanks to which Bob can reconstruct the teleported state. 

 

 

 
 

Figure 65 Reconfiguration of the layout belongs to the uncontrolled satellite post on Quirk platform. 

 

 

Figure 66 allows us to see a practical representation of the regrouping of Figure 65 with a clear 

correspondence between all the involved blocks. All begins on point A (on land), where the block 

labeled as BSM is inside macro-block highlighted in red in Figure 65, while the second BSM block 
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will be on board inside quantum satellite. The point B (on land) receives an element of the EPR pair 

and the classical bits of disambiguation emitted by the quantum satellite with which Bob applies a 

unitary transformation and thus reconstructs the teleported state. 

  

 

 
 

Figure 66 Detailed allocation of all elements of Figure 65. 

 

 

Figure 67 represents the same protocol of Figure 64 but on IBM platform, while Figure 68 shows the 

probability distribution for this experiment with the next result: q[4] = (84.78 % |0>, 15.22 % |1>) 

where the experiment parameters were: shots = 1024, seed = 7. 

 

 

 
 

Figure 67 Uncontrolled satellite post on IBM Q platform [79]. 

 

 
 

Figure 68 Probability distribution for the experiment of Figure 67. 

 

 

We can see an implementation of the controlled satellite post on Quirk platform in Figure 69. The 

only difference with the uncontrolled implementation of Figure 64, also on Quirk, is the replacement 

of the BSM blocks with the BSC blocks, with all that this entails, namely: instantaneity and greater 

accuracy of the teleported state. 
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Figure 69 Controlled satellite post on Quirk platform [78]. 

 

 

Figure 70 represents the satellite scheme of Figure 69. We can check the comparative simplicity of 

the controlled version of Figure 70 versus the uncontrolled version of Figure 66. The first thing that is 

evident is the absence of the classical radio channels as well as the unitary transformation at point B, 

in addition to the replacement of the BSM by the BSC at point A. 

 

 

 
 

Figure 70 Detailed allocation of all elements of Figure 69. 

 

 

The implementation of the controlled satellite post on IBM Q platform can be seen in Figure 71, with 

one quantum measurement instead of five like Figure 67 for the uncontrolled case. Figure 72 shows 

the probability distribution for this experiment with the next results: q[4] = (86 % |0>, 14 % |1>) which 

represents an excellent outcome for this experiment, much more accurate than the uncontrolled case. 

The experiment parameters were: shots = 1024, and seed = 7. 

 

 

 
 

Figure 71 Controlled satellite post on IBM Q platform [79]. 
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Figure 72 Probability distribution for the experiment of Figure 71. 

 

5.2. Teleportation of ERPs 

 

This protocol begins with the distribution of an EPR pair from a point called pivot (P). This pivot (P) 

is on the orange segment corresponding to the generation of the EPR pair, which can be seen on the 

left side of the Quirk implementation of Figure 73. Each of the elements of the EPR pair will be 

teleported by one of the two satellites. Said satellites will be located at an equidistant distance from the 

pivot (P) at opposite ends and will be responsible for teleporting the EPR pair to their two ground 

destinations, points (1) and (2), both on land, which make up the two ends of the communication link. 

Subsequently, the element of the EPR pair in point (1) and the qubit to be teleported in point (3) enter 

the BSM on the right of Figure 73 on the segment labeled as qubit teleporter, whereupon the 

teleportation process begins. At the other end of the link (also on the ground) two sets of unitary 

transformations reconstruct the teleported qubit. 

 

 

 
 

Figure 73 Uncontrolled teleportation of EPRs on Quirk platform. 
 

 

The main reason for this protocol is to halve the distribution time of the EPRs to try to make the most 

of the coherence time. It is a parallel and simultaneous procedure, however, Figure 73 does not do 

justice to the true protagonists of this protocol. Instead, Figure 74 shows that in this protocol there are 

actually five very well-defined actors, which are macro-blocks labeled as:  

 

- Alice on land (in red): this macro-block includes the qubit generation block (i.e., the qubit to be 

teleported), and the last BSM for the final qubit teleportation, 

- EPRs to be teleported (in green): it is simply a block for the generation of an EPR pair, which are 

distributed from land, 

- Quantum satellites (in blue): they are two, each with its own block of EPR pair generation, and 

BSM, and 

- Bob on land (in yellow): which includes two sets of unitary transformations for the reconstruction of 

the teleported state and the final measurement process. 

 

The reconfiguration of the layout which belongs to the controlled teleportation of EPRs on Quirk of 

Figure 74 can be understood better from Figure 75, where we can see: the pivot (P) on the north pole 

of Earth, both quantum satellites, and the points A (emitter) and B (receiver). The last unitary 

transformation at the point B receives the classical bits for disambiguation from Internet. Both 

quantum satellites contain their own EPR pair generation and BSM blocks. 
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Figure 74 Reconfiguration of the layout belongs to the uncontrolled teleportation of EPRs on Quirk. 

 

 

 
 

Figure 75 Detailed allocation of all elements of Figure 74. 

 

 

The uncontrolled teleportation of EPRs on IBM Q platform can be seen in Figure 76. It is an identical 

scheme to that of Figure 73 for the Quirk platform. Figure 77 shows the probability distribution for 

this experiment with the next result: q[4] = (83.19 % |0>, 16.80 % |1>), where the experiment 

parameters were: shots = 1024, seed = 7. The obtained results are clearly of inferior quality to those of 

Figures 67 and 68 for the case of uncontrolled satellite post, which is reasonable because in that 

experiment five quantum measurements were used, while in this experiment with teleportation of 

EPRs, as shown in Figure 76, we had to use seven. The increase in the quantum measurement number 

automatically increases decoherence [37, 38]. 

 

 

 
 

Figure 76 Uncontrolled teleportation of EPRs on IBM Q platform [79]. 
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Figure 77 Probability distribution for the experiment of Figure 76. 

 

 

Now, we present the controlled teleportation of EPRs protocol on Quirk platform, which can be seen 

in Figure 78. The only difference between the controlled version of Figure 78 and the uncontrolled 

version of Figure 73 is in the replacement of the three BSMs (two corresponding to the quantum 

satellites, and the last one on land held by Bob) with three BSCs. The coincidence between the qubit 

q[0] at the output of the four generation matrices of the qubit to be teleported in the upper-left corner 

of Figure 78 with q[6] in the lower-right corner of this figure, tells us of a perfect teleportation, 

though certainly, without considering decoherence. 

 

 

 
 

Figure 78 Controlled teleportation of EPRs on Quirk platform [78]. 

 

 

The detailed scheme about the satellite configuration of this protocol can be seen in Figure 79. The 

simplicity of this configuration compared with that of Figure 75, for the uncontrolled case, is 

remarkable. Besides, it is clearly visible, the absence of: the classical radio channels (in red) for the 

transmission of the classical bit of disambiguation, and the unitary transformations (in green), as well 

as the internet intervention. 

 

 

 

Figure 79 Detailed allocation of all elements of Figure 78. 
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Figure 80 presents this protocol implemented on IBM Q platform. Figure 81 shows the probability 

bars for this experiment with the next outcome: q[6] = (86% |0>+14% |1>), which represents an 

absolute coincidence with the prepared qubit by this platform.  

 

 

 
 

Figure 80 Controlled teleportation of EPRs on IBM Q platform [79]. 

 

 

 
 

Figure 81 Probability distribution for the experiment of Figure 80. 

 

 

Figure 82 shows us a version of the protocol of Figure 78 but with double pivot points (P) on Quirk, 

demonstrating the complete robustness of this configuration. We will have two pairs of EPR pairs to be 

 

 

 

Figure 82 Controlled teleportation of EPRs on Quirk platform with double pivot. 
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distributed from land (i.e., from both pivot points) and we will need a double number of quantum 

satellites to teleport such EPRs. The main advantage of this protocol consists of a division by 4 of the 

travel itinerary of said EPRs or multiply by 4 the range of the distribution of the EPRs and thus be able 

to obtain a better exploitation of the coherence time. Figure 82 shows a complete successful final 

teleportation, with q[0]left = q[12]right. Implementations on other platforms are equally successful. 

 

5.3. Hybridization 

 

As we mentioned at the beginning of Section 5, hybridization consists of merging the two techniques 

discussed above: satellite post and teleportation of EPRs. Figure 83 represents the uncontrolled 

hybridization on Quirk platform. The main difference between this layout and that one present in 

Figure 73 is the duplication in the number of satellites that teleport each element of the EPR pair 

which arises from the pivot point (P). In other words, each EPR is sequentially teleported by two 

quantum satellites instead of one, thus multiplying by 2 the range of said distribution. Comparing the 

qubit q[0] to be teleported on the left-up corner of Figure 83 with q[10] on the right-down corner of 

the same figure, we can see that the teleportation was completely successful. 

 

 

 
 

Figure 83 Uncontrolled hybridization on Quirk platform [78]. 

 

 

The uncontrolled hybridization on IBM Q platform [79] is presented in Figure 84. We can notice the 

absence of a figure with the probability distribution. Due to the huge number of bars of that figure, we 

will only give the final outcome: q[10] = (87.4% |0>+ 12.6% |1>). The presence of 11 quantum 

measurements explains the deterioration of the teleported qubit compared to the original value. The 

experiment parameters were: shots = 1024, seed = 7.  

 

Figure 85 shows us the controlled hybridization on Quirk platform. The main difference with the 

configuration of Figure 83 for the uncontrolled hybridization is the replacement of the BSM with 

BSC. The check point at the output of each BSC using density matrices tells us that the intermediate 

teleportations of the EPR pairs are developing perfectly. We could continue to add relay satellites for 

each element of the distributed pair and the result would still be satisfactory with a marked increase in 

the final teleportation range. Besides, the absence of quantum measurement and unitary 

transformations on Bob’s side will allow us to obtain greater accuracy in the outcomes and will greatly 

simplify the practical implementation of this protocol. 
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Figure 84 Uncontrolled hybridization on IBM Q platform [79]. 

 

 

 
 

Figure 85 Controlled hybridization on Quirk platform [78]. 

 

 

Finally, Figure 86 represents the controlled hybridization protocol on IBM Q platform, while Figure 

87 shows a very simple probability distribution for this experiment because there is only one quantum 

measurement. The obtained outcome is: q[10] = (86.7% |0>+13.3% |1>), which is obviously better 

than the outcome of Figure 84 for the uncontrolled protocol. Moreover, the experiment parameters 

were: shots = 1024, and seed = 7. 

 

Some essential elements used in every quantum repeater are the memories which are present in each 

BSM. We have ignored them so far because they are not part of the central axis treated incumbently in 

this work, however, their use in practice is necessary. 



68 

 

 
 

Figure 86 Controlled hybridization on IBM Q platform [79]. 

 

 

 
 

Figure 87 Probability distribution for the experiment of Figure 86. 

 

5.4. Complete security protocol 

 

Given that quantum internet uses teleportation as a fundamental tool of its toolbox and considering the 

need of teleportation for a redistribution of EPR pairs every time the process of reconstruction of the 

teleported state ends, the current quantum internet is only practical for security. Specifically, only keys 

are teleported. In fact, when in this context we speak of qubit to teleport, in reality we speak of the key 

to be distributed. This is more than evident, because if we wanted to use teleportation to disseminate 

messages instead of keys, the volume of information would be such that will require a distribution of 

EPR pairs for each qubit to teleport. This fact, by itself, would make quantum internet absolutely 

impractical. It is precisely in relation to what has been said that the three great challenges of the 

current quantum internet are: 

 

1. a dissemination of information without violating the No-Cloning theorem [85],  

2. a practical and efficient redistribution of EPR pairs each time a teleportation ends, and 

3. a longer coherence time. 

 

The three points complicate the performance of quantum internet within our planet, but the last two 

make it impossible to get quantum internet to Mars from Earth, although as we said before, until now. 

In fact, point 1 deserves further clarification. If we send by quantum internet a generic qubit, that is, a 

qubit with projections on the three axes of the Bloch’s sphere, in order to give it discriminance against 

other qubits, this will have pros and cons. The pros are that only one EPR pair must be prepared to 

teleport said qubit, while the cons are that it cannot be disseminated to more than one destination 

without violating the No-Cloning Theorem [85]. On the other hand, if we want to teleport words of 

CBS and thus replace, even in part (since in the most general case, the same discriminance of a generic 

qubit would only be obtained from an infinite number of CBS), to a generic qubit, the advantage is 
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that the No-Cloning theorem is not violated because of a multi-destination distribution. However, we 

must prepare an EPR pair for each CBS of the word to be transmitted, which buries the efficiency of 

the process as a whole. 

 

Therefore, we resign ourselves, at least for now, to the use of this fascinating tool, i.e., quantum 

internet, only as a surpassing version of the classical internet as far as security is concerned. For this 

reason, we present here a complete security protocol for quantum internet, gathering the pieces seen so 

far in this work, that is: 

 

a. Cl2Qu and Qu2Cl interfaces from Subsection 4.2 (Figures 47 and 48), 

b. Robust and controlled quantum teleportation from Subsection 4.1.6 (Figure 41), 

c. Controlled teleportation of classical information as an improved version of QKD, from Subsection 

4.3.1 (Figure 49), 

d. Quantum repeaters from Section 5, using robust and controlled quantum teleportation, and 

e. Entanglement virtualization for a more practical QKD from Subsection 4.3.3 (Figure 51). 

 

In other words, taking as a frame of reference Figure 51, that is, the item (e), we take a binary key 

(classical), and convert it to quantum key using the Cl2Qu interface of the item (a). We send it to the 

furthest destination possible, thanks to the quantum repeaters of item (d), which use the controlled 

teleportation of classical information technique of item (c), which in turn uses robust and controlled 

teleportations of item (b). Once the key is received, we convert it again to binary (classical) by means 

of a Qu2Cl interface of item (a). From that moment on, the virtualization of the entanglement gives 

perpetual continuity to the change of key process and transmission of encrypted information. 

 

The security procedure described above is the seed of a new quantum internet, which will be: 

 

I. more secure, by removing the classical channel, since in the traditional technique the hacker 

cannot get useful information, but can alter the classical bits that circulate through the channel 

also classical and thus making Bob receive wrong information, 

II. more robust, by removing most quantum measurements and by the simplicity of Eq.(99) versus 

Eq.(80), 

III. instantaneous, according to what we have seen in Section 2, 3, and 4, 

IV. more practical, since only the first EPR pair should be distributed, from then on the keys are 

reconstructed by the entanglement virtualization, and, 

 

consequently, quantum internet will have: 

 

V. best quantum repeaters. 

 

6.  Conclusions and future works 

 

Next, we will develop the conclusions and the proposal for future works that derive from this work. 

 

6.1. Conclusions 

 

From this work, we can draw several conclusions, however before listing them, we will regroup the 

blocks of the controlled quantum teleportation protocol of Figure 28 according to the upper part of 

Figure 88, which, as we can see, ends up becoming a large SWAP or big cross. As in treasure maps, 

the cross represents a key point. This point is of capital importance for the avatars, because for them 

the whole universe is a point and time is an instant. It is evident that at the exit of the great SWAP, we 

get again the same thing that we have introduced in its entrance. This is also a testimony to the 

reusability of the elements involved in the controlled protocol, which can be seen in the lower part of 

Figure 88, where the reusability can have different configurations, although the chain can be extended 

indefinitely with any of them, i.e.: a queue or a ring. However, as we have seen previously, reusability 

is not synonymous with simultaneity due to the action of the No-Cloning Theorem [85].   
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Figure 88 Upper part: the controlled quantum teleportation ends up in a big SWAP or cross. Lower 

part: the reusability of this protocol is evident in any configurations that involve it. 
 

 

Moreover, the implementations related to the controlled quantum teleportation protocol of Section 

3.2.2 (Figure 28) verify everything demonstrated in Section 2 regarding the avatars: 
 

1. there is not the slightest hint of an impediment for an instantaneous communication on an EPR 

channel for a procedure based on the control of the experiment instead of its measurement, 
 

2. no faster-than-light speed or superluminal signaling is required for: 

- an instantaneous communication between two entangled particles, 

- an instantaneous quantum teleportation, 

- a turtle to instantly travel a path of zero length, since, there is nothing more traversable than a  

  zero-length path, then for 

- every wormhole created from two entangled black holes will be traversable. 
 

3. a gap in this specialty was filled in the literature, which did not explain the instantaneous 

communication of nature during entanglement, alluding that the latter violated Special Relativity. 

In fact, not only this does not happen but in the light of this work, now we know that: 

- there is no contradiction between Special Relativity and Quantum Mechanics (Section 2), then  

- it is demonstrated that Quantum Mechanics is a complete theory, deactivating the EPR paradox 

[26], 

- behind-the-scenes there are elements that are reflections of the original entangled spins and that 

we call avatars, which, based on what was seen in Section 2, act as a hinge between Special 

Relativity and Quantum Mechanics, 

- the entanglement is a non-local phenomena between the original entangled spins, but local among 

its avatars. For the avatars everything is reduced to one point, in fact, it is a recurring theme that 

is repeated in everything they are involved in, and this again takes us to the upper part of Figure 

88. 
 

4. with the symbolic logic based on the Dirac’s notation, the avatars would have never been revealed 

and therefore we would continue to believe that there is a contradiction between the two main 

pillars of Physics: Special Relativity and Quantum Mechanics, and that the second one cannot 

explain entanglement without violating or at least contradicting the first one. 
 

5. we understand that any effort tending to compress data for a channel with the characteristics 

expressed in Section 2, that is, with an unlimited bandwidth is unnecessary, in virtue of what was 

demonstrated in Section 2 and its verification through the subsequent implementations of Sections 

3, 4 and 5, thanks to robust and controlled quantum teleportation, 
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6. that by becoming a hinge between Special Relativity and Quantum Mechanics the avatars are a first 

approximation to the Theory of Everything (TOE) [62]. 

 

Summing-up, the present work theoretically and experimentally explores what has been established by 

Section 2, which tries to reconcile Special Relativity with Quantum Mechanics and at the same time 

states that: some byproducts resulting from entanglement, called avatars, are located halfway between 

the entangled particles at a single intermediate point and are mutually local at that point, i.e., their 

locations overlap. Each entangled particle has its own avatar, which represents that entangled particle 

at midpoint. In fact, it is the avatars who actually communicate, given that since the distance between 

avatars is null, the channel of communication between them will also be. As obvious as it is, a 

superluminal signal is not needed to travel through a null path in a null time. Consequently, avatars act 

as a hinge that links both theories (Special Relativity and Quantum Mechanics) making the 

completeness of Quantum Mechanics clear. Moreover, a thorough analysis of the non-locality of this 

effect will be carried out while demonstrating that entanglement is an instantaneous phenomenon of 

infinite range, and that it does not require the use of a superluminal signaling for this purpose, i.e., 

entanglement does not violate local realism or causality. Finally, the theoretical and experimental 

verifications presented in Sections 3, 4 and 5 act as a notary of the validity of such new focus as well 

as the very existence of the avatars. 

 

On the other hand, we know that the result of the quantum measurement of one of two entangled 

particles is random, but the synchronization with the other entangled particle is instantaneous and 

deterministic. So, obviously nature is communicating instantaneously. The problem lies in the 

eventual control of that resource. The response of the literature later to the EPR paradox paper [26] to 

this topic has been: there may be such instantaneous communication for this non-local phenomenon, 

however, it cannot be used to send useful information. Clearly, this response represents a cold water 

cloth on an infected wound, that is, nothing cures, nothing resolves, because, it is not relevant whether 

man can or cannot take advantage of this resource. What is important here is to find out how it is that 

nature communicates instantaneously. EPR paradox is not opposed to the human use of the resource, 

but to the very existence of that instantaneous and deterministic communication as it collides head-on 

with Special Relativity. Control over the resource is a completely separate argument. But if nature can 

communicate instantaneously, then: why cannot man? In this work, we have seen that man can 

effectively take advantage of this resource with total control over it. 

 

Focusing now on Quantum Internet, and trying to answer the question in the title of this work, which 

is: is instantaneous quantum internet possible? The answer is: prima facie no, at least not for now, but 

not for the reasons stated in the literature [26, 35, 36], cited by the creators of the quantum 

teleportation in their paper [15], or remarked by Penrose in his book [109] (where, quanglement is 

entanglement), i.e.,  
 

“Not being capable directly of carrying information, quanglement does not respect the normal 

restrictions of relativistic causality.” ([109], p.636),  
 

but for the coherence time and the redistribution of a new EPR pair, that is, the need to redistribute an 

EPR pair each time the teleportation of a qubit ends in order to transport the next qubit, since all 

distribution is subject to the speed of light, i.e., it is not instantaneous.  

 

Deepening further what Penrose remarked in his book, let us consider the experiment of Figure 89 

which consists of a regrouping of the blocks of Figure 28 corresponding to controlled quantum 

teleportation. In the lower part of Figure 89, we see the generator block of the EPR pair. Each element 

of said pair takes opposite courses of a channel, which ipso facto is generated by the same distribution 

of the entangled elements. On the left of Figure 89, one of the elements of the EPR pair enters the Bell 

State Control (BSC) block, composed of the gates: CNOT, Hadamard’s (H) and qubit reset. The qubit 

to be teleported   also enters the same BSC block. So, as we have seen throughout this work, the 

capacity of entanglement to transport information directly and instantaneously allows us to obtain the 

qubit   on the right of Figure 89. 
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Figure 89 Experiment that contradicts what was remarked by Penrose ([109], p.636). 

 

 

The control action via two qubit reset gates at the output of qubits q[0] and q[1] of Figure 32 directly 

and instantly causes the qubit to be teleported to appear in Bob's hands on the right of Figure 89, i.e., 

in the thread of the qubit q[2] on the right of Figure 32. That is, entanglement is capable directly (and 

instantaneously) of carrying information, in fact, respecting the normal restrictions of relativistic 

causality, as demonstrated in Section 2, and contradicting what is remarked by Penrose ([109], p.636). 

It happens that Penrose's comment does not contemplate the control action that is the subject of the 

present work for entangled pairs and quantum teleportation. 

 

Therefore, quantum internet is instantaneous from a tactical point of view because controlled quantum 

teleportation is, however it is not yet strategically instantaneous. The problem is that the same thing 

that gives instantaneity in the tactical realm (i.e., the control action of qubit reset gate), takes away in 

the strategic one because to be able to teleport we have to kill the entanglement first, so as not to 

violate the No-Cloning Theorem, and thus everything has to start again, continuously. 
 

The problem of the redistribution of the EPR pairs is of such severity that in Subsection 4.3.3 (Figure 

51) desperate measures have been taken to keep the entanglement alive or to fictitiously extend the 

lifetime of the EPRs in the context of QKD even when it has actually ended. However, this technique 

represents a formidable and practical tool that only requires distributing the EPRs for the first and only 

time in this context, i.e., QKD. What else can we do? The excessive anxiety to solve this serious 

problem leads us to try to climb a tree which is still a simple seed. 

 

A solution to the controversial issue of redistribution of EPR pairs will reach all those protocols that 

base their operation on entanglement. It is obvious that alternatives to the Classical-to-Quantum 

interface of Subsection 4.2 and the controlled quantum teleportation of Subsection 3.2.2 that do not 

need to distribute an EPR pair for each qubit to be manipulated are required. We may conclude that a 

mechanism to reconstruct entanglement once the teleported qubit has been recovered is needed locally 

from Bob and Alice's side, simultaneously. Anyway, this is the great challenge ahead that quantum 

internet has. 

 

On the other hand, the distribution of the EPR pair can be interrupted by any factor that blocks the 

optical link, or any other means used for distribution, but once the distribution is established, nothing 

will interrupt the entanglement, since the avatars are all together at the same point, therefore, a link 

based entanglement does not suffer fading, vanishing, nothing interrupts it, it does not need antennas, 

or high power transmission systems. Also, it is important to mention that the entanglement is a mono-

gamous process [1-3]. Summing up, a link based on entanglement is then the epitome of communi-

cations making data compression and security unnecessary. Indeed, if we managed to solve the 

problem of the redistribution of the pairs EPRs and extend the coherence time, any security scheme 

such as QKD would be absolutely unnecessary compared to the intrinsic security of entanglement. 

 

Finally, it is incredible, and at the same time, impressive how the power of something that we cannot 

see has given rise to everything developed in this work, that is, the avatars. Maybe, that power has to 

do with the famous Antoine de Saint-Exupery quote [110]: 

 

“It is only with the heart that one can see rightly; what is essential is invisible to the eye”. 
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6.2. Future works 
 

It is up to companies like IBM or Rigetti to implement the qubit reset gate [|0>] on their QPU in 

coherence time. Whoever achieves it first, will dominate the world of quantum communications, in 

general, and quantum internet, in particular. 

 

It remains for us: 

- to try to solve the problem of the redistribution of EPR pairs every time a teleportation ends, 

- to increase the coherence time, 

- to develop a type of distribution of information that does not violate the No-Cloning Theorem, 

- to evaluate on a QPU which of the two versions of controlled quantum teleportation is more robust: 

Figure 28 or 41, and 

- to analyze more deeply if the avatars are some kind of non-local hidden variable. 
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