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Abstract— Screening is a method to improve the early
detection of colorectal cancer. Now, screening is based
on an immunochemical test that look for blood in faecal
samples, but image is the best modality to detect the
marker of colorectal cancer : polyps. In 2003 Wireless
Capsule Endoscopy was introduced and opened a way to
integrate automatic image processing to realize a screen-
ing tool. In parallel Convolutionnal Neural Networks
have demonstrated their high capacity to detect polyps in
many scientific studies, but fail to be integrable. In this
article we present our works to integrate CNN or image
processing based on a CNN inside a WCE to realize a
powerful screening tool.

I. INTRODUCTION

Colorectal cancer (CRC) is the second highest cause of
death by cancer worldwide with a mortality rate of 47.62%
corresponding to 880,792 deaths in 2018 [18], [1]. Conse-
quently it is a major health problem. 95% of CRC begin as
a growth on the inner lining of the colon or rectum called
as polyp [7] and it is treatable in 90% of the cases if it is
detected earlier before polyp become adenocarcinomas [2].
One of the key solutions recommended by the European
Code Against Cancer to cure or greatly improve outcomes
is early detection through screening of gastrointestinal (GI)
tract [21].

Today, image is the modality to analyze the colon and
find polyps. The colonoscopy is the tool for screening,
diagnosis and therapy in the gastrointestinal tract. However,
it is a painful examination, often traumatic and poorly
tolerated by patients. The colonoscopy is invasive and need
an anaesthesia, a specialist and a controlled environment.
Furthermore, the colonoscopy doesn’t allow the visibility of
all the regions near the colon. There exist other methods
as the colorectal tomography (CTC) that are non invasive
method, but it cannot detect polyps less than 1cm and they
expose the patient to a radiation exposure [12].

In many countries, the screening process starts with a test
that Fecal Occult Blood Test (FOBT) or a Fecal Immuno-
chemical Test (FIT). These tests are used to determine if
it is necessary to realize a colonoscopy. FOBT has a low
sensitivity of only 38% [3]. For the FIT test sensitivity varies,
a study showed a variation from 89% for a FIT calibrated to
detect less than 20 g/g of blood to 70% if it is calibrated to
detect 20 to 50 g/g of blood [14]. Decreasing the sensitivity
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of FIT test increase its specificity and reduce the number
of useless colonoscopies. Thus, it is prefered to increase the
specificity and decrease the sensitivity of the FIT test and
realize a periodic screening.

As we show there is a need for a screening tool with
a high sensitivity and a high specificity. In 2003 Paul
Swain and al. [18] introduced Wireless Capsule Endoscopy
(WCE), a simple pill that patient swallows and that transmits
images of the gastrointestinal tract via a Radio Frequency
communication through the body. More than 1.6 million
patients worldwide have used this technology for the small
bowel, esophagus and colon (more than 125,000 procedures
a year). The available WCEs for the colon [12], like the
PillCam Colon 2, has a length of 31 mm and diameter of
11 mm, a battery life of 10 hours, a resolution of 256x256
pixels and an image sampling rate around 2 to 4 frames per
second.

TABLE I
COMMERCIALLY AVAILABLE WCE FOR COLON [12]

Manufacturer PillCam PillCam MedTronics
‘ COLON ‘ COLON2 | (Given Imaging)
Size[mm](Length x diameter) 31x11 31x11 31x11
Battery [h] 10 10 10
Image Resolution[pixels] 256x256 256x256 256x256
Image Sampling rate [fps] 4 4-35 4 -35

Our idea is to integrate inside a WCE an intelligent image
processing that can detect a polyp. The question is what is
the best image processing ?

As in many domain Convolutional Neural Network (CNN)
demonstrate its capacity to detect polyp lesions.

In [15] a two section CNN is proposed, a downsampling
path that contain convolutional and max-pooling layers and a
upsampling path with convolutional and upsampling layers.
Auxiliary classifiers are injected to train the network to
reduce the problem of vanishing gradients and accelerate
the back-propagation of gradient flow. Multilevel contextual
features are classified in the last fully connected layer. They
have performed their experiments in a dataset with three
classes: Normal, Blood, Polyp and Ulcer-Erosion with 400,
50, 50 and 100 frames respectively extracted from five WCE
videos. The CNN has trained with the 50% of frames of each
class and the rest to evaluate the classification. Their CNN
obtains an average accuracy over 85%.

In [11], AlexNet model [13] pre-trained on the ILSVRC
2012 dataset [17] was used and modified to input patches
of size 96x96. Furthermore, the kernel size, of the two



first pooling layers is decreased from 3 to 2 and the last
pooling layer is removed to modify the output layer for two
outputs (polyp or non-polyp). They increased the number
of examples applying random mirroring, rotation, up- and
down-scaling, cropping, and brightness adjustment in the
original database. They use a sliding-window strategy to
determine the polyp presence or absence in a video sequence.
They evaluate their CNN performance in a dataset of 120
frames (60 with a polyp), the use 80 images (40 with a
polyp) to train and the rest to test, their experimentation has
shown an accuracy of 60%.

In [25], three CNNss trained at different image scales (x1,
x0.5, x0.25), the last fully connected layer is removed, the
outputs of the convolutional layer of each CNN are fed as
input to a single Multi Layer Perceptron (MLP) network that
is trained separately. The training was performed exclusively
on the CVC-CLINIC(Computer Vision Center/Universitat
Autonoma de Barcelona and Hospital Clinic from Barcelona,
Spain) database composed by 1200 WCE images achieving
an accurate classification until 90%.

In [22] a 3D CNN is used for polyp detection by
leveraging spatial-temporal information from colonoscopy
videos using a single output probability map. The 3D-CCN
is capable of learning more representative spatio-temporal
features from colonoscopy videos. They have evaluated their
method on the ASUMayo Clinic Polyp Database [4] of
MICCALI 2015 Challenge on Polyp Detection. Their 3D CNN
has shown a recall until 71% and a precision of 88%.

In [24] a novel regression-based CNN pipeline is presented
for polyp detection during colonoscopy. Their pipeline is
composed of 2 parts: the first part uses the ResYOLO
model pre-trained, with a large non-medical image database
and further fine-tuned with colonoscopy images, in the
second part, temporal information was incorporated via a
tracker named Efficient Convolution Operators (ECO) for
refining the detection results given by ResYOLO. They have
evaluated their CNN on 17,574 frames extracted from 18
endoscopic videos of the AsuMayoDB. their experimentation
has shown a precision of 88.6%, recall of 71.6%.

In [23] a rotation invariant and image similarity con-
strained Densely Connected Convolutional Network (RIIS-
DenseNet) model is proposed. Their rotation-invariant regu-
larization constraint is then introduced to explicitly enforce
learned features. Their method achieves an accuracy 95.62%
for polyp detection on a WCE dataset.

Despite CNN achieve very good performance on polyp
detection, all these methods are running on an external com-
puter and contribute to help the physician in his diagnosis,
but they are not useable for our purpose, because they do not
consider WCE constraint as real time execution, form factor
of the pill, energy consumption. In particular CNN methods
use a high number of synapses and neurons, more than 4
millions, that is not implantable in a 5x5 mm? chip inside a
pill.

How it is possible to use CNN such a powerful tool to
embed an adapted processing inside iWCE ?

The purpose of this article is to describe our work to

integrate CNN inside a WCE. We present our study based on
a Deep Learning algorithm, a Convolutional Neural Network
(CNN) to identify a more powerful image processing method,
a convolution kernel dedicated to polyp localization. We
propose a method to extract the convolution kernels from
a trained CNN. Then we evaluate the performance of this
method of the entire chain and finally us make a conclusion.

II. THE CNN

We first fine tuned a trained CNN, the GoogleNet [19],
to classify images in two classes : with polyps and without
polyp. The architecture of this CNN is shown in Figure 1.
The model we have chosen is the InceptionV3 proposed
by Google [19], this CNN was the winner of the 2014
ILSVRC Contest with less number of synapses and neurons
in comparison with Alexnet, VGGnet, Lenet or Resnet.

We adapt its last layer, the fully-connected layer, with
a structure with two outputs dedicated to determine the
presence of a polyp.

To train this network, we use a 11952 image database
divided into 10023 images with polyp and 1929 images
without polyp. These images are issued from 18 videos of en-
doscopic examinations of Hospital Clinic, Barcelona, Spain.
This dataset was used as a train dataset for EndoVisSub2017-
GIANA contest [4]. Each image is associated with a ground-
truth : a binary-image that indicates the position of the polyp
in the image.

We use 70% of the data to train our CNN and the
remaining 30% to test this performance. The result shows an
accuracy of more than 98%. Although we have achieved very
good accuracy, it is impossible to embed this convolutional
neural network with four million parameters into a capsule.

Two ways can be taken to find how it is possible to use
such a powerful tool to embed an adapted processing inside
the iWCE:

o Reduce the size of the network
o Use the CNN to find the best image processing before
the classification in our processing chain.

In our work we take the second direction : we analyze the
CNN to find the best image processing to localize polyps
before the classification. We propose a method to extract the
convolution kernels from a trained CNN.

III. PROPOSED METHOD

A CNN is a structure in which multiple layers of image
filters are connected in series. Each layer of an image
filter consists of several convolution kernels connecting two
adjacent layers of neurons. This structure is inspired by the
connection of human brain neurons. The output of each
neuron is a feature map. By analyzing these feature maps
we want to find valuable convolution kernels which help to
locate potential polyp areas.

The goal is to construct an image processing inspired from
CNN, that means we will train a CNN to classify the images
at first, then make a visual analysis of the result of each
kernel from the first layers to the still interpretable layers.



Fig. 1.

Still interpretable means that we can visualize in the feature
maps the result of the processing.

A. Analyzing the feature maps

To analyze the kernels we look at the output of each layer.
The Figure 2 shows an example of the input and the first
layer outputs of our network. We concentrate our analysis
for the 5 first layers that are still interpretable. In addition
the outputs of the first two layers will be more favorable to
their integration inside the iWCE because they require less
calculations. If we look the Figure 2, we see the original
image in its three components, red green blue, and the first
convolution layer of our network. Because there are too many
outputs for the first layer, we just show a part of them.
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Fig. 2. Firsts Layer of the Deep Learning

By looking feature map by feature map we have identified
a kernel that realizes an interesting processing, visible in the
Figure 3. After the processing by this kernel the area where
the polyp is located has been darkened. This means that this
kernel could be effective to locate polyps.

Fig. 3. Input image and the output of convolutional kernel number 13

The Googlenet CNN

In addition, to remove the background and the noise,
we added a sigmoid-like function f(z) = L after

1t _z—a
the output. We use this function only to demonstrate the
efficiency of the kernel, it will not be used in the final system.
We can see the result in the Figure 4, we take a = 60 and
b=128.

Fig. 4.

Input and first layer outputs

Now we have a complete filter that clearly shows the area
of the polyp. We used this filter to test several other pictures.
The results are visible in Figure 5 and validate the chosen
kernel.

B. Extracting Convolution Kernels and Building a Complete
Detection System

We have extracted the contents of this convolution kernel,
there is one kernel by color component and the matrix are
resumed in equations 1, 2 and 3.

0.05635 0.16901 0.08185

kreq = | 0.14792 0.28381 0.14082 (1)
0.10782 0.17279 0.12224
—0.11226 —0.17383 —0.08947
kgreen = | —0.20939 —0.30939 —0.20798 2)
—0.11434 —0.20847 —0.10023
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Fig. 5. a) original input image, b) feature map after the convolution kernel
processing and c) result after the sigmoid function processing

0.01974 0.06515 —0.00436
kpiwe = | 0.04877 0.05371 —0.00284 3)
0.01671 0.01576 —0.01776

In the next section, we include this Kernel to a processing
chain as a hybrid method to detect polyps. We consider the
output of this kernel as a color model.

IV. PROCESSING CHAIN AND RESULTS

Following, we give a short description of the whole chain
through three steps, see figure 6 :

1) ROI extraction step: in this step, we realize a median
noise filter on a color model image and an edge detec-
tion using standard Canny filter [6], after, we identify
the ROI as the image parts containing circular/elliptical
edges. We use Hough Transform algorithm [10] to
do so. We consider two color models: brightness
model and Convolutional Kernel model. The brightness
model that preserves the texture information, allows
an efficient texture analysis and has a good degree
of integration in a system on chip than an image
color. The Convolutional Kernel model, as a result of
applying one of three convolutional kernels on each
RGB color space, the addition of the outputs produce
this color model.

2) ROI description step: in this step we realize a
texture analysis of the ROI and extract 26 texture
and luminosity descriptors using co-occurrence matrix
algorithm [8].

3) ROI classification step: in the classification step we
construct a fuzzy-forest using fuzzy-trees to classify
each ROI, see [16] for details. An ROI containing
a polyp is labeled as classl and an ROI without
polyp is classified as class0. At image level, an image
containing at least one ROI of classl is classified as
classl otherwise is classified as class0.

The evaluation of these metrics was performed on two
annotated polyp datasets and is shown in table II. The first

ROI
extraction

description § classification

Fig. 6. Proposed system scheme of polyps detection.

dataset [20] is composed by 10 videos-colonoscopies that
display a unique polyp at multiple scales and from different
viewing angles, in total 5402 images of which 3857 with
polyp. The second dataset [4] is composed by 18 videos
of endoscopic examinations of Barcelona Hospital Clinic,
Spain for EndoVisSub2017-GIANA challenge, in total 11954
images of which 10025 with a polyp. Each image of both
datasets is associated with a ground-truth : a binary-image
that indicates the position of the polyp in the image.

We test each color model alone and the aggregation of
both. To evaluate this processing chain, we measure the
detection rate of the global chain at two levels: ROI level
and Image level.

Standard measures are employed:

e True Positive (TP): an ROI classified as classl that
contain a polyp or an image of classl that contain a
polyp.

o False Positive (FP): an ROI classified as class1 that not
contain a polyp or an image of classl that not contain
a polyp.

o True Negative (TN): an ROI classified as class0 that not
contain a polyp or an image of class0O that not contain
a polyp.

o False Negative (FN): an ROI classified as class0 or an
image of class0 that contain a polyp.

Using these measures, we compute the following aggregation
metrics:

e precision =TP/(TP + FP).

e recall=TP/(TP + FN).

TABLE 11

[ Color model [[ brightness model [ Convolutional Kernel model [[ both |

[ ROI-based |
Recall 29.1% 30.4% 29.7%
Specificity 90.6% 88.7% 89.9%

[ Image-based |
Recall 53.0% 45.3% 66.4%
Specificity 57.7% 59.4% 43.8%

We can notice that we obtain increasing from 53.0% to
66.4% in sensitivity when we aggregate the two color spaces.
If we compare to the sensitivity of the FOBT test we obtain
a higher sensitivity but with a lower specificity. Comparison
with the FIT test show a similar sensitivity, but a lower
specificity.

Armed with these positive conclusions that suggest the
ability to approach, or even exceed, the performance of
current immuno-chemical screening tests, we have initiated



a new path for integrating a CNN into a WCE. The idea
is to compress an existing CNN, such as GoogleNet. For
this we use a method called distillation. This technique,
whose feasibility was first shown by the team of [5],
which got on the resolution of eight problems, thanks to
a compressed network, on average, a thousand times smaller
and a thousand times faster, excellent results, losses due to
compression being negligible. In addition, the [9] team tested
this methodology on the MNIST database and achieved
good results. This work shows that it is possible for a
faster compressed network to be able to approximate the
function learned previously by a larger and slower network,
but intrinsically more efficient. With regard to the problem
of the endoscopic video capsule for the detection of polyps,
this approach is very promising to be able to integrate a
convolutional neural network, smaller and faster than the
networks of neurons of the state of the art.

V. CONCLUSION

Deep Learning is a powerful tool, but cannot be integrated
in an iWCE. We have presented here an analysis of a CNN
that identify specific kernel to realize the extraction feature
of a classification chain. We have identified a kernel in the
first layer of the CNN that are adapted to detect a polyp.

The goal of this work is to use a CNN to identify a
powerful processing that satisfies embedding requirements
of a WCE.

The next step of our work is first identify more complex
Kernels in superior layers and analyze their integrability and
second use distillation method to compress a powerfull CNN
and integrate it inside a WCE.
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