Stochastic reduced order model for real-time unsteady flow estimation
Valentin Resseguier, Matheus Ladvig, Agustin Picard, Etienne Mémin, Reda Bouaida, Bertrand Chapron

To cite this version:

HAL Id: hal-02160160
https://hal.archives-ouvertes.fr/hal-02160160
Submitted on 19 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
STOCHASTIC REDUCED ORDER MODEL FOR REAL-TIME UNSTEADY FLOW ESTIMATION

Valentin Resseguier,
Matheus Ladvig, Agustin M Picard
Etienne Mémin, Reda Bouaida, Bertrand Chapron
1. Context
2. Physics + data = reduced order model (ROM)
3. Simulation + measurements = data assimilation
4. Results
PART I
CONTEXT
CEN «Simulation» (~70 people)

R&D and engineering

Expertise:
- Radar, optronics, sonar
- Geophysical fluid dyn.
- Mechanical and thermal

Business:
- Scientific softwares
- Simulations, HPC
- VR & AR

Lab (~15 people)

Research, R&T, R&D

Expertise:
- Geophysical fluid dyn.
- Signal, data assimilation
- Machine Learning
- Multi-agents systems
- Drones

Other Business Units
~ 2400 people
BLADE LIFT CONTROL

Desired blade lift → Controller

- Blade pitch
- Fluidic activators
- ...

Wind Turbine blade

Wind fluctuations → Damages

Variable blade lift
OBSERVER & CONTROL

Estimation and prediction:
- Flow
- Lift
- ...

Simple model

Controller
- Blade pitch
- Fluidic activators
- ...

Observer

Simple model

Wind turbine blade

Incomplete measurements:
- TrimControl
- LIDAR
- ...

Which simple model?
How to combine model & measurements?
PART II

PHYSICS + DATA

= REDUCED ORDER MODEL
Simulations with “physical” approximations

CFD (RANS, LES, …)

Semi-analytic formula

“Exact” physical equations

TRADEOFF ACCURACY / RAPIDITY

Rapidity

Accuracy & Robustness

Intrusive reduced order model (ROM)

Need data

Data-driven

Interpolation, Kriging

Machine / Deep Learning
REduced Order Model (ROM)

Solution of an PDE with the form:

\[v(x, t, \alpha) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x) \gamma_i(t) \]

<table>
<thead>
<tr>
<th></th>
<th>Full space</th>
<th>Reduced space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution coordinates</td>
<td>(v_q(x_i, t)) (q_i)</td>
<td>((b_i(t))_i)</td>
</tr>
<tr>
<td>Dimension</td>
<td>(M \times d \sim 10^7)</td>
<td>(n \sim 10 - 100)</td>
</tr>
</tbody>
</table>
POD (PROPER ORTHOGONAL DECOMPOSITION)

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:
 - Off-line simulations
 - Snapshots \(\left(v(x, t_i) \right) \)
 - PCA
 - Spatial modes \(\left(\phi_i(x) \right) \)

- Approximation:
 \[
v(x, t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x)
\]

- Projection of the “physics” onto the spatial modes:
 - \(\int_{\Omega} dx \, \phi_i(x) \cdot (\text{Physical equation} \text{ (e.g. Navier-Stokes)}) \)
 - ROM for very fast simulation of temporal modes
PART III

SIMULATION + MEASUREMENTS = DATA ASSIMILATION
COMBINING SIMULATIONS AND MEASUREMENTS

Numerical Simulation (ROM) → erroneous

Data assimilation (particle filtering)

On-line measurements
→ incomplete
→ possibly noisy

Need for uncertainty / errors quantification → Random dynamics

More accurate estimation globally in space

3 m/s⁻¹

5 m/s⁻¹
LOCATION UNCERTAINTY MODELS (LUM)

\[v = \sum_{i=0}^{n} b_i \phi_i + \text{Residual} \]

- Randomized Navier-Stokes model
 - Good closure
 - Good model error quantification for data assimilation

References:
- LUM: Memin, 2014
 - Resseguier et al. 2017 a, b, c, d
 - Cai et al. 2017
 - Chapron et al. 2018
 - Yang & Memin 2019
- SALT: Holm, 2015
 - Holm and Tyranowski, 2016
 - Arnaudon et al. 2017
 - Crisan et al., 2017
 - Gay-Balmaz & Holm 2017
 - Cotter and al. 2018 a, b
 - Cotter and al. 2019

Resolved modes
- Assumed time-uncorrelated

SALT
- Crisan et al., 2017
- Gay-Balmaz & Holm 2017
- Cotter and al. 2018 a, b
- Cotter and al. 2019
SUMMARY

Off-line : Building ROM
- Physics (Navier-Stokes)
- Randomized Physics (LUM)
- DNS code
- Data
- Stochastic ROM

On-line : Simulation & data assimilation
- Measurements
- Data assimilation (particle filtering)
- Temporal modes b_i
- Flow $v = \sum_{i=0}^{n} b_i \phi_i$

Stochastic ROM
PART IV
RESULTS :
FAST OBSERVER OF THE FLOW
1ST RESULTS: WAKE AT RE 100

Reference
(DNS)
10^4 degrees of freedom

Our method
(Red-LUM-based data-assimilation)
6 degrees of freedom

Reduced order models with $n = 6$
and 2dB-SNR obs. assimilated every 5 sec

Theoretical bound
(Optimal from 6-d.o.f. linear decomposition)
6 degrees of freedom

Benchmark
(POD-ROM (with eddy viscosity) + init. by obs.)
6 degrees of freedom
1ST RESULTS: WAKE AT RE 300

Reduced order models with $n = 6$ and 2dB-SNR obs. assimilated every 5 sec

Reference (DNS) 10^7 degrees of freedom

Our method (Red-LUM-based data-assimilation) 6 degrees of freedom

Theoretical bound (optimal from 6-d.o.f. linear decomposition) 6 degrees of freedom

Benchmark (POD-ROM (with eddy viscosity) + init. by obs.) 6 degrees of freedom
CONCLUSION
CONCLUSION

- Reduced order model (ROM) : for very fast and robust CFD (10⁷ → 6 degrees of freedom.)
 - Combine data & physics (built off-line)
 - Closure problem handled by LUM
- Data assimilation : to correct the fast simulation on-line by incomplete/noisy measurements
 - Model error quantification handled by LUM
- First results
 - Optimal unsteady flow estimation/prediction in the whole spatial domain (large-scale structures)
 - Robust far outside the learning period

NEXT STEPS

- Real measurements (PIV, TrimControl, ...)
- Increasing the degrees of freedom (n)
- Increasing Reynolds (reduced DNS → reduced LES)
- Blade geometry
LUM: ADVECTION OF TRACER Θ

$$\nabla \cdot \left(\frac{1}{2} a \nabla \Theta \right) = 0$$

$$\nabla \cdot (\sigma \dot{B})$$

$$v = w + \sigma \dot{B}$$

Drift correction

Multiplicative random forcing

Balanced energy exchanges
GALERKIN PROJECTION GIVES SDES FOR RESOLVED MODES

\[\int_{\Omega} \phi_i \cdot (\text{stochastic Navier-Stokes}) \]

\[db_i = F_i(b)dt + \left(\alpha_i \cdot dB_t \right)^T b + \left(\theta_i \cdot dB_t \right) \]

multiplicative noise
additive noise

Correlations to estimate

2\text{nd} order polynomial: coefficients given by physics,

\[\left(\phi_j \right)_j \quad a(x, x) = \frac{1}{t} < (\sigma(x)B)_{\text{obs}}, (\sigma(x)B)_{\text{obs}}^T >_t \]