Stochastic reduced order model for real-time unsteady flow estimation
Valentin Resseguier, Matheus Ladvig, Agustin Picard, Etienne Mémin, Reda Bouaida, Bertrand Chapron

To cite this version:

HAL Id: hal-02160160
https://hal.archives-ouvertes.fr/hal-02160160
Submitted on 19 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
STOCHASTIC REDUCED ORDER MODEL FOR REAL-TIME UNSTEADY FLOW ESTIMATION

Valentin Resseguier,
Matheus Ladvig, Agustin M Picard
Etienne Mémin, Reda Bouaida, Bertrand Chapron
1. Context
2. Physics + data = reduced order model (ROM)
3. Simulation + measurements = data assimilation
4. Results
PART I
CONTEXT
Lab (~ 15 peoples)

Research, R&T, R&D

Expertise:
- Geophysical fluid dyn.
- Signal, data assimilation
- Machine Learning
- Multi-agents systems
- Drones

CEN « Simulation » (~ 70 people)

R&D and engineering

Expertise:
- Radar, optronics, sonar
- Geophysical fluid dyn.
- Mechanical and thermal

Business:
- Scientific softwares
- Simulations, HPC
- VR & AR

Other Business Units ~ 2400 people
BLADE LIFT CONTROL

- Desired blade lift
- Controller
- Wind Turbine blade
- Wind fluctuations
- Damages
- Blade pitch
- Fluidic activators
- ...
- Variable blade lift

Desired blade lift + Controller Wind Turbine blade Wind fluctuations Damages
Variable blade lift

\[+ \rightarrow \text{Controller} \rightarrow \text{Wind Turbine blade} \rightarrow \text{Wind fluctuations} \rightarrow \text{Damages} \rightarrow \text{Variable blade lift} \rightarrow \text{Controller} \rightarrow + \]
OBSERVEUR & CONTROL

Estimation and prediction:
- Flow
- Lift
- ...

Simple model

Controller
- Blade pitch
- Fluidic activators
- ...

Incomplete measurements:
- TrimControl
- LIDAR
- ...

Wind turbine blade
PART II

PHYSICS + DATA

= REDUCED ORDER MODEL
Simulations with “physical” approximations

CFD (RANS, LES, …)

Semi-analytic formula

“Exact” physical equations

Simulations with “physical” approximations

Intrusive reduced order model (ROM)

Data-driven

Interpolation, Kriging

Machine / Deep Learning

TRADEOFF ACCURACY / RAPIDITY

Accuracy & Robustness

Rapidity

Need data
REDUCED ORDER MODEL (ROM)

Solution of an PDE with the form:

\[v(x, t, \alpha) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x) \gamma_i(t) \]

<table>
<thead>
<tr>
<th>Full space</th>
<th>Reduced space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution coordinates</td>
<td>(v_q(x_i, t))q_i)</td>
</tr>
<tr>
<td>Dimension</td>
<td>(M \times d \sim 10^7)</td>
</tr>
</tbody>
</table>
POD (PROPER ORTHOGONAL DECOMPOSITION)

- Principal Component Analysis (PCA) on a dataset to reduce the dimensionality:

![Diagram showing the process of POD](image)

- Approximation:

\[v(x, t) \approx \sum_{i=0}^{n} b_i(t) \phi_i(x) \]

- Projection of the “physics” onto the spatial modes:

\[\int_{\Omega} dx \phi_i(x) \cdot (\text{Physical equation} (\text{e.g. Navier-Stokes})) \]

\[\rightarrow \text{ROM for very fast simulation of temporal modes} \]
PART III

SIMULATION + MEASUREMENTS = DATA ASSIMILATION
COMBINING SIMULATIONS AND MEASUREMENTS

Numerical Simulation (ROM) → erroneous

Data assimilation (particle filtering)

On-line measurements
- incomplete
- possibly noisy

Need for uncertainty / errors quantification → Random dynamics

More accurate estimation globally in space

Velocity

3 m.s\(^{-1}\) 5 m.s\(^{-1}\)
LOCATED UNCERTAINTY MODELS (LUM)

\[\nu = \sum_{i=0}^{n} b_i \phi_i + \text{Residual} \]

Assumed time-uncorrelated

Randomized Navier-Stokes model
- Good closure
- Good model error quantification for data assimilation

Randomized ROM

References:
- Memin, 2014
- Ressiguier et al. 2017 a, b, c, d
- Cai et al. 2017
- Chapron et al. 2018
- Yang & Memin 2019
- Holm, 2015
- Holm and Tyranowski, 2016
- Arnaudon et al. 2017
- Crisan et al., 2017
- Gay-Balmaz & Holm 2017
- Cotter and al. 2018 a, b
- Cotter and al. 2019

LUM
- Mikulevicius & Rozovskii, 2004
- Flandoli, 2011

SALT
- Cotter and al. 2017
- Resseguier et al. 2019 a, b
SUMMARY

Off-line: Building ROM

Physics (Navier-Stokes) → DNS code → Data → Randomized Physics (LUM) → Stochastic ROM

On-line: Simulation & data assimilation

Data assimilation (particle filtering) → Measurements → Temporal modes b_i → Flow $v = \sum_{i=0}^{n} b_i \phi_i$
PART IV
RESULTS :
FAST OBSERVER OF THE FLOW
1ST RESULTS: WAKE AT RE 100

Reference (DNS)
10^4 degrees of freedom

Our method (Red-LUM-based data-assimilation)
6 degrees of freedom

Theoretical bound (Optimal from 6-d.o.f. linear decomposition)
6 degrees of freedom

Benchmark (POD-ROM (with eddy viscosity) + init. by obs.)
6 degrees of freedom

Reduced order models with $n = 6$ and 2dB-SNR obs. assimilated every 5 sec
1ST RESULTS: WAKE AT RE 300

Reduction order models with $n = 6$ and 2dB-SNR obs. assimilated every 5 sec

Reference (DNS) 10^7 degrees of freedom

Our method (Red-LUM-based data-assimilation) 6 degrees of freedom

Theoretical bound (optimal from 6-d.o.f. linear decomposition) 6 degrees of freedom

Benchmark (POD-ROM (with eddy viscosity) + init. by obs.) 6 degrees of freedom
CONCLUSION
CONCLUSION

- Reduced order model (ROM): for very fast and robust CFD ($10^7 \rightarrow 6$ degrees of freedom.)
 - Combine data & physics (built off-line)
 - Closure problem handled by LUM
- Data assimilation: to correct the fast simulation on-line by incomplete/noisy measurements
 - Model error quantification handled by LUM
- First results
 - Optimal unsteady flow estimation/prediction in the whole spatial domain (large-scale structures)
 - Robust far outside the learning period

NEXT STEPS

- Real measurements (PIV, TrimControl, ...)
- Increasing the degrees of freedom (n)
- Increasing Reynolds (reduced DNS \rightarrow reduced LES)
- Blade geometry
LUM: ADVECTION OF TRACER Θ

\[
\frac{\partial \Theta}{\partial t} + (w^* \cdot \nabla \Theta + \Theta \cdot \dot{B} \cdot \nabla \Theta) = 0
\]

\[
v = w + \sigma \dot{B}
\]

- Drift correction
- Multiplicative random forcing
- Balanced energy exchanges
GALERKIN PROJECTION GIVES SDES FOR RESOLVED MODES

\[
\int_{\Omega} \phi_i \cdot \text{(stochastic Navier-Stokes)}
\]

\[
\begin{align*}
\frac{db_i}{dt} &= F_i(b) + \langle \alpha, dB_t \rangle^T b + \langle \theta, dB_t \rangle \\
&= \begin{bmatrix} n \times M \end{bmatrix} \begin{bmatrix} M \times 1 \end{bmatrix} \begin{bmatrix} n \times 1 \end{bmatrix} \begin{bmatrix} 1 \times M \end{bmatrix} \begin{bmatrix} M \times 1 \end{bmatrix}
\end{align*}
\]

Correlations to estimate

2nd order polynomial:
coefficients given by physics,

and \[
\begin{align*}
\langle \phi_j, \phi_i \rangle &= \frac{1}{t} < (\sigma(x)B)_{obs}, (\sigma(x)B)_{obs}^T > \\
\end{align*}
\]