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NULL CONTROLLABILITY OF THE STRUCTURALLY DAMPED
WAVE EQUATION ON THE TWO-DIMENSIONAL TORUS

PATRICIO GUZMÁN AND LIONEL ROSIER

ABSTRACT. We investigate the null controllability of the wave equation with a Kelvin-Voigt damping
on the two-dimensional torus T2. We consider a distributed control supported in a moving domain ω(t)
with a uniform motion at a constant velocity c = (1,ζ ). The results we obtain depend strongly on the
topological features of the geodesics of T2 with constant velocity c. When ζ ∈ Q, writing ζ = p/q with
p,q relatively prime, we prove that the null controllability holds if roughly the diameter of ω(0) is larger
than 1/p and if the control time is larger than q. We prove also that for almost every ζ ∈ R+ \Q, and also
for some particular values including e.g. ζ = e, the null controllability holds for any choice of ω(0) and
for a sufficiently large control time. The proofs rely on a delicate construction of the weight function in a
Carleman estimate which gets rid of a topogical assumption on the control region often encountered in the
literature. Diophantine approximations are also needed when ζ is irrationnal.

2010 Mathematics Subject Classification: 35Q74, 93B05, 93B07, 93C20.
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1. INTRODUCTION

We are here concerned with the null controllability of a classical model of viscoelasticity, namely the
wave equation with both viscous Kelvin-Voigt damping and frictional damping. We consider a distributed
control supported in a moving domain ω(t). The system reads

ytt −∆y−ν∆yt +b(x)yt = 1ω(t)(x)u(x, t), x ∈Ω, t ∈ (0,T ), (1.1)

y = 0, x ∈ ∂Ω, t ∈ (0,T ), (1.2)
y(x,0) = y0(x), yt(x,0) = y1(x), x ∈Ω. (1.3)

Here, Ω is a smooth, bounded, open set in RN (where N ≥ 1), ν > 0 is a viscous constant, b ∈ L∞(Ω) is a
function determining the frictional damping, and u = u(x, t) stands for the control input. It is well known
that system (1.1)-(1.3) fails to be null controllable when ω(t)≡ω is a fixed open set in Ω with Ω\ω 6= /0.
This fact, noticed in [14] for N = 1 (for boundary controls) is due to the existence of a limit point in the
spectrum of the adjoint system. The same obstruction occurs for the Benjamin-Bona-Mahony (BBM)
equation (see [12, 16]):

yt − ytxx + yx + yyx = 1ω(x)u(x, t). (1.4)

To overcome this problem, L. Rosier and B.-Y. Zhang suggested in [16] to replace the fixed control region
ω in (1.4) by a moving control region ω(t) that is allowed to visit the whole domain. More precisely,
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2 GUZMÁN AND ROSIER

they proved that the system

yt − ytxx + yx + yyx = a(x− ct)u(x, t), x ∈ T, t ∈ (0,T ), (1.5)
y(x,0) = y0(x), x ∈ T, (1.6)

where T = R/Z is the one-dimensional torus and a ∈ C∞(T) is a nonnegative and not identically null
function, is null controllable in time T > 1/|c|. Using the same kind of distributed control a(x−ct)u(x, t),
P. Martin, L. Rosier and P. Rouchon proved in [11] that the wave equation with structural damping

ytt − yxx− ytxx = a(x− ct)u(x, t), x ∈ T, (1.7)

is null controllable in time T > 1/|c|.
The case of an open set Ω in RN was considered by F. W. Chaves-Silva, L. Rosier and E. Zuazua

in [4]. The null controllability of (1.1)-(1.3) was derived when ω(t) = X(ω0, t,0), where X is the flow
generated by some vector field f ∈C([0,T ],W 2,∞(RN ,RN)); that is, X solves{

∂X
∂ t (x, t, t0) = f (X(x, t, t0), t),

X(x, t0, t0) = x.

For instance, with the choice f (x, t) = γ̇(t) for some γ ∈C1([0,T ],RN), we obtain

X(x, t, t0) = x+ γ(t)− γ(t0).

Actually, the results in [4] (and also those in [5]) were derived under the assumption that there exist a
bounded, smooth, open set ω0 ⊂RN , a curve Γ∈C∞([0,T ],RN), and two times t1, t2 with 0≤ t1 ≤ t2 ≤ T
such that

Γ(t) ∈ X(ω0, t,0)∩Ω ∀t ∈ [0,T ]; (1.8)

Ω⊂
⋃

t∈[0,T ]
X(ω0, t,0) = {X(x, t,0); x ∈ ω0, t ∈ [0,T ]}; (1.9)

Ω\X(ω0, t,0) is nonempty and connected for t ∈ [0, t1]∪ [t2,T ]; (1.10)

Ω\X(ω0, t,0) has two (nonempty) connected components for t ∈ (t1, t2); (1.11)
∀γ ∈C([0,T ],Ω), ∃t ∈ [0,T ], γ(t) ∈ X(ω0, t,0). (1.12)

More recently, F. W. Chavez Silva , X. Zhang and E. Zuazua investigated in [5] the null controllability
of a heat equation with memory by using a moving control, namely the system

yt −∆y+
∫ t

0
M(t− s)y(s)ds = 1ω(t)(x)u(x, t), x ∈Ω, t ∈ (0,T ), (1.13)

y = 0, x ∈ ∂Ω, t ∈ (0,T ), (1.14)
y(x,0) = 0, x ∈Ω. (1.15)

Assuming that (1.8)-(1.12) hold, that M ∈ L1(0,T ) and picking an open set ω with ω0 ⊂ ω , they proved
that system (1.13)-(1.15) is null controllable in time T by taking ω(t) := X(ω, t,0).

It would be desirable to obtain the null controllability of (1.1)-(1.3) assuming only (1.9), but such a
result (if true) is still not available in the literature. It is quite obvious that the conditions (1.10) and
(1.11) are not consequences of (1.9). On the other hand, it was noticed in [4] that (1.8) and (1.12) are
not implied by (1.9). The most conservative condition seems to be (1.11), for the natural situation when
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a small ball ω(t) = B(γ(t),ε) visits the whole domain Ω (with ε � 1 so that (1.11) fails) is not covered
by the theory developed in [4, 5].

The aim of the paper is to obtain almost sharp results, as far as the control region is concerned, for the
null controllability of the wave equation with both Kelvin-Voigt and frictional damping. We shall focus
on the case of the simple domain Ω = (0,1)N with periodic boundary conditions (i.e. we shall assume
that x ∈ TN = RN/ZN), and we take for the flow X a uniform translation corresponding to f (x, t) = c
(c ∈ RN being a constant vector), i.e.

X(x, t, t0) = x+(t− t0)c.

Even if our results could be stated in any dimension N ≥ 1, we shall restrict ourselves to the dimension
N = 2, for the sake of simplicity. We may, without loss of generality, assume that the viscous constant is
ν = 1.

We are thus concerned with the null controllability of the system

ytt −∆y−∆yt +b(x)yt = 1ω(t)(x)u(x, t), x ∈ T2, t ∈ (0,T ), (1.16)

y(x, .) = y0(x), yt(x,0) = y1(x), x ∈ T2. (1.17)

We shall assume that
ω(t) = ω + tc, t ∈ R, (1.18)

where c = (c1,c2) 6= (0,0) is a constant velocity and ω ⊂ T2 is any open set with ω0 ⊂ ω , ω0 being a
nonempty open set. Without loss of generality, we can assume that

(0,0) ∈ ω0, (1.19)
c = (1,ζ ), (1.20)

where ζ ∈ R+. We shall assume throughout that

∃T > 0, T2 =
⋃

t∈[0,T ]
ω(t). (1.21)

We shall denote by π the projection from R2 onto T2, defined as π(x) = x+Z2 for all x ∈ R2.
Our aim is the derivation of null controllability results for (1.16)-(1.17) with ω(t) as in (1.18), that

are sharp as far as the geometry of ω0 is concerned. We shall investigate the three possible cases: (i)
c = (1,0); (ii) c = (1,ζ ) with ζ ∈Q∗+; (ii) c = (1,ζ ) with ζ ∈ R+ \Q.

Let us state the main results in this paper.

(i) Assume that c = (1,0). Note that the condition (1.21) yields

{x2 ∈ T; ∃x1 ∈ T, (x1,x2) ∈ ω0}= T.
In other words, the projection along the x2-axis of the control region at t = 0 should be the whole domain
T. We shall see that, for an open set ω0 which is roughly delimited by two curves x1 = ρi(x2), i = 1,2,
this condition is also sufficient. (See Figure 1.)

The first result is this paper is a null controllability result for (1.16)-(1.17) when c = (1,0).

Theorem 1.1. Assume that c = (1,0). Assume given two functions ρ1,ρ2 ∈C([0,1],R) such that ρi(0) =
ρi(1) for i = 1,2, and 0 < ρ1(x2)< ρ2(x2)< 1 for x2 ∈ [0,1], and let

ω0 = π{x = (x1,x2) ∈ [0,1]2; ρ1(x2)< x1 < ρ2(x2)}.
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FIGURE 1. The shape of ω0 when c = (1,0).

Pick any time T > 1−minx2∈[0,1] ρ2(x2)+maxx2∈[0,1] ρ1(x2) Let ω be any open set in T2 such that ω0⊂ω ,
and let (ω(t))t∈[0,T ] be as in (1.18). Then for any (y0,y1) ∈ H2(T2)× L2(T2) there exists a control
u ∈ L2(0,T,L2(T2)) such that the solution y of (1.16)-(1.17) satisfies y(.,T ) = yt(.,T ) = 0.

Note that the control time is sharp when the functions ρ1 and ρ2 assume constant values, for we get
the condition T > 1− (ρ2−ρ1).

(ii) Assume now that c = (1, p
q ) with

p,q ∈ N∗, p and q being relatively prime. (1.22)

Then it is well known that the curve x→ π(ct) is q-periodic (hence closed), and that its image π{ct; t ∈
0,q]} is homeomorphic to a 1-sphere (i.e. a circle). It is compact and not dense in T2. (See Figure 2.)

It is expected that the extension of ω0 along the transversal variable x1 should be sufficiently large
for (1.16)-(1.17) to be null controllable. A precise statement of this claim is given in the following
proposition.

Proposition 1.1. Assume that c = (1, p
q ) with p and q as in (1.22). Let L and ε be positive numbers such

that the set
ω0 = π

(
[0,L]×{0}+B((0,0),ε)

)
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FIGURE 2. The shape of ω0 when c = (1, p/q) for (p,q) = (4,1).

satisfies (1.21) with ω(t) given by (1.18) . Then

L≥ 1−2
√

p2 +q2 ε−πε2

p+2ε
· (1.23)

In particular, L≥ 1
p +O(ε) as ε → 0+.

Thus, the extension of ω0 along the x1-variable should be at least of order 1/p. Conversely, we shall
prove that under a similar condition the null controllability of (1.16)-(1.17) in large time can be derived.
This is the content of the following theorem, which is the first main result in this paper.

Theorem 1.2. Assume that c = (1, p
q ) where p and q are as in (1.22). Assume that ω0 ⊂ T2 is an open

set with

π([0,
1
p
]×{0})⊂ ω0.

Let ω be any open set in T2 such that ω0 ⊂ ω , and let (ω(t))t∈[0,T ] be as in (1.18). Pick any T > q. Then
for any (y0,y1) ∈H2(T2)×L2(T2), there exists a control u ∈ L2(0,T,L2(T2)) such that the solution y of
(1.16)-(1.17) satisfies y(.,T ) = yt(.,T ) = 0.

Remark 1.1. (1) Theorem 1.2 is sharp as far as both the control domain and the time control are
concerned. For the control domain, this follows from Proposition 1.1, and for the time control,
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this follows from the observation that

π{s(1
p
,1)+ t(1,

p
q
); s ∈ [0,1], t ∈ [0,T ]}= T2 ⇐⇒ T ≥ q.

(2) Theorem 1.2 applies when ω0 = B(0,r) for r > (2p)−1 (the position of the center of the ball
being irrelevant).

(iii) Assume that c= (1,ζ ) with ζ ∈R+\Q. Then it is well known that the curve t→ π(tc) is one-to-one
on R, and that its image {π(tc); t ∈ R} is dense in T2. It is thus natural to expect that for any nonempty
open set ω0 ⊂ T2, the set

ω0 +[0,T ]c = {x+ tc; x ∈ ω0, t ∈ [0,T ]}
covers T2 if the control time T > 0 is large enough. (See Figure 3.)

FIGURE 3. The case c = (1,ζ ) with ζ ∈ R+ \Q.

The following proposition shows that it is indeed the case.

Proposition 1.2. If c = (1,ζ ) with ζ ∈ R+ \Q, then for any nonempty open set ω0 ⊂ T2, there exists
some T > 0 such that

ω0 +[0,T ]c = T2. (1.24)

The above proposition suggests that the control system (1.16)-(1.17) may be null controllable for any
control region but in large time. Such a result can be established for almost every ζ ∈ R+ \Q. To state
it, we need to introduce a class of irrational numbers that can be approximated by rational numbers with
an error less than δ/q2.
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Definition 1.1. For any δ > 0, let Iδ denote the set of numbers ζ ∈R+ \Q such that for all A > 0, there
exists a pair (p,q) as in (1.22) with q≥ A and∣∣∣∣ζ − p

q

∣∣∣∣≤ δ

q2 · (1.25)

It is well known that I1/
√

5 =R+ \Q, while (
√

5−1)/2 6∈ Iδ for δ < 1/
√

5 (see e.g. [9, Theorem 193
and Theorem 194]). Furthermore, it is known that (R+ \Q) \ Iδ is of measure zero for any δ > 0 (see
e.g. [9, Theorem 196]).

The following result is the second main result in this paper.

Theorem 1.3. Assume that c = (1,ζ ) where ζ ∈ Iδ for some δ > 0 with

f2(δ ,ζ ) := (32+
8
ζ
)δ +(549+

64
ζ

+
8

ζ 2 )δ
2 < 1.

Let ω be any nonempty open set in T2, and let (ω(t))t∈[0,T ] be as in (1.18). Then there exists a time
T > 0 such that for any (y0,y1) ∈ H2(T2)×L2(T2), there exists a control u ∈ L2(0,T,L2(T2)) such that
the solution y of (1.16)-(1.17) satisfies y(.,T ) = yt(.,T ) = 0.

Remark 1.2. (1) Theorem 1.3 applies for a.e. ζ ∈ R+ \Q, for the set (R+ \Q) \ ∩n≥1I1/n is of
measure zero.

(2) Theorem 1.3 applies also when ζ ∈ Iδ with ζ ≥ 1 and δ ≤ 10−2. Indeed, f2(δ ,ζ )≤ f2(δ ,1) =
40δ + 621δ 2. The issue whether Theorem 1.3 is actually true for any ζ ∈ R+ \Q is open and
challenging.

(3) We can provide explicit examples of numbers to which Theorem 1.3 applies.
For a given ζ ∈R+ \Q, we introduce its continued fraction (see e.g. [9]) [a0,a1,a2, ...] where

a0 ∈ N, ai ∈ N∗ for i≥ 1 and ζ = limn→+∞[a0,a1, ...,an] with

[a0,a1, ...,an] = a0 +
1

a1 +
1

a2+
1

···+ 1
an

·

Denoting [a0,a1, ...,an] = pn/qn with pn and qn as in (1.22), then qn→ ∞ and∣∣∣∣ζ − pn

qn

∣∣∣∣≤ 1
an+1q2

n
·

(See e.g. [9, Section 10.9].) Thus ξ ∈ Iδ if an > δ−1 for infinitely many n. Let us give some
examples of numbers ζ to which Theorem 1.3 applies. The first one is an algebraic number, the
second one and the third one are transcendental numbers.
(a) Let ζ =

√
m2 +1 with m ∈N. Then ζ = [m,2m,2m,2m, ...] so that ζ ∈ Iδ if 2m > δ−1, and

hence Theorem 1.3 applies for m > 50.
(b) Let ζ = L = ∑

∞
k=1 10−k! (Liouville’s constant). Then L ∈ Iδ for all δ > 0. Indeed, setting

qn = 10n! and pn = ∑
n
k=1 10n!−k! for n ∈N∗, for given A,δ > 0 we notice that (pn,qn) is (for

n large enough) as in (1.22) with qn > A and∣∣∣∣L− pn

qn

∣∣∣∣= ∞

∑
k=n+1

10−k! ≤ 2
10(n+1)! ≤

δ

q2
n
·
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(c) Let ζ = e = exp(1). Then Euler proved that e = [2,1,2,1,1,4,1,1,6,1,1,8, ...] (see e.g.
[10]). Thus a3n−1 = 2n for all n ∈ N∗, so that e ∈ Iδ for all δ > 0.

Let us say a few words about the proofs of Theorems 1.1, 1.2 and 1.3. Following [4], we decompose
(1.16)-(1.17) into a system coupling a parabolic equation with an ordinary differential equation (ODE),
namely

yt −∆y+(b(x)−1)y = z, (t,x) ∈ (0,T )×T2, (1.26)

zt + z = 1ω(t)(x)u+(b(x)−1)y, (t,x) ∈ (0,T )×T2, (1.27)

y(x,0) = y0(x), x ∈ T2, (1.28)

z(x,0) = y1(x)−∆y0(x)+(b(x)−1)y0(x), x ∈ T2. (1.29)

Introducing the new unknown functions

h(x, t) := y(x+ tc, t),
k(x, t) := z(x+ tc, t),

we see that system (1.26)-(1.29) is transformed into the system:

ht −∆h− c ·∇h+(b(x+ tc)−1)h = k, (t,x) ∈ (0,T )×T2, (1.30)

kt − c ·∇k+ k = 1ω0(x)u(x+ tc, t)+(b(x+ tc)−1)h, (t,x) ∈ (0,T )×T2, (1.31)

h(x,0) = y0(x), x ∈ T2, (1.32)

k(x,0) = y1(x)−∆y0(x)+(b(x)−1)y0(x), x ∈ T2. (1.33)

for which the control input is supported in the fixed domain ω0.
Next, the corresponding adjoint system to (1.30)-(1.33) reads

−vt −∆v+ c ·∇v+(b(x+ tc)−1)v = (b(x+ tc)−1)w, (t,x) ∈ (0,T )×T2, (1.34)

−wt + c ·∇w+w = v, (t,x) ∈ (0,T )×T2, (1.35)

v(x,T ) = vT (x), x ∈ T2, (1.36)

w(x,T ) = wT (x), x ∈ T2. (1.37)

By classical duality arguments, the null controllability of (1.30)-(1.33) is proved whenever we have
established the following observability inequality for the adjoint system (1.34)-(1.37):∫

T2

(
|v(x,0)|2 + |w(x,0)|2

)
dx≤Cobs

∫ T

0

∫
ω0

|w(x, t)|2dxdt, (1.38)

for some constant Cobs > 0 and all vT ,wT ∈ L2(T2). In order to establish the observability inequality
(1.38), following [1, 4], we derive Carleman estimates for the backward heat equation (1.34) and for the
transport equation (1.35) with the same weights functions. To get “almost sharp” results for the geometry
of the control region, the construction of the weight functions in the Carleman estimates turns out to be
much more delicate than in [4]. To derive Theorem 1.2, we need to prove the existence of a function
ψ0 ∈C∞(T2) such that

∇ψ0(x) 6= 0, ∀x ∈ T2 \ω0, (1.39)

c ·∇(c ·∇ψ0)(x)> 0, ∀x ∈ T2 \ω0. (1.40)
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This is done by viewing ψ0 as a smooth Z2-periodic function which is constructed explicitly on the
domain

D := {s(1
p
,0)+ t(1,

p
q
), s ∈ [0,1), t ∈ [0,q)},

and by noticing that D is a fundamental domain for the action of the group (Z2,+); that is to say, the
family

(
D+(m,n)

)
(m,n)∈Z2 constitutes a partition of R2.

The proof of Theorem 1.3 cannot be done along the same lines as for Theorem 1.2, for no fundamental
domain similar to D is available. However, approximating ζ ∈ R+ \Q by some rational number p/q as
in (1.25) and using Theorem 1.2, we can construct a function ψ0 satisfying (1.39)-(1.40).

A few words should be said about what we mean by a solution of system (1.16)-(1.17) or, equivalently,
by a solution of system (1.26)-(1.29). The following result follows from the classical semigroup theory
(see e.g. [13]). Its proof is omitted.

Proposition 1.3. The operator

A(y,z) = (∆y− (b(x)−1)y+ z,−z+(b(x)−1)y),

with domain D(A) = H2(T2)×L2(T2)⊂ [L2(T2)]2 generates a strongly semigroup (etA)t≥0 in [L2(T2)]2.
As a consequence, for any (y0,z0) ∈ [L2(T2)]2 and any u ∈ L2(0,T,L2(T2)), setting F(x, t) = (0,1ω(t)(x)
u(x, t)), we have that the system

(y,z)t = A(y,z)+F, (y,z)(.,0) = (y0,z0),

admits a unique mild solution (y,z) ∈C([0,T ], [L2(T2)]2). Furthermore, y ∈ L2(0,T ;H1(T2)).

Going back to system (1.16)-(1.17) and using (1.26), we see that for any (y0,y1) ∈ H2(T2)×L2(T2)
and any control input u ∈ L2(0,T,L2(T2)), we can construct a solution y ∈C([0,T ],L2(T2)) of (1.16)-
(1.17) with yt −∆y ∈C([0,T ],L2(T2)).

The paper is organized as follows. Section 2 is devoted to the construction of a function ψ0 as in
(1.39)-(1.40) in each of the cases (i), (ii), and (iii). In Section 3, we state and prove some Carleman
estimates for a transport equation and for a backward heat equation with the same weights involving
the function ψ0 in their expressions. In Section 4, we derive the observability inequality for the adjoint
system (1.34)-(1.37) and next complete the proofs of Theorems 1.1, 1.2, and 1.3.

2. CONSTRUCTION OF THE FUNCTION ψ0

In this section, we prove the existence of a function ψ0 ∈C∞(T2) satisfying (1.39)-(1.40) for c and ω0
as in Theorems 1.1, 1.2, and 1.3, respectively. Let us consider successively the cases (i) c = (1,0); (ii)
c = (1, p/q) (p,q ∈ N∗); and (iii) c = (1,ζ ) (ζ ∈ R+ \Q).

(i) c = (1,0)

Proposition 2.1. Let c and ω0 be as in Theorem 1.1, and let τ > 1−minx2∈[0,1] ρ2(x2) > 0. Then there
exists a nonnegative function ψ0 ∈C∞(T2) satisfying

2
(
τ−1+ min

x2∈[0,1]
ρ2(x2)

)
≤ c ·∇ψ0 ≤ 2

(
τ + max

x2∈[0,1]
ρ1(x2)

)
, in T2 \ω0, (2.1)

c ·∇(c ·∇ψ0) = 2, in T2 \ω0. (2.2)
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Proof. Let ρ1 and ρ2 be as in Theorem 1.1. Recall that ρ1(0) = ρ1(1) and ρ2(0) = ρ2(1). Introduce the
open sets in T2:

Ω1 := {π(x); x = (x1,x2) ∈ [0,1]2,
2
3

ρ1(x2)+
1
3

ρ2(x2)< x1 <
1
3

ρ1(x2)+
2
3

ρ2(x2)},

Ω2 := {π(x); x = (x1,x2) ∈ [0,1]2,
4
5

ρ1(x2)+
1
5

ρ2(x2)< x1 <
1
5

ρ1(x2)+
4
5

ρ2(x2)}.

Since Ω1 ⊂Ω2, we may pick (see e.g. [8, Corollary 4.7]) a function χ ∈C∞(T2) such that 0≤ χ ≤ 1 and

χ(x) =
{

0 if x ∈Ω1,
1 if x 6∈Ω2.

For x = (x1,x2) ∈ [0,1]2, we set

ψ0(x) =
{

χ(π(x))(x1 + τ)2 if x1 ≤ 1
2(ρ1(x2)+ρ2(x2)),

χ(π(x))(x1−1+ τ)2 if x1 >
1
2(ρ1(x2)+ρ2(x2)).

Then it is clear that ψ0 can be extended as a Z2-periodic smooth function (i.e. ψ0 ∈ C∞(T2)). On the
other hand,

c ·∇ψ0(x) =
∂ψ0

∂x1
=

{
2(x1 + τ) if 0≤ x1 ≤ ρ1(x2),
2(x1−1+ τ) if ρ2(x2)≤ x1 ≤ 1,

and hence

2τ ≤ c ·∇ψ0(x)≤ 2(τ + max
x2∈[0,1]

ρ1(x2)), if 0≤ x1 ≤ ρ1(x2),

2(τ−1+ min
x2∈[0,1]

ρ2(x2))≤ c ·∇ψ0(x)≤ 2τ, if ρ2(x2)≤ x1 ≤ 1,

so that (2.1) holds. Finally,

c ·∇(c ·∇ψ0) =
∂ 2ψ0

∂x2
1

= 2 if x1 6∈ (ρ1(x2),ρ2(x2)),

so that (2.2) holds as well. �

(ii) c = (1, p
q ), p,q ∈ N∗, p and q relatively prime.

Before performing the construction of the function ψ0, we first prove Proposition 1.1.
Proof of Proposition 1.1: From (1.21) and the fact that

π
(
q(1,

p
q
)
)
= π(q, p) = π(0,0) ∈ ω0,

we infer that
ω0 +[0,q](1,

p
q
) = T2.

Introduce the set
K := {s(L,0)+ t(1,

p
q
); s ∈ [0,1], t ∈ [0,q]} ⊂ R2

and its ε-neighborhood

Kε := {(x,y) ∈ R2; dist((x,y),K)< ε}= K +B((0,0),ε).
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Then it follows from the definitions of ω0 and Kε that

T2 = ω0 +[0,q](1,
p
q
) = π(Kε).

This yields 1 = λ ([0,1]2)≤ λ (Kε), where λ denotes Lebesgue measure. Elementary computations give

λ (Kε) = Lp+2εL+2ε

√
p2 +q2 +πε

2,

and (1.23) follows. �
Introduce some notations. For any real number R, let [R] (resp. {R}) denote its integral part (resp. its

fractional part); that is, [R] := sup{n ∈ Z; n≤ R} ∈ Z and {R} := R− [R] ∈ [0,1).
The following result shows that to define the function ψ0 as a Z2-periodic function on R2, it is suffi-

cient to restrict oneself to the domain D. (See Figure 4.)

FIGURE 4. The domain D for (p,q) = (3,2).

Proposition 2.2. Let p,q ∈ N∗ be relatively prime. Let

D := {s(1
p
,0)+ t(1,

p
q
), s ∈ [0,1), t ∈ [0,q)}.

Then for any z∈R2 there exists a unique pair (x,y)∈D×Z2 such that z= x+y. Accordingly, π(D)=T2.
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Proof. It is sufficient to show that the function f : D→ [0,1)2 defined by f (x1,x2) = ({x1},{x2}) is
bijective. Indeed, in such a case, we would have that for any given (z1,z2) ∈ R2, there would exist
a unique x = (x1,x2) ∈ D such that x− ([x1], [x2]) = z− ([z1], [z2]) ∈ [0,1)2. Therefore, setting y :=
([z1], [z2])− ([x1], [x2]) ∈ Z2, we would get the desired result.

The fact that f : D→ [0,1)2 is bijective means that the system

{t + 1
p

s} = z1, (2.3)

{ p
q

t} = z2, (2.4)

admits a unique solution (s, t) ∈ [0,1)× [0,q) for any (z1,z2) ∈ [0,1)2.
Let us first show that f : D→ [0,1)2 is one-to-one. Let (s1,s2) ∈ [0,1)2 and (t1, t2) ∈ [0,q)2 be such

that
f (t1 +

s1

p
,
t1 p
q
) = f (t2 +

s2

p
,
t2 p
q
);

that is, {t1+s1/p}= {t2+s2/p} and {t1 p/q}= {t2 p/q}. Then, setting k1 := [t1+s1/p]− [t2+s2/p]∈Z
and k2 := [t1 p/q]− [t2 p/q] ∈ Z, we obtain that

(t1 +
s1

p
)− (t2 +

s2

p
) = [t1 +

s1

p
]+{t1 +

s1

p
}−
(
[t2 +

s2

p
]+{t2 +

s2

p
}
)
= k1,

t1
p
q
− t2

p
q

= [t1
p
q
]+{t1

p
q
}−
(
[t2

p
q
]+{t2

p
q
}
)
= k2.

It follows that

s1− s2 = pk1−qk2, (2.5)
(t1− t2)p = qk2. (2.6)

Since s1− s2 ∈ (−1,1), the only possible value for pk1− qk2 ∈ Z is zero. Thus pk1 = qk2 and s1 = s2.
Since p and q are relatively prime, we infer that we can write k2 = l p for some l ∈ Z. Il follows that
(t1− t2)p = l pq, and hence t1− t2 = lq. But t1− t2 ∈ (−q,q), so we infer that t1 = t2.

Let us prove that f : D→ [0,1)2 is onto. Given (z1,z2) ∈ [0,1)2, we aim to find s ∈ [0,1) and t ∈ [0,q)
such that system (2.3)-(2.4) is satisfied. Note that (2.3)-(2.4) is equivalent to the existence of some
numbers k1,k2 ∈ Z such that

t +
s
p

= z1 + k1, (2.7)

t
p
q

= z2 + k2. (2.8)

Eliminating t from (2.7), we arrive at the equivalent system

s = (pz1−qz2)+(pk1−qk2), (2.9)
pt = qz2 +qk2. (2.10)

Since pk1− qk2 ∈ Z, we have to pick s = {pz1− qz2}. Next, the equation (2.9) will be satisfied if and
only if

pk1−qk2 =−[pz1−qz2]. (2.11)
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Since p and q are relatively prime, there exists by Bezout’s identity a pair (a,b)∈Z2 such that ap+bq =
1. Let l :=−[pz1−qz2] ∈ Z and

k1 := al + rq, k2 :=−bl + rp,

where r ∈ Z remains to be defined. Then k1,k2 ∈ Z and (2.11) is satisfied. It remains to fulfill (2.10),
which can be rewritten t/q = (z2−bl)/p+ r, with the constraint t ∈ [0,q). Picking r :=−[(z2−bl)/p]
and t := q((z2−bl)/p+ r) ∈ [0,q), we infer that (2.10) is also satisfied. The proof of Proposition 2.2 is
complete. �

Proposition 2.3. Let c = (1, p/q), where p,q ∈ N∗ are relatively prime. Let ω0 ⊂ T2 be a nonempty
open set such that π([0,1/p]×{0}) ⊂ ω0, and let τ ∈ (0,1] be given. Then there exists a nonnegative
function ψ0 ∈C∞(T2) such that

2τ ≤ c ·∇ψ0 ≤ 2(q+ τ) in T2\ω0, (2.12)

c ·∇(c ·∇ψ0) = 2 in T2\ω0. (2.13)

Proof. Our goal is to construct a suitable function ψ0 in D and then to extend it to R2 as a smooth
Z2–periodic function. Therefore, it is important to determine what pairs of points on ∂D are identified
when viewed as points in T2, that is, modulo Z2. We first focus on the point (1/p,0)∈ ∂D and determine
all the points on ∂D that can be identified with it. (See Figure 5.)

FIGURE 5. The domain D and the open set ω1 for (p,q) = (3,2). Note that t∗ = 4/3.



14 GUZMÁN AND ROSIER

Lemma 2.1. There exists a unique number t∗ ∈ [0,q) such that t∗(1, p/q)− (1/p,0) ∈ Z2.

Proof of Lemma 2.1. Since p and q are relatively prime, by Bézout’s identity there exists a pair (a,b)∈Z2

such that ap+bq= 1. Since (a−qm)p+(b+mp)q= 1 for any m∈Z, we may without loss of generality
assume that b ∈ [0, p). Set t∗ = bq/p ∈ [0,q). Then t∗− 1/p = −a ∈ Z and t∗p/q = b ∈ Z, so that
t∗(1, p/q)− (1/p,0) ∈ Z2. On the other hand, it follows from Proposition 2.2 that there exists a unique
pair (x,y) ∈D×Z2 such that (1/p,0) = x+y. Decomposing x as x = s(1/p,0)+ t(1, p/q), we infer that
there exists a unique pair (s, t) ∈ [0,1)× [0,q) such that

(1/p,0)− [s(1/p,0)+ t(1, p/q)] ∈ Z2.

This yields (s, t) = (0, t∗) and the uniqueness of t∗. �
Let us go back to the proof of Proposition 2.3. We start with a claim, which is a direct consequence

of Lemma 2.1.
CLAIM 1. For every t ∈ [0,q−t∗], (t+t∗)(1, p/q)∈ ∂D is identified in T2 with t(1, p/q)+(1/p,0)∈ ∂D.
For every t ∈ [q− t∗,q], (t− (q− t∗))(1, p/q) ∈ ∂D is identified with t(1, p/q)+(1/p,0) ∈ ∂D .

Since π([0,1/p]×{0})⊂ω0, we can pick two open sets ω1,ω2 in T2 such that π([0,1/p]×{0})⊂ω1
and ω1 ⊂ ω2 ⊂ ω2 ⊂ ω0. Since, by Lemma 2.1, (q− t∗)(1, p/q)+(1/p,0) ∈ Z2 is identified with (0,0),
and since the open set ω1 contains (0,0), we can select a number ε ∈ (0,1) such that for every s∈ [1−ε,1]
we have that (q− t∗)(1, p/q)+ s(1/p,0) ∈ ω1.

We need to introduce two cut-off functions. Pick χ ∈C∞(T2) with 0≤ χ ≤ 1 such that

χ(x) =
{

1 if x ∈ T2 \ω2,
0 if x ∈ ω1,

and η ∈C∞([0,1]) with 0≤ η ≤ 1 and such that

η(s) =
{

1 if s≤ 1− ε,
0 if s≥ 1− ε

2 ·
Introduce the functions ψ1,ψ2 : [0,q]→ R defined by

ψ1(t) = (t + τ)2, t ∈ [0,q], (2.14)

ψ2(t) =

{
(t + t∗+ τ)2, if t ∈ [0,q− t∗],
(t + t∗−q+ τ)2, if t ∈ (q− t∗,q].

(2.15)

Note that

ψ2(t) =
{

ψ1(t + t∗), if t ∈ [0,q− t∗),
ψ1(t− (q− t∗)), if t ∈ (q− t∗,q].

Finally, taking into account the fact that any point x∈D can be written in a unique way as x = t(1, p/q)+
s(1/p,0) with (s, t) ∈ [0,1)× [0,q), we define the function ψ0 : D→ R+ by

ψ0(t(1, p/q)+s(1/p,0))= [η(s)ψ1(t)+(1−η(s))ψ2(t)]χ(t(1, p/q)+s(1/p,0)), (s, t)∈ [0,1)×[0,q).
Using Proposition 2.2, we can extend ψ0 to R2 = D+Z2 by setting

ψ0(x+ y) = ψ0(x), ∀x ∈ D, ∀y ∈ Z2.

The function ψ0 being Z2−periodic, it can be viewed as a map from T2 to R. It turns that ψ0 is smooth.
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CLAIM 2. ψ0 ∈C∞(T2).

Indeed, the function ψ0 is smooth:
(i) in the interior of π(D), namely in the set {π

(
t(1, p/q)+ s(1/p,0)

)
; (s, t) ∈ (0,1)× (0,q)};

(ii) in a neighborhood of the segment [0,1/p]×{0} thanks to the definitions of ω1 and χ;
(iii) in a neighborhood of the segment {(q−t∗)(1, p/q)+s(1/p,0);s∈ [1−ε,1]} thanks to the definition
of ω1, χ and η (even if the function ψ2 is discontinuous at t = q− t∗);
(iv) in a neighborhood of the segments {t(1, p/q); t ∈ [0,q]} and {(1/p,0)+ t(1, p/q); t ∈ [0,q]} thanks
to Claim 1 and to the definitions of ψ1 and ψ2.

It remains to check that ψ0 fulfills (2.12) and (2.13). But we notice that for x = s(1/p,0)+ t(1, p/q)∈
T2 \ω2, χ(x) = 1 and

c ·∇ψ0(x) =
∂

∂ t
[ψ0(s(1/p,0)+ t(1, p/q))] = η(s)ψ ′1(t)+(1−η(s))ψ ′2(t) ∈ [2τ,2(q+ τ)],

c ·∇(c ·∇ψ0)(x) =
∂ 2

∂ t2 [ψ0(s(1/p,0)+ t(1, p/q))] = η(s)ψ ′′1 (t)+(1−η(s))ψ ′′2 (t) = 2.

Noting that T2 \ω0 ⊂ T2 \ω2, we infer that (2.12)-(2.13) are fulfilled. The proof of Proposition 2.3 is
complete. �

(iii) c = (1,ζ ), ζ ∈ R+ \Q.

Before performing the construction of the function ψ0, we first prove Proposition 1.2.
Proof of Proposition 1.2: If there does not exist T > 0 such that ω0 +[0,T ]c = T2, then for any n ∈ N∗
we can pick some yn ∈ T2 such that

yn 6∈ ω0 +[0,n]c. (2.16)

As T2 is compact, we can extract a subsequence ynk → y for some y∈T2. Pick x∈T2 and ε > 0 such that
B(x,ε)⊂ ω0, and let z = (z1,z2) = y− x. As the subgroup {ζ p+q; p,q ∈ Z} is dense in R (for ζ 6∈Q),
we infer the existence of a pair (p,q)∈Z2 such that |z2−ζ z1−(ζ p+q)|< ε/4. As ζ ∈R+ \Q= I1/

√
5,

one may find a pair (p′,q′)∈N2 (with q′ as large as desired) such that |ζ− p′
q′ | ≤ (

√
5q′2)−1. In particular,

we can impose both conditions q′ ≥ |z1 + p|+1 and (
√

5q′)−1 < ε/4. Set t = z1 + p+q′ > 0. Then

|(z1,z2)− t(1,ζ )− (p+q′,q− p′)| = |z2− (z1 + p+q′)ζ −q+ p′|
≤ |z2−ζ z1− (ζ p+q)|+ |p′−q′ζ |

≤ ε

2
·

It follows that for n large enough, |yn−x−tc−(p+q′,q− p′)|< ε , that is yn ∈ B(x,ε)+tc, contradicting
the assumption. �

Let us proceed with the construction of the function ψ0 when c = (1,ζ ) with ζ ∈ R\Q+. The idea is
to use the function ψ0 constructed above for ĉ = (1, p

q ) when p/q is a “good” rational approximation of
ζ , namely satisfying (1.25). Note that in this case |qζ − p| ≤ δ/q, so that

p≥ qζ − δ

q
≥ 1

2
ζ q (2.17)
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provided that A� 1. (Recall that q≥ A.) Moreover∣∣∣∣qpζ −1
∣∣∣∣≤ δ

pq
≤ 2δ

ζ q2 (2.18)

provided that A� 1.

Proposition 2.4. Assume that c= (1,ζ ), where ζ ∈ Iδ for some δ > 0. Let ω0 be an open neighbourhood
of 0. Pick A > 0 and a pair (p,q) with q≥ A and such that (1.22), (1.25), (2.17) and (2.18) are satisfied,
and such that

1
p
< dist(0,T2 \ω0). (2.19)

Let ĉ = (1, p
q ). Then there exists a function ψ0 ∈C∞(T2) such that

∇ψ0(x) 6= 0 in T2\ω0, (2.20)

|(c− ĉ) ·∇ψ0| ≤ 8δq+ f1(δ ,ζ ) in T2\ω0, (2.21)

|c ·∇(c ·∇ψ0)−2| ≤ f2(δ ,ζ ) in T2\ω0, (2.22)

where

f1(δ ,ζ ) := (
8
ζ
+16)δ , (2.23)

f2(δ ,ζ ) := (32+
8
ζ
)δ +(549+

64
ζ

+
8

ζ 2 )δ
2. (2.24)

Proof. It follows from (2.19) that [− 1
p ,

1
p ]×{0} ⊂ ω0. We pick two open sets ω1,ω2 with

[−1
p
,

1
p
]×{0} ⊂ ω1 ⊂ ω1 ⊂ ω2 ⊂ ω2 ⊂ ω0.

Let the functions χ , η , ψ1, ψ2 and ψ0 be as in the proof of Proposition 2.3 for ĉ = (1, p
q ) and ε = 1/2.

Note that it is easy to construct a function η as above with the following explicit bounds

‖η ′‖L∞(R) ≤ 23, ‖η ′′‖L∞(R) ≤ 27
(∫

R
exp(1− 1

1− y2 )dy
)−1

≤ 183.

Clearly, (2.20) follows at once from (2.12). Set d̂ = ( 1
p ,0). Then

c = (1,ζ ) =
q
p

ζ ĉ+(p−qζ )d̂. (2.25)

From the definition of ψ0, (2.17), (2.18) and (2.25), we obtain that for x = sd̂ + tĉ ∈ T2 \ω2 (where
s ∈ [0,1), t ∈ [0,q))

(c− ĉ) ·∇ψ0(x) = (
q
p

ζ −1)ĉ ·∇ψ0(x)+(p−qζ )d̂ ·∇ψ0(x)

= (
q
p

ζ −1)
∂

∂ t
[ψ0(sd̂ + tĉ)]+(p−qζ )

∂

∂ s
[ψ0(sd̂ + tĉ)]

= (
q
p

ζ −1)
(
η(s)ψ ′1(t)+(1−η(s))ψ ′2(t)

)
+(p−qζ )η ′(s)

(
ψ1(t)−ψ2(t)

)
.
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Recall that for i = 1,2,

ψi(t) ∈ [τ2,(q+ τ)2], ψ
′
i (t) ∈ [2τ,2(q+ τ)], ψ

′′
i (t) = 2.

It follows that

|(c− ĉ) ·∇ψ0(x)| ≤ |q
p

ζ −1| ·2(q+ τ)+ |p−qζ | ·8 · (q2 +2qτ)

≤ 2δ

ζ q2 ·2(q+ τ)+
8δ

q
(q2 +2qτ)

≤ δ (8q+
8
ζ
+16)

for q≥ 1 and τ ≤ 1. We can write

c ·∇(c ·∇ψ0)(x)− ĉ ·∇(ĉ ·∇ψ0) = c ·∇((c− ĉ) ·∇ψ0)(x)+(c− ĉ) ·∇(ĉ ·∇ψ0)(x)
=: I1 + I2.

Then

I1 =
q
p

ζ
∂

∂ t

(
[(c− ĉ) ·∇ψ0](sd̂ + tĉ)

)
+(p−qζ )

∂

∂ s

(
[(c− ĉ) ·∇ψ0](sd̂ + tĉ)

)
=

q
p

ζ

[
(

q
p

ζ −1)(η(s)ψ ′′1 (t)+(1−η(s))ψ ′′2 (t))+(p−qζ )η ′(s)(ψ ′1(t)−ψ
′
2(t))

]
+(p−qζ )

[
(

q
p

ζ −1)η ′(s)(ψ ′1(t)−ψ
′
2(t))+(p−qζ )η ′′(s)(ψ1(t)−ψ2(t))

]
.

Thus

|I1| ≤ |q
p

ζ |
[
|q
p

ζ −1| ·2+ |p−qζ | ·23 ·2q
]

+|p−qζ |
[
|q
p

ζ −1| ·8 ·2q+ |p−qζ | ·183 · (q2 +2τq)
]

≤ (1+
2δ

ζ q2 )

(
2δ

ζ q2 ·2+
δ

q
·16q

)
+

δ

q

(
2δ

ζ q2 ·16q+
δ

q
·183 · (q2 +2τq)

)
≤ 16δ +183δ

2 +
32δ 2

ζ q2 +
16δ 2

q
+(

32δ 2

ζ
+

4δ

ζ
)

1
q2 +

8δ 2

ζ 2q4 ,

where we used the fact that τ ∈ [0,1]. On the other hand, we have that

I2 = (
q
p

ζ −1)ĉ ·∇(ĉ ·∇ψ0)+(p−qζ )d̂ ·∇(ĉ ·∇ψ0)

= (
q
p

ζ −1)
∂ 2

∂ t2 [ψ0(sd̂ + tĉ)]+(p−qζ ) · ∂

∂ s

(
∂

∂ t
[ψ0(sd̂ + tĉ)]

)
= (

q
p

ζ −1)
(
η(s)ψ ′′1 (t)+(1−η(s))ψ ′′2 (t)

)
+(p−qζ )η ′(s)(ψ ′1(t)−ψ

′
2(t)).
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It follows that

|I2| ≤ |q
p

ζ −1| ·2+ |p−qζ | ·8 ·2q

≤ 2δ

ζ q2 ·2+
δ

q
·16q = 16δ +

4δ

ζ q2 ·

We infer that

|c ·∇(c ·∇ψ0)−2| = |c ·∇(c ·∇ψ0)− ĉ ·∇(ĉ ·∇ψ0)|
≤ |I1|+ |I2|
≤ 32δ +183δ

2

+366
δ 2

q
+(

8δ

ζ
+

64δ 2

ζ
)

1
q2 +

8δ 2

ζ 2q4

≤ (32+
8
ζ
)δ +(549+

64
ζ

+
8

ζ 2 )δ
2.

�

3. CARLEMAN ESTIMATES

In this section, we derive a Carleman estimate for a transport equation and a Carleman estimate for a
heat equation with the same weights.

Let ψ0 ∈C∞(T2), K, K̃ ∈ (0,+∞) and t0 ∈ [0,T ] (to be chosen later on), and set

ψ(x, t) = ψ0(x)−K(t− t0)2 + K̃, (x, t) ∈ T2× [0,T ]. (3.1)

By picking K̃ large enough, we can assume that

ψ(x, t)>
3
4
‖ψ‖L∞(T2×(0,T )), ∀x ∈ T2, ∀t ∈ [0,T ]. (3.2)

For given σ ∈ (0,min(1,T/2)), we introduce some function g ∈C∞(0,T ) such that

g(t) =


1
t for 0 < t < σ

2 ,
strictly decreasing for 0 < t ≤ σ ,
1 for σ ≤ t ≤ T

2 ,
g(T − t) for T

2 < t ≤ T.

(3.3)

We define the weights

ϕ(x, t) := g(t)
(

e
3
2 λ‖ψ‖L∞(T2×(0,T ))− eλψ(x,t)

)
, (3.4)

θ(x, t) := g(t)eλψ(x,t), (3.5)

where λ > 0 is a parameter.
The Carleman estimate for the transport equation is given in the following proposition.
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Proposition 3.1. Let c = (1,ζ ) with ζ ∈ R+. Let T > 0, σ ∈ (0,min(1,T/2)) and K, K̃ > 0. Assume
that the function ψ0 ∈C∞(T2) satisfies for some nonempty open set ω0 ⊂ T2 and some number δ̂ > 0

∇ψ0(x) 6= 0, ∀x ∈ T2 \ω0, (3.6)

−2K(t− t0)− c ·∇ψ0(x)≥ 0, ∀x ∈ T2 \ω0, ∀t ∈ (0,σ), (3.7)

−2K(t− t0)− c ·∇ψ0(x)≤ 0, ∀x ∈ T2 \ω0, ∀t ∈ (T −σ ,T ), (3.8)

c ·∇(c ·∇ψ0)(x)−2K ≥ δ̂ , ∀x ∈ T2 \ω0. (3.9)

Let the functions ψ , g, ϕ , and θ be as in (3.1)-(3.5). Then there exist some constants λ0 ≥ 1, s0 ≥ 1 and
C0 > 0 such that for all λ ≥ λ0, all s≥ s0 and all w∈ L2(T2×(0,T )) with−wt +c ·∇w∈ L2(T2×(0,T )),
we have

∫ T

0

∫
T2

λ sθ |w|2e−2sϕdxdt

≤C0

(∫ T

0

∫
T2
|−wt + c ·∇w|2e−2sϕdxdt +

∫ T

0

∫
ω0

λ sθ
(
s
|g′|
g

ϕ +1
)
|w|2e−2sϕdxdt

)
. (3.10)

Proof. Assume first that w ∈ H1(T2× (0,T )). Let z = e−sϕw and Pw =−wt + c ·∇w. Then

e−sϕPw := e−sϕP(esϕz) =−(sϕtz+ zt)+ c · (sz∇ϕ +∇z)
= P1 z+P2 z

with

P1z := −sϕtz− zt + c ·∇z,
P2z := s(c ·∇ϕ)z.

It follows that

‖e−sϕPw‖2 = ‖P1z‖2 +‖P2z‖2 +2(P1z,P2z),

where ( f ,g) =
∫ T

0
∫
T2 f gdxdt, ‖ f‖2 = ( f , f ). In the sequel,

∫ T
0
∫
T2 f (x, t)dxdt is denoted

∫∫
f for the sake

of shortness.
The idea is to expand (P1 z,P2 z) and next to use the (nonnegative) terms ‖P1 z‖2 and ‖P2 z‖2 to balance

the “bad terms” in (P1 z,P2 z). Using integration by parts, we obtain

(P1z,P2z) = −s2
∫ ∫

(c ·∇ϕ)ϕtz2− s
∫ ∫

(c ·∇ϕ)zzt +
s
2

∫ ∫
(c ·∇ϕ)c ·∇z2

= −s2
∫ ∫

(c ·∇ϕ)ϕtz2 +
s
2

∫ ∫
(c ·∇ϕt)z2− s

2

∫ ∫
c ·∇(c ·∇ϕ)z2.
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Easy calculations show that

∇ϕ = −λθ∇ψ,

ϕt =
g′

g
ϕ−λθψt ,

∇ϕt = −λ
g′

g
θ∇ψ−λ

2
θψt∇ψ,

∇(c ·∇ϕ) = −λ (c ·∇ψ)∇θ −λθ∇(c ·∇ψ),

c ·∇(c ·∇ϕ) = −λ
2(c ·∇ψ)2

θ −λθc ·∇(c ·∇ψ),

∇ψt = 0.

We infer that

(P1z,P2z) =
∫ ∫ [

s2
λ (c ·∇ψ)θ(

g′

g
ϕ−λθψt)−

s
2
(λ

g′

g
θc ·∇ψ +λ

2
θψtc ·∇ψ)

+
s
2
(
λ

2(c ·∇ψ)2
θ +λθc ·∇(c ·∇ψ)

)]
z2.

Next

‖P2z‖2 = s2
λ

2
∫ ∫

(c ·∇ψ)2
θ

2z2

and

0≤ ‖P1z− sλψtθz‖2 = ‖P1z‖2 + s2
λ

2‖ψtθz‖2−2sλ (P1z,ψtθz).

But

(P1z,ψtθz) = −s
∫ ∫

ϕtψtθz2−
∫ ∫

ψtθztz+
∫ ∫

(c ·∇z)ψtθz

= −s
∫ ∫

(
g′

g
ϕ−λθψt)ψtθz2 +

∫ ∫
(ψttθ +ψt

g′

g
θ +λθψ

2
t )

z2

2
−
∫ ∫

λψt(c ·∇ψ)θ
z2

2
·

Therefore

2sλ (P1z,ψtθz) = 2s2
λ

2
∫ ∫

ψ
2
t θ

2z2−2s2
λ

∫ ∫ g′

g
ϕψtθz2

+sλ

∫ ∫ (
ψttθ +

g′

g
θψt +λθψ

2
t −λψt(c ·∇ψ)θ

)
z2

≤ ‖P1z‖2 + s2
λ

2
∫ ∫

ψ
2
t θ

2z2,

and hence

s2
λ

2
∫ ∫

ψ
2
t θ

2z2−2s2
λ

∫ ∫ g′

g
ϕψtθz2 + sλ

∫ ∫ (
ψttθ +

g′

g
θψt +λθψt(ψt − c ·∇ψ)

)
z2 ≤ ‖P1z‖2.
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It follows that

‖e−sϕPw‖2 = ‖P1z‖2 +‖P2z‖2 +2(P1z,P2z)

≥ s2
λ

2
∫ ∫

(ψ2
t +(c ·∇ψ)2−2ψtc ·∇ψ)θ 2z2

+2s2
λ

∫ ∫ g′

g
ϕθ(−ψt + c ·∇ψ)z2

+sλ
2
∫ ∫ (

−ψtc ·∇ψ +(c ·∇ψ)2 +ψt(ψt − c ·∇ψ)
)

θz2

+sλ

∫ ∫
(−g′

g
c ·∇ψ + c ·∇(c ·∇ψ)+ψtt +

g′

g
ψt)θz2

= sλ
2
∫ ∫

(ψt − c ·∇ψ)2
θ

2z2 + sλ
2
∫ ∫

(ψt − c ·∇ψ)2
θz2

+sλ

∫ ∫
(
−g′

g
)(ψt − c ·∇ψ)θ(2sϕ−1)z2

+sλ

∫ ∫
(ψtt + c ·∇(c ·∇ψ))θz2.

The two first integral terms of the r.h.s. being nonnegative, we arrive at

‖e−sϕPw‖2 ≥ sλ

∫ ∫
(
−g′

g
)(ψt − c ·∇ψ)θ(2sϕ−1)z2 + sλ

∫ ∫
(ψtt + c ·∇(c ·∇ψ))θz2.

Noticing that

ϕ(x, t) = g(t)eλψ(x,t)
(

e
3
2 λ‖ψ‖L∞−λψ(x,t)−1

)
≥ e−KT 2 λ‖ψ‖L∞

2
,

we have that sϕ ≥ 1 for λ ≥ λ0 = 1 and s≥ s0 with s0 large enough. Using (3.7)-(3.8) and the fact that

g′(t)

 ≤ 0 if t ∈ (0,σ),
= 0 if t ∈ [σ ,T −σ ],
≥ 0 if t ∈ (T −σ ,T ),

we infer that for λ ≥ λ0 and s≥ s0

sλ

∫ ∫
(
−g′

g
)(ψt − c ·∇ψ)θ(2sϕ−1)z2 ≥ sλ

∫ T

0

∫
ω0

(
−g′

g
)(ψt − c ·∇ψ)θ(2sϕ−1)z2,

and hence

sλ

∫ ∫
(ψtt + c ·∇(c ·∇ψ))θz2 ≤ ‖e−sϕPw‖2 +Cs2

λ

∫ T

0

∫
ω0

|g′|
g

θϕ|z|2.

Using (3.9), we obtain for λ ≥ λ0 and s≥ s0

sλ

∫ ∫
θ z2 ≤C

(
‖e−sϕPw‖2 + sλ

∫ T

0

∫
ω0

(s
|g′|
g

ϕ +1)θ z2 dxdt
)
. (3.11)

Replacing z by e−sϕw results in (3.10), which is thus established when w ∈ H1(T2× (0,T )).
We claim that (3.10) is still true when w and f = −wt + c ·∇w are in L2(0,T,L2(T2)). Indeed, in

that case w ∈C([0,T ],L2(T2)), and if (wn
T ) and ( f n) are two sequences in H1(T2) and L2(0,T,H1(T2)),
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respectively, such that

wn
T → w(T ) in L2(T2),

f n → f in L2(0,T,L2(T2)),

then the solution wn ∈C([0,T ],H1(T2)) of

−wn
t + c ·∇wn = f n,

wn(T ) = wn
T

satisfies wn ∈ H1(T2× (0,T )) and wn → w in C([0,T ],L2(T2)), so that we can apply (3.10) to wn and
pass to the limit n→+∞ in (3.10). The proof of Proposition 3.1 is complete. �

3.1. Carleman estimate for the parabolic equation.

Proposition 3.2. Let T,σ ,K, K̃,ω0,ψ0,ψ,g,ϕ and θ be as in Proposition 3.1. Then there exist some
constants λ1 ≥ λ0, s1 ≥ s0 and C1 > 0 such that for all λ ≥ λ1, all s ≥ s1 and all v ∈C([0,T ],L2(T2))
with vt +∆v ∈ L2(0,T,L2(T2)), the following holds∫ T

0

∫
T2
[(sθ)−1(|∆v|2 + |vt |2)+λ

2(sθ)|∇v|2 +λ
4(sθ)3|v|2]e−2sϕdxdt

≤C1

(∫ T

0

∫
T2
|vt +∆v|2e−2sϕdxdt +

∫ T

0

∫
ω0

λ
4(sθ)3|v|2e−2sϕdxdt

)
. (3.12)

Proof. We follow closely [4, 15]. Setting vT = v(.,T ) ∈ L2(T2), we see that the function v solves the
backward parabolic equation

−vt −∆v = f , (3.13)
v(.,T ) = vT , (3.14)

for some function f ∈ L2(0,T,L2(T2)). Assume first that vT ∈ H2(T2) and f ∈ H1(0,T,L2(T2)) so that

v ∈ L∞(0,T,H2(T2))∩H1(0,T,H1(T2)).

Let y = e−sϕv and P = ∂t +∆. Then

e−sϕPv = e−sϕP(esϕy) = Psy+Pay,

where

Psy = ∆y+(sϕt + s2|∇ϕ|2)y, (3.15)
Pay = yt +2s∇ϕ ·∇y+ s(∆ϕ)y, (3.16)

denote the (formal) self-adjoint and skew-adjoint parts of e−sϕP(esϕ .), respectively. It follows that

||e−sϕPv||2 = ||Psy||2 + ||Pay||2 +2(Psy,Pay), (3.17)

where we still write ( f ,g) =
∫ T

0
∫
T2 f gdxdt, || f ||2 = ( f , f ). Again,

∫ T
0
∫
T2 f (x, t)dxdt will be denoted

∫∫
f

for the sake of shortness. We have that

(Psy,Pay) =
(
∆y,yt

)
+
(
∆y,2s∇ϕ ·∇y

)
+(∆y,s(∆ϕ)y)+

(
sϕty+ s2|∇ϕ|2y,yt)

+(sϕty+ s2|∇ϕ|2y,2s∇ϕ ·∇y)+(sϕty+ s2|∇ϕ|2y,s(∆ϕ)y) =: I1 + I2 + I3 + I4 + I5 + I6. (3.18)
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First, observe that

I1 =−
∫ ∫

∇y ·∇yt = 0. (3.19)

Using the convention of repeated indices and denoting ∂i = ∂/∂xi, we obtain that

I2 = 2s
∫ ∫

∂
2
j y∂iϕ ∂iy

= −2s
∫ ∫

∂ jy(∂ j∂iϕ∂iy+∂iϕ∂ j∂iy).

It follows that

I2 = −2s
∫ ∫

∂ j∂iϕ∂ jy∂iy− s
∫ ∫

∂iϕ∂i(|∂ jy|2)

= −2s
∫ ∫

∂ j∂iϕ∂ jy∂iy+ s
∫ ∫

∆ϕ|∇y|2. (3.20)

On the other hand, doing integrations by parts in x yields

I3 =−s
∫ ∫

∇y ·
(
y∇(∆ϕ)+(∆ϕ)∇y

)
= s

∫ ∫
∆

2
ϕ
|y|2

2
− s
∫ ∫

∆ϕ|∇y|2. (3.21)

Integrating by parts with respect to t in I4 gives

I4 =−
∫ ∫

(sϕtt + s2
∂t |∇ϕ|2) |y|

2

2
·

Integrating by parts with respect to x in I5 yields

I5 =−
∫ ∫

s2
∇ · (ϕt∇ϕ)|y|2−

∫ ∫
s3

∇ · (|∇ϕ|2∇ϕ)|y|2. (3.22)

Gathering (3.18)-(3.22), we infer that

2(Psy,Pay) = −4s
∫ ∫

∂ j∂iϕ∂ jy∂iy +
∫ ∫
|y|2[s(∆2

ϕ − ϕtt) − 2s2
∂t |∇ϕ|2 − 2s3

∇ϕ · ∇|∇ϕ|2].

Consequently, (3.17) may be rewritten

||e−sϕPv||2 = ||Psy||2+||Pay||2−4s
∫ ∫

∂ j∂iϕ∂ jv∂iv+
∫ ∫
|v|2[s(∆2

ϕ−ϕtt)−2s2
∂t |∇ϕ|2−2s3

∇ϕ ·∇|∇ϕ|2].

CLAIM 1. There exist some numbers λ1 ≥ λ0, s1 ≥ s0 and A ∈ (0,1) such that for all λ ≥ λ1 and all
s≥ s1,∫ ∫

|y|2[s(∆2
ϕ−ϕtt)−2s2

∂t |∇ϕ|2−2s3
∇ϕ ·∇|∇ϕ|2]

+A−1
λ s3

∫ T

0

∫
ω0

(λθ)3|y|2 ≥ Aλ s3
∫ ∫

(λθ)3|y|2. (3.23)

Proof of Claim 1. Easy computations show that

∂iϕ =−λg(t)eλψ
∂iψ, ∂ j∂iϕ =−g(t)eλψ(λ 2

∂iψ∂ jψ +λ∂ j∂iψ) (3.24)

and
−∇|∇ϕ|2 ·∇ϕ =−2(∂ j∂iϕ)∂iϕ∂ jϕ = 2(λgeλψ)3(λ |∇ψ|4 +∂ j∂iψ∂iψ∂ jψ).
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It follows from (3.6) that for λ large enough, say λ ≥ λ1, we have that

−∇|∇ϕ|2 ·∇ϕ ≥ Aλ (λθ)3, t ∈ [0,T ], x ∈ T2 \ω0, (3.25)

|∇|∇ϕ|2 ·∇ϕ| ≤ A−1
λ (λθ)3, t ∈ [0,T ], x ∈ T2 \ω0, (3.26)

for some constant A ∈ (0,1). It follows from (3.2) that

|∆2
ϕ|+ |ϕtt |+ |∂t |∇ϕ|2| ≤Cλ (λθ)3, t ∈ [0,T ], x ∈Ω.

Therefore, we infer that for s large enough, say s≥ s1, and for all λ ≥ λ1 we have that

s(∆2
ϕ−ϕtt)−2s2

∂t |∇ϕ|2−2s3
∇ϕ ·∇|∇ϕ|2 ≥ Aλ s3(λθ)3, t ∈ [0,T ], x ∈ T2 \ω0,

|s(∆2
ϕ−ϕtt)−2s2

∂t |∇ϕ|2−2s3
∇ϕ ·∇|∇ϕ|2| ≤ A−1

λ s3(λθ)3, t ∈ [0,T ], x ∈ T2 \ω0.

This gives (3.23) with a possibly decreased value of A.
Thus we conclude that

||Psy||2 + ||Pay||2 +Aλ s3
∫ ∫

(λθ)3|y|2

≤ ||e−sϕPp||2 +4s
∫ ∫

∂ j∂iϕ∂ jy∂iy+A−1
λ s3

∫ T

0

∫
ω0

(λθ)3|y|2. (3.27)

CLAIM 2. There exist some numbers λ2 ≥ λ1 and s2 ≥ s1 such that for all λ ≥ λ2 and all s≥ s2,

λ s
∫ ∫

(λθ)|∇y|2 +λ s−1
∫ ∫

(λθ)−1|∆y|2 ≤C
(

s−1||Psy||2 +λ s3
∫ ∫

(λθ)3|y|2
)
. (3.28)

Proof of Claim 2. By (3.15)

s−1
∫ ∫

(λθ)−1|∆y|2 = s−1
∫ ∫

(λθ)−1|Psy− sϕty− s2|∇ϕ|2y|2

≤ Cs−1
∫ ∫

(λθ)−1(|Psy|2 + s2|ϕt |2|y|2 + s4(λθ)4|y|2
)

≤ C
(
||Psy||2

λ s
+ s3

∫ ∫
(λθ)3|y|2

)
, (3.29)

provided that s and λ are large enough, where we used (3.2) in the last line to bound ϕt . On the other
hand,

λ s
∫ ∫

(λθ)|∇y|2 = λ s{
∫ ∫

(λθ)(−∆y)y−
∫ ∫

(∇(λθ) ·∇y)y}

≤ λ

2s

∫ ∫
(λθ)−1|∆y|2 + λ s3

2

∫ ∫
(λθ)3|y|2 + λ s

2

∫ ∫
∆(λθ)|y|2

≤ C
(

s−1||Psy||2 +λ s3
∫ ∫

(λθ)3|y|2
)
, (3.30)

by (3.29), provided that s≥ s2 ≥ s1 and λ ≥ λ2 ≥ λ1. Then (3.28) follows from (3.29)-(3.30). �
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We infer from (3.27)-(3.28) that

||Pay||2 +λ s
∫ ∫

(λθ)|∇y|2 +λ s−1
∫ ∫

(λθ)−1|∆y|2 +λ s3
∫ ∫

(λθ)3|y|2

≤C
(
||e−sϕPp||2 +4s

∫ ∫
∂ j∂iϕ∂ jy∂iy+A−1

λ s3
∫ T

0

∫
ω0

(λθ)3|y|2
)
. (3.31)

By (3.24),

s
∫ ∫

∂ j∂iϕ∂ jy∂iy≤−sλ

∫ ∫
g(t)eλψ

∂ j∂iψ∂ jy∂iy≤Cs
∫ ∫

(λθ)|∇y|2.

Therefore, for λ large enough,

||Pay||2 +λ s3
∫ ∫

(λθ)3|y|2 +λ s
∫ ∫

(λθ)|∇y|2 +λ s−1
∫ ∫

(λθ)−1|∆y|2

≤C
(
||e−sϕPp||2 +λ s3

∫ T

0

∫
ω0

(λθ)3|y|2
)
. (3.32)

Using (3.16) and (3.32), we see that for λ large enough

λ s−1
∫ ∫

(λθ)−1|yt |2 ≤ Cλ s−1
∫ ∫

(λθ)−1(|Pay|2 + s2|∇ϕ|2|∇y|2 + s2|∆ϕ|2|y|2
)

≤ C
(
||e−sϕPp||2 +λ s3

∫ T

0

∫
ω0

(λθ)3|y|2
)
.

We conclude that there exists some number λ3 ≥ λ2 such that for all λ ≥ λ3 and all s≥ s2, we have

λ s3
∫ ∫

(λθ)3|y|2 +λ s
∫ ∫

(λθ)|∇y|2 +λ s−1
∫ ∫

(λθ)−1(|∆y|2 + |yt |2)

≤C
(
||e−sϕPp||2 +λ s3

∫ T

0

∫
ω0

(λθ)3|y|2
)
. (3.33)

Replacing y by e−sϕv in (3.33) gives at once (3.12). The proof of Proposition 3.2 is complete for vT ∈
H2(T) and f = −vt −∆v ∈ H1(0,T,L2(T2)). The general case (vT ∈ L2(T2) and f ∈ L2(0,T,L2(T2)))
follows by density. �

We are now in a position to establish the observability inequality for the adjoint system (1.34)-(1.37).

Proposition 3.3. Let T,σ ,K, K̃,ω0,ψ0,ψ,g,ϕ and θ be as in Proposition 3.1. Pick any open set ω with
ω0 ⊂ ω . Then there exist some constants λ2 ≥ λ1, s2 ≥ s1 and C2 > 0 such that for all λ ≥ λ2, all s≥ s2
and all (vT ,wT ) ∈ [L2(T2)]2, if (v,w) denotes the solution of (1.34)-(1.37), then we have∫ T

0

∫
T2
[λ sθ |w|2 +(sθ)−1(|∆v|2 + |vt |2)+λ

2(sθ)|∇v|2 +λ
4(sθ)3|v|2]e−2sϕdxdt

≤C2

∫ T

0

∫
ω

λ
8(sθ)7|w|2e−2sϕdxdt. (3.34)

As a consequence, there is a constant Cobs > 0 independent of (vT ,wT ) such that∫
T2

(
|v(x,0)|2 + |w(x,0)|2

)
dx≤Cobs

∫ T

0

∫
ω

|w(x, t)|2dxdt. (3.35)
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Proof. It is clear that v ∈C([0,T ],L2(T2))∩L2(0,T,H1(T2)) and that w ∈ L2(0,T,L2(T2)), so that by
(1.34)-(1.35), vt +∆v ∈ L2(0,T,L2(T2)) and−wt +c ·∇w ∈ L2(0,T,L2(T2)). It follows then from (3.10)
and (3.12) that we have∫ T

0

∫
T2

[
λ sθ |w|2e−2sϕdxdt +(sθ)−1(|∆v|2 + |vt |2)+λ

2(sθ)|∇v|2 +λ
4(sθ)3|v|2]e−2sϕdxdt

≤C
(∫ T

0

∫
T2
|−wt + c ·∇w|2e−2sϕdxdt +

∫ T

0

∫
ω0

λ sθ |w|2
(
s
|g′|
g

ϕ +1
)
e−2sϕdxdt

+
∫ T

0

∫
T2
|vt +∆v|2e−2sϕdxdt +

∫ T

0

∫
ω0

λ
4(sθ)3|v|2e−2sϕdxdt

)
≤C

(∫ T

0

∫
T2
|v−w|2e−2sϕdxdt +

∫ T

0

∫
ω0

λ sθ |w|2
(
s
|g′|
g

ϕ +1
)
e−2sϕdxdt

+
∫ T

0

∫
T2
|c ·∇v+

(
b(x+ tc)−1

)
(v−w)|2e−2sϕdxdt +

∫ T

0

∫
ω0

λ
4(sθ)3|v|2e−2sϕdxdt

)
,

where C := max(C0,C1). In what follows, C denotes a constant (which does not depend on s,λ ,vT ,wT )
that may vary from line to line. Taking s ≥ s2 ≥ s1 and λ ≥ λ2 ≥ λ1 with s2,λ2 large enough, we can
absorb the first and third integral terms in the right hand side of the last equation, so that∫ T

0

∫
T2

[
λ sθ |w|2e−2sϕ +(sθ)−1(|∆v|2 + |vt |2)+λ

2(sθ)|∇v|2 +λ
4(sθ)3|v|2]e−2sϕdxdt

≤C
(∫ T

0

∫
ω0

λ sθ |w|2
(
s
|g′|
g

ϕ +1
)
e−2sϕdxdt +

∫ T

0

∫
ω0

λ
4(sθ)3|v|2e−2sϕdxdt

)
. (3.36)

It remains to eliminate the last integral term. To do this, following [17], we derive local energy estimates.
Introduce a cut-off function χ such that

χ ∈C∞
0 (ω), (3.37)

0≤ χ(x)≤ 1, x ∈ T2, (3.38)
χ(x) = 1, x ∈ ω0. (3.39)

We have that ∫ T

0

∫
ω0

λ
4(sθ)3|v|2e−2sϕdxdt ≤

∫ T

0

∫
T2

χλ
4(sθ)3|v|2e−2sϕdxdt. (3.40)

Using (1.35), we obtain that∫ T

0

∫
T2

χλ
4(sθ)3|v|2e−2sϕdxdt =

∫ T

0

∫
T2

χλ
4(sθ)3vwe−2sϕdxdt

+
∫ T

0

∫
T2

χλ
4(sθ)3v(−wt)e−2sϕdxdt

+
∫ T

0

∫
T2

χλ
4(sθ)3v(c ·∇w)e−2sϕdxdt

=: M1 +M2 +M3.
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Using Cauchy-Schwarz inequality and (3.37)-(3.38), we have that for every ε > 0

|M1| ≤ ε

∫ T

0

∫
T2

λ
4(sθ)3|v|2e−2sϕdxdt +

1
4ε

∫ T

0

∫
ω

λ
4(sθ)3|w|2e−2sϕdxdt. (3.41)

On the other hand, integrating by parts with respect to t in M2 yields

M2 =
∫ T

0

∫
T2

χλ
4(sθ)3vtwe−2sϕdxdt +

∫ T

0

∫
T2

χλ
4(3s3

θ
2
θt −2s4

ϕtθ
3)vwe−2sϕdxdt

= M1
2 +M2

2 .

For M1
2 , we notice that for every ε > 0 we have that

|M1
2 | ≤ ε

∫ T

0

∫
T2
(sθ)−1|vt |2e−2sϕdxdt +

1
4ε

∫ T

0

∫
ω

λ
8(sθ)7|w|2e−2sϕdxdt. (3.42)

Since |θt |+ |ϕt | ≤Cλθ 2, we infer that for every ε > 0

|M2
2 | ≤ C

∫ T

0

∫
T2

χs4(λθ)5|vw|e−2sϕdxdt

≤ ε

∫ T

0

∫
T2

λ
4(sθ)3|v|2e−2sϕdxdt +

C
εs2

∫ T

0

∫
ω

λ
6(sθ)7|w|2e−2sϕdxdt. (3.43)

Similarly, integrating by parts with respect to x in M3 yields

M3 = −
∫ T

0

∫
T2
(c ·∇χ)λ 4(sθ)3vwe−2sϕdxdt−

∫ T

0

∫
T2

χλ
4(sθ)3(c ·∇v)we−2sϕdxdt

+
∫ T

0

∫
T2

χλ
4(3s3

θ
2(c ·∇θ)−2s4

θ
3(c ·∇ϕ)

)
vwe−2sϕdxdt

= −M1
3 −M2

3 +M2
3 . (3.44)

For any ε > 0, we have that

|M1
3 | ≤ ε

∫ T

0

∫
T2

λ
4(sθ)3|v|2e−2sϕdxdt +

C
ε

∫ T

0

∫
ω

λ
4(sθ)3|w|2e−2sϕdxdt (3.45)

and

|M2
3 | ≤ ε

∫ T

0

∫
T2

λ
2(sθ)|∇v|2e−2sϕdxdt +

C
ε

∫ T

0

∫
ω

λ
6(sθ)5|w|2e−2sϕdxdt. (3.46)

Finally, since |∇θ |+ |∇ϕ| ≤Cλθ , we have that

|M3
3 | ≤ C

∫ T

0

∫
T2

χλ
5(sθ)4|vw|e−2sϕdxdt

≤ ε

∫ T

0

∫
T2

λ
4(sθ)3|v|2e−2sϕdxdt +

C
ε

∫ T

0

∫
ω

λ
6(sθ)5|w|2e−2sϕdxdt. (3.47)

Gathering together (3.36)-(3.47), taking ε small enough, and noticing that |g′|ϕ/g ≤ Cθ 2, we obtain
(3.34). It remains to prove the observability inequality (3.35). Pick any (vt ,wT ) ∈ [L2(T2)]2, and denote
by (v,w) the solution of (1.34)-(1.37). Note that v ∈ C([0,T ],L2(T2))∩L2(0,T,H1(T2)) and that w ∈
C([0,T ],L2(T2)). Using classical semigroup estimates, one derives at once (3.35) from (3.34). �
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4. PROOFS OF THEOREMS 1.1, 1.2 AND 1.3

4.1. Proof of Theorem 1.1. Pick some open sets ω1 and ω as in Theorem 1.1, and pick T > 1−
min[0,1] ρ2 +max[0,1] ρ1. Let δ̂ > 0 and σ > 0 be given (small) numbers, to be chosen later on. Set
K := 1− δ̂ and τ := 1+Kσ −min[0,1] ρ2. Pick a function ψ0 as given in Proposition 2.1. Let ψ be as in
(3.1) with t0 := T and K̃ large enough so that (3.2) holds. Then for x ∈ T2 \ω0, we have that

−2K(t−T )− c ·∇ψ0(x)≥ 2K(T −σ)−2
(
τ + max

x2∈[0,1]
ρ1(x2)

)
, for t ∈ (0,σ),

−2K(t−T )− c ·∇ψ0(x)≤ 2Kσ −2
(
τ−1+ min

x2∈[0,1]
ρ2(x2)

)
, for t ∈ (T −σ ,T ),

c ·∇(c ·∇ψ0)(x)−2K = 2−2(1− δ̂ )> δ̂ .

Then the conditions (3.8)-(3.9) are satisfied, and (3.7) holds provided that

T ≥ 2σ +K−1(1− min
x2∈[0,1]

ρ2(x2)+ max
x2∈[0,1]

ρ1(x2)
)
,

a condition which is fulfilled for δ̂ and σ small enough. Thus we can apply Proposition 3.1, Proposition
3.2 and Proposition 3.3. The observability inequality (3.35) gives the desired null controllability of
system (1.30)-(1.33).

4.2. Proof of Theorem 1.2. Let c = (1, p/q), ω0 and ω be as in Theorem 1.2. Let ψ0 be the func-
tion given by Proposition 2.3. Pick any T > q. Then we can find some numbers τ ∈ (0,1], σ ∈
(0,min(1,T/2)) and δ̂ ∈ (0,1) such that, taking K := 1− δ̂ , we have

T ≥ σ +
q+ τ

K
, (4.1)

τ−Kσ ≥ 0. (4.2)

Let ψ be as in (3.1) with t0 := T and K̃ large enough so that (3.2) holds. Then for x ∈ T2 \ω0, we have
that

−2K(t−T )− c ·∇ψ0(x)≥ 2K(T −σ)− (2q+2τ)≥ 0, for t ∈ (0,σ),

−2K(t−T )− c ·∇ψ0(x)≤ 2Kσ −2τ ≤ 0, for t ∈ (T −σ ,T ),

c ·∇(c ·∇ψ0)(x)−2K = 2−2(1− δ̂ )> δ̂ .

the conditions (3.7), (3.8) and (3.9) are satisfied. Thus we can apply Proposition 3.1, Proposition 3.2
and Proposition 3.3. The observability inequality (3.35) gives the desired null controllability of system
(1.30)-(1.33).

4.3. Proof of Theorem 1.3. Let c = (1,ζ ) with ζ ∈ Iδ and f2(δ ,ζ ) < 1. Pick any nonempty open set
ω in T2. We can assume that 0 ∈ ω without loss of generality. Pick any open set ω0 with 0 ∈ ω0 and
ω0 ⊂ ω . Let the pair (p,q) and the function ψ0 be as given by Proposition 2.4. Note that

|c ·∇(c ·∇ψ0)(x)−2| ≤ f2(δ ,ζ )< 1, x ∈ T2 \ω0,

and hence there is some number δ̂ ∈ (0,1) such that

c ·∇(c ·∇ψ0)(x)> 2− δ̂ , x ∈ T2 \ω0.
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Pick any τ ∈ (0,1], σ ∈ (0,min(1,T/2)) and K := 1− δ̂ . Let ψ be as in (3.1) with t0 := T/2 and K̃ large
enough so that (3.2) holds. Then for x ∈ T2 \ω0, we have that

−2K(t− T
2
)− c ·∇ψ0(x)≥ 2K(

T
2
−σ)− (2q+2τ), for t ∈ (0,σ),

−2K(t− T
2
)− c ·∇ψ0(x)≤−2K(

T
2
−σ)−2τ, for t ∈ (T −σ ,T ),

c ·∇(c ·∇ψ0)(x)−2K > 2− δ̂ −2(1− δ̂ ) = δ̂ .

It is clear that the conditions (3.7), (3.8) and (3.9) are satisfied for T > 0 large enough. Thus we can
apply Proposition 3.1, Proposition 3.2 and Proposition 3.3. The observability inequality (3.35) gives the
desired null controllability of system (1.30)-(1.33).
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