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Abstract

Gaussian-PLDA  (G-PLDA) modeling for i-vector based
speaker verification has proven to be competitive versus heavy-
tailed PLDA (HT-PLDA) based on Student’s t-distribution,
when the latter is much more computationally expensive. How-
ever, its results are achieved using a length-normalization,
which projects i-vectors on the non-linear and finite surface
of a hypersphere. This paper investigates the limits of linear
and Gaussian G-PLDA modeling when distribution of data is
spherical. In particular, assumptions of homoscedasticity are
questionable: the model assumes that the within-speaker vari-
ability can be estimated by a unique and linear parameter. A
non-probabilistic approach is proposed, competitive with state-
of-the-art, which reveals some limits of the Gaussian modeling
in terms of goodness of fit. We carry out an analysis of residue,
which finds out a relation between the dispersion of a speaker-
class and its location and, thus, shows that homoscedasticity
assumptions are not fulfilled.

1. Introduction

Introduced in [1], the i-vector representation of speech utter-
ances provides a feature vector of low dimension (less than
600), independent of the length of the utterance. A speaker
verification system using these features and a simple classifier
outperforms the previous approaches, like Joint Factor Anal-
ysis (JFA) [2, 3]. The Bayesian generative model designed
to provide a consistent probabilistic framework for i-vectors is
the PLDA, introduced in [4] for face recognition and adapted
for speaker verification in [5, 6]. The first approach, Gaussian
PLDA (G-PLDA), assumed that speaker and residual compo-
nents have Gaussian distributions. To deal with severe within-
class distortions and increase the robustness to outliers, a spe-
cific PLDA approach for modeling i-vector distributions was
introduced in [5], based on Student’s t-distribution and referred
to as heavy-tailed PLDA. Student’s t-distribution has heavier
tails compared to the exponentially-decaying tails of a Gaus-
sian, providing a better representation of the speaker and resid-
ual subspaces, including the outliers [7].

More recently, a pre-conditioning before any i-vector Gaus-
sian modeling has been introduced [8, 9]. I-vectors are whitened
and length-normalized, projecting data onto a spherical surface.
It is shown [8] that this technique improves Gaussianity of the
i-vectors. Also, it involves a number of properties related to in-
tersession compensation [9, 10] and contributes strongly to the
model efficiency [11]. Using these normalized i-vectors, per-
formance of the Gaussian and Heavy-Tailed PLDA models are
comparable, the former being much faster both in training and
in testing.
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The goal of this paper is to study and reveal some limits of
the G-PLDA modeling when applied in the i-vector field. After
length-normalization (LN), data are closer to Gaussianity as-
sumptions but they lie on the non-linear and finite surface of
a hypersphere. This point caught our attention. We consider
that this discrepancy between a non-linear data-manifold and a
linear framework could reveal some limits of G-PLDA for mod-
eling i-vectors distributions. In particular, homoscedasticity of
the within-class variability is questionable, when data distribu-
tion is spherical: PLDA assumes that it exists a unique (thus
speaker-independent) and linear parameter of within-class vari-
ability. We consider that spherical distributions cannot fulfill
such an assumption.

First, we propose a new approach for estimating the PLDA
metaparameters. Based on the pre-conditioning procedure and a
deterministic estimate of parameters, this non-probabilistic ap-
proach helps to assess ability of a maximum likelihood (ML)-
based approach to improve the goodness of fit, and reveals some
lack of compliance of i-vector distributions with G-PLDA as-
sumptions.

Second, we analyze homoscedasticity of G-PLDA model-
ing after LN. Any significant relation between the within-class
variability of a speaker and another class parameter would vio-
late the assumption of homoscedasticity. We compute posterior
likelihoods of speaker and residual factors for each speaker of
our development corpus and confirm the concern about linearity
and homoscedasticity assumptions.

2. Gaussian-PLDA
2.1. Modeling

Introduced in [4], Gaussian Probabilistic Linear Discriminant
Analysis (PLDA) is a generative i-vector model. The most com-
mon PLDA model in speaker verification assumes that each p-
dimensional i-vector w of a speaker s can be decomposed as

W=+ Py, +e (1

The mean vector (i is a global offset, ® is a p X r matrix whose
columns provide a basis for the eigenvoice subspace, the r-
dimensional vector y, is the speaker factor and ¢ is the residual
term. Therefore, the speaker-specific part ;i + ®y s represents
the between-speaker variability and is assumed to be tied across
all utterances of the same speaker. G-PLDA assumes that all
latent variables are statistically independent. Standard normal
prior is assumed for the speaker factor ys and normal prior for
the residual term e with mean 0 and full covariance matrix A.
The maximum of likelihood (ML) point estimates of the model
parameters are obtained from a large collection of development



data using an expectation-maximization (EM) algorithm as in
[4].

Note that this approach is the simplified version of the orig-
inal PLDA model: eigenchannels have been removed, as pro-
posed in [5], since i-vectors are of sufficiently low dimension
(400 to 600 usually) and since PLDA modeling does not show
major improvement with eigenchannels.

2.2. Verification score

The speaker verification score, given the two i-vectors w; and
w2 involved in a trial, is the likelihood-ratio

score = lo Plwy, walbtar) (w1, W2|0rar)
o8 P (W17W2|9non)

(€3

where the hypothesis 6., states that inputs w1 and wo are from
the same speaker and the hypothesis 6, states they are from
different speakers. Likelihoods of (2) can be decomposed as

P(wiwiltiar) = [ T] P(wili+ #9.8) P (0. 1) dy

Yi=1,2

P(W17W2|6non): H

i=1,27Y

P (wiu+ ®y,A) P (y]0,1) dy

3

For the G-PLDA case, all the marginal likelihoods are Gaussian
and the score (2) can be evaluated analytically [12]
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where V () denotes normal density function and
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The matrix 3¢ consists of a probabilistic total covariance ma-
trix, adding variabilities of the decomposition to take into ac-
count underlying assumptions of the probabilistic model. The
matrix X, is the covariance matrix of speaker-dependent factor
(across-class). It is worth noting that computing this score with
test vectors depends solely on the knowledge of metaparame-
ters X;o¢ and 3, (speaker and residual factors of i-vectors of
test have not to be computed).

3. Conditioning

A pre-processing step applied before any i-vector modeling has
been introduced in [8, 9], following WCC Normalization and
cosine-scoring technique of [2]. I-vectors are whitened and
length-normalized, in order to make them more Gaussian. The
most commonly used whitening technique is a standardization
and the transformation applied to an i-vector w can be summa-
rized as follows:
we AW (6)
a7 v =]

Nl= | Nl

First, data are standardized according to the mean p and a vari-
ability matrix A of a training corpus. Then they are length-
normalized, confining the i-vectors to the hypersphere of unit

radius. Parameters are computed for the i-vectors present in the
training corpus and applied to test i-vectors. The matrix A can
be the total covariance matrix 3 or, as proposed in [2, 10], the
within-class covariance matrix. We denote in this article LY,
LW these transformations (Length-normalization of standard-
ized vectors according to 3 or W).

In [8], it is shown that this technique improves Gaussian-
ity of i-vectors. It reduces the gap between the underlying as-
sumptions on the data distribution and the real distribution and
also reduces the dataset shift between development and trial i-
vectors [13]. Performance of a G-PLDA system with this pre-
conditioning is competitive versus the HT-PLDA, when the lat-
ter shows a significant higher complexity. It is shown in [11]
that this procedure mainly contributes to model efficiency. As
proposed in [9], its two steps can be iterated. As a result, i-
vectors tend to be simultaneously A-standardized and length-
normalized (magnitude 1), involving a number of properties re-
lated to intersession compensation. Some of them are detailed
in [9, 10].

4. Proposed approach
4.1. Deterministic estimation of G-PLDA parameters

G-PLDA scoring of (4) is based solely on the determination of
metaparameters 3¢, and 3,.. Factors y, and € have not to be
computed. Given a training corpus 7 comprised of i-vectors of
S speakers, we denote by X the total covariance matrix of T
and B the between-class covariance matrix of 7 defined by

S
B=3" (wo—p)(w.— ) )

where n s is the number of utterances for speaker s, n is the total
number of utterances of 7, w is the mean i-vector of s and p
represents the overall mean of 7. Let W denote the within-
class covariance matrix of 7, equal to ¥ — B.

Singular value decomposition of B provides a matrix P whose
columns are the eigenvectors of B sorted by decreasing order
of eigenvalues and a corresponding eigenvalue diagonal matrix
A, such that B = PAP?. Given a rank » < p, the r-range
principal between-class variability can be summarized into the
p X p covariance matrix B1., defined by

Bl:r = Pl:rAlerI:'r (8)

where P., denotes the p X r matrix comprised of the first r
columns of P and A ., the r X r top-left block of A.

To estimate G-PLDA metaparameters ® and A, we propose
the following procedure:

o Apply LW-Conditioning of Equation (6), eventually it-
erated.

e Replace EM-ML based estimates of speaker and residual
parameters by the following direct expressions:

Etot =X
9
{Eac = Bl:'r ( )

4.2. Justification of the approach and conformity to G-
PLDA assumptions

Ignoring the probabilistic constraints of G-PLDA, we presume
that the most relevant metaparameters 3¢,; and 3. (by only
considering information of the training set and assuming that



exists a r-range eigenvoices subspace) are the total covariance
matrix 3 and the part B1., of within-speaker variability due to
the principal axes of B. In order to assess conformity of this
non-probabilistic approach to G-PLDA assumptions (standard-
ity of y, statistical independence between y and ¢, Gaussian-
ity of factors), its factors have first to be expressed. As matrix
P of (8) is orthogonal, we use the equality

I= PPt = PIITP§ZT‘ + P(7'+1):pP€r+1):p (10)

where I is the p x p identity matrix and P (,;1)., is the p X
(p — r) matrix comprised of the last (p — r) columns of P, to
decompose an i-vector w of a speaker s as follows:

W = U + I:Pl:'rPtl:r (Ws - /l):l
+ [P(r+1):pP€r+1):p (Ws - ,LL) +w — Ws] an

where w is the mean i-vector of speaker s. Factor and matricial
parameters can be expressed as

_1
Yo =47 P, (Ws — )
1
P = Pl:rAli:r (]2)
g = P(T+1)5PPE7‘+1):p (WS - /‘l‘) +W =Wy

A straightforward computation shows that the covariance ma-
trix of u + @y, is equal to Bi.,, as desired. Note that com-
puting factors y, and ¢ requires the knowledge of the speaker
mean-vector w, which is unknown for test vectors. G-PLDA
assumes that the speaker factor y is standardized and that all
latent variables are statistically independent. Considering solely
data from the development corpus, a straightforward computa-
tion shows that y;, as defined in (12), has a mean equal to 0
and a covariance matrix equal to the identity matrix I. More-
over, to obtain covariance matrices of (5) from (3), only nullity
of the covariance between ys and ¢ (a necessary condition of
independence) is required. As y, and ¢ are centered, this value
is equal to

_1
E [ysgt] = Al:q? Pi:rBP(r+l):pPEr+1):p

_1
+E AP (We —p) (w—w) | (13)

As PtMBP(,«H);p = 0, the first term is null. The second term
1

is equal to A 2PL Es[(ws — i) BEwes [w —ws]] = 0,
since Ewes [W — ws] = 0.

Normal priors are assumed for speaker and session fac-
tors. Gaussian shape of factors can be estimated by analyz-
ing square-norms of their standardized versions [8]. Indeed, the
square-length of vectors drawn from a standard Gaussian dis-
tribution follows a x? distribution with number of degrees of
freedom equal to the dimension of the vector. Figure 1 presents
histograms of square-norm distributions of standardized fac-
tors ys (left panel) and ¢ (right panel). As the model assumes
ys ~ N (0,I) and e ~ N (0,A) , the standardized versions

of ys and € are assumed to be y, and A ze. Thus, Figure 1
2

displays || ||*> (left panel) and HAfésH (right panel) for the

development set (thick line) and the evaluation set NIST SRE10

male telephone (thin line). Also, Figure 1 depicts the pdfs of

x? distributions with  and p degrees of freedom (dashed line).
Three systems are considered:

ys no L-norm €
R — dev — dev
| | — eval T P — eval
---- chi2| 8 | F ---- chi2

T T T T T
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ys LW deterministic €
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— eval /
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Figure 1: Histograms of the square norm distributions of G-
PLDA factors. Graphs also depict the pdfs of x? distributions
with r degrees of freedom for y and p for €.

1. No LN procedure has been carried out before G-PLDA
modeling. Development and evaluation i-vectors are
centered only, by subtracting the mean vector of the de-
velopment set,

2. LW-normalization (2 iterations) followed by EM-ML
based G-PLDA modeling.

3. LW-normalization (2 iterations) followed by the pro-
posed deterministic approach.

Three observations could be gathered from this analysis. First,
G-PLDA factors extracted from initial i-vectors have a non-
symmetric and heavy-tailed distribution. Moreover, a severe
dataset shift between development and evaluation i-vectors oc-
curs. Second, after LN, distributions better match the x? distri-
butions. In particular, non-Gaussian behavior and dataset shift
of the residual factor are significantly reduced. Lastly, his-
tograms of the two post-LN approaches are similar, for both
factors. This last result shows that the deterministic estimate
improves the Gaussian shape of factors and reduces the mis-
match between development and evaluation datasets in a similar
manner to ML technique.

5. Experimental setup

Evaluation was performed on NIST SREOS8 core conditions 6
and 7 male only, corresponding to telephone-telephone (re-
spectively All and English-only) enrollment-verification tri-
als, SRE10 extended condition 5 male only, corresponding to
telephone-telephone enrollment-verification trials and SRE12
core conditions 4 and 5 male only, corresponding to telephone



Table 1: Comparison of performance between deterministic and EM-ML approaches, without or with pre-conditioning.

Conditioning No length-norm. LY LW

Parameter estimation EM-ML deterministic EM-ML EM-ML deterministic
NIST-SRE male evaluation [ minDCF  EER(%) [ minDCF  EER(%) [ minDCF  EER(%) [ minDCF  EER(%) | minDCF  EER(%)
2008 tel. all (det 6) 0.317 6.52 0.342 7.44 0.277 5.24 0.279 4.92 0.289 4.92
2008 tel. eng. (det 7) 0.180 3.19 0.176 4.10 0.121 1.82 0.116 1.59 0.128 1.59
2010 tel. extended (det 5 ext) 0.599 5.97 0.601 6.76 0.496 240 0.483 2.28 0.487 2.28
2012 tel. with added noise (det 4) 0.463 5.37 0.463 5.30 0.438 3.53 0.412 3.21 0.452 3.21
2012 tel. noisy environment (det 5) 0.673 7.27 0.639 19.88 0.419 2.48 0.394 2.24 0.433 2.40

with added noise and noisy environment. These last two con-
ditions enable to evaluate the proposed approach on noisy ut-
terances. EM-ML-based and deterministic estimations of G-
PLDA metaparameters have been evaluated with LIA con-
figuration : the feature extraction, 512-components GMM-
UBM functionalities and i-vector extraction configurations for
NIST SREO08, SRE10 evaluations are described in [11]. For
SRE12 evaluation, a gender-dependent LIA i-vector extractor
was trained on data from NIST SRE04,05,06,08,10, Switch-
board II Phases 2 and 3, Switchboard Cellular Parts 1 and 2, giv-
ing 1879 speakers in 25024 segments of speech. PLDA model
was trained by merging two datasets: first, i-vectors of the same
dataset than for extraction, second, i-vectors of target speakers
SRE12 and their noisy versions. For each clean segment of a
target speaker, two noisy versions (6dB and 15dB) are gener-
ated, following the method suggested in [14]. Channel factor
€ of G-PLDA is kept full and speaker factor is fixed to its op-
timal value in terms of performance. For SRE12 multi-cut en-
rollment, scoring is performed by averaging all the enrollment
i-vectors of each target speaker after LN. The size of i-vectors
is 400.

6. Results

Table 1 summarizes results of the tests performed on the NIST
SRE conditions described above, in terms of Equal Error Rate
and normalized minimum Detection Cost Function as defined
by NIST for SREOS and SRE10 evaluations (DCF 2010 is ap-
plied for SRE12). Evaluations have been carried without or with
LN, and with EM-ML or deterministic approach. Also, results
of LX-conditioning (standardization according to the total co-
variance matrix followed by LN) are reported in columns 5,6 of
Table 1, since this transformation is the most commonly imple-
mented. Comparison of systems without or with conditioning
recalls the necessity of LN to handle i-vectors in a Gaussian
framework: it yields 49% and 24% relative improvements in
average EER and minDCF. Comparison of systems with L33 or
LW conditioning recalls the relevance of the latter, remarked
in [10]. LW -conditioning leads to 8.5% and 3.6% relative im-
provements in average EER and minDCF.

Without LN, the deterministic approach degrades perfor-
mance. Accuracy degradation can even be considerable (see
EER of last condition, SRE12 noisy environment). EM-ML
approach brings the expected improvement in performance in
a probabilistic context. However, after LW conditioning, de-
terministic approach yields similar performance across the re-
ported conditions, relative to EM-ML, in terms of EER as
minDCF (with a slight gap in terms on minDCEF, except for last
conditions in noisy environment). It even outperforms, in terms
of EER, the commonly used L3-based second system.

To better assess independence of these results to the up-

stream configuration, we carried out the same NIST SRE10
evaluation condition with i-vectors we already used in [10],

provided by BUT laboratory [15]. EERs and minDCFs
of EM-ML vs deterministic approach are respectively equal
to (1.04%,0.31) vs (1.04%,0.30) for male set, and to
(1.78%,0.33) vs (1.75%, 0.33) for female set, confirming the
previous observations.

Results of the deterministic approach recall the relevance
of LW conditioning. After this procedure, i-vectors fit better
the Gaussian model. But they also reveal some limits of G-
PLDA statistical modeling, in terms of goodness of fit. The
next section addresses this issue.

7. Limits of Gaussian linear modeling for
i-vectors

While Gaussian PLDA applied to whitened and length-
normalized i-vectors has shown its efficiency, previous out-
comes raise an issue which relates to the relevance of a lin-
ear Gaussian approach with i-vectors. Model training con-
sists of fitting a parametric model to the training set. The
LW -conditioning and deterministic estimation are built solely
on covariance parameters of this latter, ignoring the aims of
Gaussianity and generalization to new observations, in partic-
ular from unknown speakers. Moreover, the eigenvoice ba-
sis is orthogonal, which can limit the accuracy of the esti-
mate. By increasing metaparameter likelihoods, EM-ML al-
gorithm should enhance the Gaussian modeling. Previous re-
sults show that EM-ML based approach does not bring the ex-
pected improvement of performance. After LN, data are closer
to probabilistic assumptions but they lie on the non-linear and
finite surface of a hypersphere. We consider that this inconsis-
tency between a non-linear data-manifold and a linear Gaussian
framework could reveal some limits of G-PLDA modeling for
i-vectors. In particular, the assumption that there exists a lin-
ear and speaker-independent metaparameter A of within-class
variability is questionable.

7.1. Heteroscedasticity of residue

G-PLDA model assumes homoscedasticity of speaker-classes
(i.e., that their distributions share the common covariance ma-
trix A). It is noticed in [16] that two Gaussian distributions
laying on a p-sphere can only be homoscedastic if the mean
feature vector of one class is the same as that of the others up
to a sign . Equality of covariance, when model is homoscedas-
tic, assumes that the modeling errors (the residue between the
actual variability of a class s and the metaparameter A) are un-
correlated, normally distributed and that their variances do not
vary with the effects being modeled. Any significant relation
between this residue and another class parameter would violate
the assumption of random prior. Such a relation could penalize
the goodness of fit of G-PLDA modeling.

Lexcept when the common covariance matrix is the identity matrix
or a multiple of the identity matrix.
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Figure 2: Likelihoods of speaker and residual factors computed on PLDA development speaker-classes, without or with length-
normalization and using the different approaches. Figure also depicts the coefficient of determination R? between the likelihoods

as a function of the minimal number of utterances per speaker.

7.1.1. Property of length-normalized vectors

First, we present a simple relation between the variance of a
training speaker-class and the position of its centroid, once all
the i-vectors are length-normalized.

Let {w;}]*, denote the set of ns i-vectors of a speaker s
and W its mean vector. The variance of this sample is equal to:

1 &
= fwi =Wl
Ms i34

1<, _
D Dl L L T
S =1

1— ||w5)? (15)

as all the vectors have a norm of 1. This equality shows
that a link exists between the position of a speaker-class and
its variance. G-PLDA model assumes that for any speaker and,
thus, for any speaker-dependent term p + ®y s, the within-class
variability can be expressed by a unique speaker-independent
covariance matrix A. Equation (15) shows a dependency be-
tween the dispersion of a class and its position in regard to the
origin, expressed by ||W5||®. To better assess this phenomenon
and observe whether or not it occurs with G-PLDA class-factors
ys and ¢, the next paragraph analyzes heteroscedasticity of the
residue €.

7.1.2. Heteroscedasticity

Given a G-PLDA model M = (u, ®, A) computed on a de-
velopment corpus 7, we denote by {w i}, the collection of
ns i-vectors from speaker s of 7 and ys, {as,i}fﬁl the corre-
sponding factors provided by M. The model assumes that, for
1 =1tons

(16)

We denote by ik (ys|M) the posterior log-likelihood of y s ac-
cording to M, equal to

Woi = p+ Py, +es,

Uk (ys|M) =1log N (ys] 0,1)

__r 1 2
= —Tlog(m) — 2 llvolF a7

Let Ik (M) denote the average posterior log-likelihood of the
residue over all observations of s according to M, given by

Ik (el M) = ni Zi log N (ws,ilp + @y, A)

1

2Ns

Do (Wai —p— @y ) AT (Wai —pu— By,)
(13)

1
= —glogQW— §1og\A| —

Figure 2 top panel displays llk (ys|M) and Ik (¢| M) of
speaker-classes from our development corpus 7. Analysis has
been carried out for systems 1, 3, 4, 5 of section 6: without
normalization then (LY, EM-ML), (LW, EM-ML) and (LW,
deterministic). Without normalization (first graph), no relation
occurs between the two likelihoods. The coefficient of deter-
mination R?, which indicates how well data points fit a line, is
indicated in the figure and close to 0. The least-square line is
displayed and close to be horizontal. If variances of A and € ex-
actly match, Ilk (| M) is equal to —Z log 2 — £ log |A| — £.
This value is plotted by a horizontal dashed line. Figure 2 shows
that the series Ik (M) corresponds to its theoretical value be-
fore length-normalization.

After any LN technique (graphs 2 to 4), a strong linear re-
lation occurs between the two likelihoods. All the R? exceed
0.59. It can be objected that this result is due to the less in-
formative training speaker-classes (training speakers with low
amount of utterances). Figure 2 bottom panel displays the R?
series between the likelihoods (y-axis), only for speakers with
a minimal number of utterances (x-axis). The intensity of the
relation remains high and even slightly increases with the min-
imal amount of utterances, thus for the main training classes in
terms of information.

This significant relation between likelihoods of G-PLDA
class-factors y and €, entails heteroscedasticity of the residue.
The likelihood ik (£|M) is equal, up to a constant, to a linear
function of A ™!, This relation shows that the residual variance
is depending on the class position, which prevents an overall
linear parameter A to be optimal. It should be replaced by



a class-dependent parameter A, at least taking into account
|l + @y || to fit to the actual class-dispersion.

8. Conclusion

This paper investigates the limits of linear and homoscedastic
Gaussian PLDA modeling applied to spherical i-vector distribu-
tions. First, we propose a new deterministic approach for esti-
mating PLDA metaparameters. This non-probabilistic approach
enables to assess ability of a maximum likelihood (ML)-based
approach to improve the goodness of fit. It turns out that results
of this non-probabilistic approach are similar to those of the
EM-ML approach in terms of EER, and close in terms of min-
imal DCF. We consider the inefficiency of the latter approach
as an empirical evidence towards lack of compliance with the
model assumptions. Therefore, we carried out an analysis of ho-
moscedasticity, revealing a dependency between the dispersion
of a class and its position in regard to the origin. This significant
relation violates clearly the assumption of homoscedasticity.

Instead of dealing with severe within-class distortions and
outlying observations by proposing non-Gaussian prior, as
done in heavy-tailed PLDA, Gaussian PLDA draws on length-
normalization to bring data onto a surface of high Gaussian like-
lihood. Length-normalization makes the development and trial
i-vector distributions more similar and more Gaussian shaped,
but i-vectors lie on the non-linear and finite surface of a hyper-
sphere. As noticed in [16], assumptions of linearity and ho-
moscedasticity cannot be fulfilled when data share a common
norm and, thus, G-PLDA model cannot be optimal.

Also, these findings confirm the benefit of the LW con-
ditioning. By standardizing data according to a within-class
variability, techniques like WCCN [2] or LW [10] move this
variability towards an isotropic model oI [17]. As remarked in
[10], this model does not favor any principal direction of ses-
sion variability nor dependence between directions and, thus,
alleviates the concern about heteroscedasticity.

9. Perspectives

Advances in i-vector modeling could be achieved by pursuing
the HT-PLDA approach, which attempts to find out adequate
priors, or by preserving length-normalization (as this technique
has underlined importance of the directional information in
the i-vector space) then modeling such representations using
spherical distributions. The difficulty associated with spheri-
cal representations prompts researchers to model spherical data
using Gaussian distributions. Approximations of covariance
matrix have been proposed, based on “unscented transforms”
[18] or first order Taylor expansion of the non-linear length-
normalization [19]. However, the analysis of homoscedastic-
ity presented in this paper shows that the overall within-class
variability parameter should be replaced by a class-dependent
parameter taking into account the local position of the class to
fit to its actual dispersion. Such a non-linear model induces a
complex density by passing the within-class variability parame-
ter through a non-linear function. This model is harder to work
with in practice. It requires further research, to marginalize over
the hidden variables and provide a low time consuming scoring
phase.
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