
HAL Id: hal-02158916
https://hal.science/hal-02158916

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Jack Audio Server: MacOSX port and multi-processor
version

Stéphane Letz, Dominique Fober, Yann Orlarey, Paul Davis

To cite this version:
Stéphane Letz, Dominique Fober, Yann Orlarey, Paul Davis. Jack Audio Server: MacOSX port and
multi-processor version. Journées d’Informatique Musicale - Sound and Music Computing, IRCAM,
Oct 2004, Paris, France. pp.177-183. �hal-02158916�

https://hal.science/hal-02158916
https://hal.archives-ouvertes.fr

JACK AUDIO SERVER: MACOSX PORT AND MULTI-PROCESSOR
VERSION

S.Letz, D.Fober, Y.Orlarey
Grame - Centre national de création musicale

letz, fober, orlarey@grame.fr

P.Davis
Linux Audio System

paul@linuxaudiosystems.com

ABSTRACT

Jack is a low-latency audio server, written for POSIX con-
formant operating systems such as GNU/Linux. It can
connect a number of different applications to an audio
device, as well as allowing them to share audio between
themselves. We present the port for Apple’s MacOS X,
and new developments to take advantage of multi-processor
architecture.

1. INTRODUCTION

There is a long history of specialized systems designed to
simplify the development and use of musical applications.
In the MIDI domain, MIDI Manager, Opcode MIDI Sys-
tem and MidiShare [3] on Macintosh and more recently
the ALSA sequencer [1] on Linux have been designed to
allow separate MIDI applications to run together, share the
hardware MIDI input/ouput, and exchange MIDI events
in real-time. The main idea behind these approaches is
to simplify the task of developers by providing a library
of commonly needed services and let users configure their
system in a very flexible manner by using several sepa-
rated components than can run and collaborate together.

In the audio domain, specialized API are available on
each operating system: for example CoreAudio on Ma-
cOSX, DirectSound and ASIO on Windows, ALSA on
Linux. Some projects like PortAudio [2] provide a uni-
form and more abstract access to all these API. Other ones
like the aRts sound server [5] on Linux provides sharing
of audio I/O and some form off application collaboration
though the MCOP Multimedia Communication Protocol
allowing multimedia applications to be network transpar-
ent.

None of them has been designed to allow several appli-
cations to collaboration in real-time on the same machine.
Jack design focus on two key areas: synchronous execu-
tion of all clients, and low latency operation. Jack is a
low-latency audio server written by Paul Davis and other
developers for POSIX conformant operating systems with
two main goals:

• for programmers, the Jack API provides a high level
abstraction by removing the details of audio inter-
face hardware access. Using a callback based model,
applications can send and receive audio streams
from/to each other as well as to the audio interface.

• for users, using the Jack system allows a more flex-
ible way of working: instead of using a ”mono-
lithic” general purpose heavy application, users can
build their setup by having several smaller and goal
focused applications that collaborate, dynamically
connecting them to meet their specific needs.

For both programmers and users, the Jack system al-
lows important new functionality to be added to the sys-
tem as a whole, without it being added to each application.
Two examples might include:

• live network audio streaming: this can be handled
by a special client that accepts data from other Jack
clients and sends it to a streaming server. This al-
lows all Jack compatible applications to gain stream-
ing functionality without any modification to their
source code.

• integration of external transport/sync signals a spe-
cial client can be written that understands, for exam-
ple, ADAT sync, and maps it into the Jack transport
API. This allows all Jack transport-aware applica-
tions to sync to the external signal, again with no
modification to their source code.

As Jack has evolved, it has also come to include a
shared transport system, allowing multiple applications to
start/stop/locate with sample-accurate synchronization.

The section 2 presents the Jack system, section 3 de-
scribes the port on MacOSX, and finally section 4 de-
scribes the multi-processor version.

2. THE JACK SYSTEM

2.1. Model

Jack provides a high level abstraction for programmers
that removes the audio interface hardware from the pic-
ture and allows them to concentrate on the core function-
ality of their software. It allows applications to send and
receive audio data to/from each other as well as the audio
interface. Most significantly, there is no difference in how
an application sends or receives data regardless of whether
the target/source is another application or an audio inter-
face.

For programmers with experience using several other
audio APIs such as PortAudio, Apple’s CoreAudio, Stein-
berg’s VST and ASIO as well as many others, Jack presents

a familiar model: the program provides a ”callback” func-
tion that will be executed at the right time. The callback
can send and receive data as well as do other signal pro-
cessing tasks. The application programmer is not respon-
sible for managing audio interfaces or threading, and there
is no ”format negotiation”: all audio data within Jack is
represented as 32 bit floating point values.

For those with experiences rooted in the Unix world,
Jack presents a somewhat unfamiliar API. Most Unix APIs
are based on the read/write model spawned by the ”every-
thing is a file” abstraction that Unix is rightly famous for.
Despite the many merits of this model, it has allowed too
many application developers to avoid the real-time nature
aspect of their software’s operation. The result has been
a combination of large scale buffering of data, leading
to greatly increased latency for audio applications, along
with audio dropouts when that buffering is still inadequate
to deal with OS delays or poor software design.

In addition, the Unix read/write model makes it more
difficult to facilitate inter-application audio routing, be-
cause it tends to result in different programs are running
asynchronously; that is, one program is processing data
corresponding to one particular time interval, while an-
other program is working on a different time interval. This
situation does not lend itself to sharing data in a low la-
tency system.

2.2. Code example

Using Jack API within a program is very simple, and typ-
ically consists of the following steps:

- connecting to the Jack server.
- registering ”ports” to enable data to be moved to and

from the application.
- registering a ”process callback” which will be called

at the right time by the Jack server.
- telling Jack that the application is ready to start pro-

cessing data.

A simple audio thru client could be described with the
following code:

#include<jack/jack.h>

jack_default_audio_sample_t * out;
jack_default_audio_sample_t * in;
jack_client_t* client;
jack_port_t* input_port;
jack_port_t* output_port;

int process(jack_nframes_t nframes, void *arg)
{

out = (jack_default_audio_sample_t *)
jack_port_get_buffer(output_port,nframes);

in = (jack_default_audio_sample_t *)
jack_port_get_buffer(input_port,nframes);

memcpy(out,in,
sizeof(jack_default_audio_sample_t)*nframes);

return 0;
}

int main(int argc, char *argv[])
{

client = jack_client_new("foo");
input_port =

jack_port_register(client,
"input",
JACK_DEFAULT_AUDIO_TYPE,
JackPortIsInput,
0);

output_port =
jack_port_register(client,

"output",
JACK_DEFAULT_AUDIO_TYPE,
JackPortIsOutput,
0);

jack_set_process_callback(client,process,0);
jack_activate(client);
sleep(30);
jack_client_close(client);
return 0;

}

More complex programs have a larger API to draw on
if they wish, but many interesting applications will need
nothing more than these steps.

2.3. Internals

2.3.1. Introduction

Jack system is built around several components: a server,
a driver and several clients (Fig 1). Since Jack clients will
typically be separated applications, the system has to be
able to transfer data (like audio buffers) between different
processes, activate them when needed and possibly notify
them when global state changes occur.

Jack Server

Audio driver
(ALSA,

CoreAudio...)

Internal
client

B

Audio
interrupt

Real-time audio buffers
transfer

Server state change
notifications...

External
client

C

External
client

A

Figure 1. Archictecture of Jack server/client system

2.3.2. Server

Jack is based on a server/client model.1 The Jack server is
the center of the system. It interacts with the driver, and
communicates with all registered clients. Triggered by the
driver, the server activates the client graph, a set of con-
nected ”nodes”, each of which must be ”executed” on a
periodic basis. In the case of Jack, the graph is made up

1The following description reflects the state of the Linux implemen-
tation.

of Jack clients, and each one has itsprocessfunction to be
called in a specific order. The connections between each
node may take any configuration whatsoever. Jack has to
serialize the execution of each client so that the connec-
tions represented by the graph are honored (e.g. client A
sends data to client B, so client A should execute before
client B). In the event of feedback loops, there is no ”cor-
rect” ordering of the graph, so Jack just picks one of the
legal possibilities.

Data within a Jack graph is shared between clients (and
the server) using shared memory. Each ”output port” owned
by a client has a shared memory buffer into which the
client can write data. When an ”input port” is connected
to the output port, reading from the input port simply uses
the shared memory buffer. This permits zero-copy seman-
tics for audio processing in many simple scenarios, and
minimal copying even in complex ones.

2.3.3. Driver

The whole graph is executed synchronously by a driver
which interacts with the hardware, typically waking the
server at regular intervals determined typically by its buffer
size. The server then ”distributes” this audio interrupt to
all running clients. The basic requirement for the system
proper functioning is that the server and all clients do their
job, including server/client communications, audio data
transfer and processing between two consecutive audio in-
terrupts (for example with a buffer size of 128 frames at
44100 Hz, this represent a 3 ms duration).

2.3.4. Clients

Clients dynamically register to the server, and establish
connections between themselves. Clients can be internal,
running in the server process, or external. Since the driver
that controls the audio interface presents itself as just an-
other client, sending data to and from the audio interface
is identical to sending it to and from any other client.

Each client will be woken by the engine when it is time
to operate on its data. Great care has been taken to use the
most efficient server/client communication scheme. On
Linux, POSIX FIFO’s are used, which have been shown to
be the fast Linux blocking IPC mechanism until the intro-
duction of futexes in kernel version 2.6 (see 4.3). On Ma-
cOSX, low level IPC mechanisms are used for the same
purpose and reason.

Jack contains an important optimization in its design
for waking clients, a step that requires a full context switch
to another process. On systems with virtual memory (i.e.
any hardware on which running Jack might make sense)
the cost of a context switch does not scale with CPU speed,
and this switch represents the primary overhead of Jack
compared to entirely in-process plugin systems like VST
and AudioUnits. Jack works hard to reduce the total num-
ber of context switches by chaining clients - rather than
switch from the server to a client and then back to the
server before moving on to the next client, we instead have
each client wake the next one in the graph.

2.3.5. Client library

Applications access the server through the client library: it
contains the client side of a Jack application, takes care of
server/client communication, and exposes the API avail-
able for programmers.

Clients must implement a real-time safeprocessfunc-
tion. In other words its code must be deterministic and not
involve functions that might block for a long time. The
general form used to describe RT-safety for Jack purposes
is: cycles = (A * nframes) + C, that is, the time to exe-
cute theprocessfunction must be a direct function (A) of
the number of frames of audio data to be processed, com-
bined with some constant overhead (C). Profiling code is
constantly checking the system behavior in the server:

• too big kernel scheduling latencies or client graph
process overloading is notified to the clients asxruns

• too slow clients during several consecutive audio
cycles are usually removed from the graph.

3. MACOSX PORT

3.1. Porting the Linux code on MacOSX

Since Jack code is ANSI C POSIX, the initial port of the
Linux code mainly required to adapt some missing API
for MacOSX. Some specific adapdations were later done
to yield a more efficient implementation:

• The Jack server audio cycle has been re-designed
for a callback based activation scheme, where the
audio cycle is directly triggered by the driver.

• MacOSX low-level communications between user
space and kernel are based on Mach ports and mes-
sages. When developing server/client systems, new
function calls between the server and clients can be
defined using theMach Interface Generator. Re-
mote Procedure Synchronous Call are particularly
efficient since they by-pass the scheduler.

The Linux client activation model has been adapted
to take advantage of MacOSX fast Remote Proce-
dure Call facility: all clients are directly activated
from the server audio cycle using a synchronous
RPC.

• On MacOSX, real-time threads are actually time-
constraint threads defined by aperiod, constraint
andcomputationparameters. These parameters have
to be carefully choosen to allow the system to cor-
rectlly interleave thread computation, especially
when threads are running with different period val-
ues.

3.2. Integration into the CoreAudio architecture

Having the Jack API available on MacOSX simplifies the
port of Jack Linux based applications. But audio appli-
cations on MacOSX use the standard CoreAudio API and

can not be directly used with the ”native” Jack applica-
tions. A layer has been developed to allow the transpar-
ent use of CoreAudio applications with Jack applications,
based on several components (Fig 2):

• theJack Audio Routerdriver (JAR) is a user-space
driver that behaves like a ”bridge” between regular
CoreAudio applications and the Jack server. The
JAR driver is a Jack client and a CoreAudio driver
at the same time. For CoreAudio applications, it
presents the Jack model as an mono non interleaved,
fixed buffer sizeandfixed sample ratedriver.

The CoreAudio API has to be ”mapped” on the Jack
API by translating or adapting all CoreAudio func-
tions call into the corresponding Jack functions. By
accessing this driver, CoreAudio applications be-
come Jack clients and can take advantage of Jack
capabilities.

• CoreAudio applications can be extended using aplug-
in model: audio effects or synthesizer for example,
can be dynamically loaded and activated in the ap-
plication. Jack plug-in components are available to
extend the routing capabilities.JackAU(AudioUnit
plug-in format) andJackVST(VST plug-in format)
have been developed.

• JackPilotis a configuration application to setup global
parameters, manage audio connections between Jack
clients and save/restore global state.

A typical setup where native Jack clients and ”Jacki-
fied” CoreAudio applications run under control of the Jack
server is presented here:

JAR

Audio
Hardware
(Built-In,

MOTU 828...)

Native Jack
Client

Pure Data

Jack ServerJAR

CoreAudio
Application

(without plug-in
support)

Reason, iTunes....

CoreAudio Application
(with plug-in support)

Logic, Max/MSP...

JackAU or
JackVST

Figure 2. Typical setup including native Jack applica-
tions and CoreAudio ”Jackified” ones (CoreAudio appli-
cations hosting plug-ins can access the Jack server using
JAR and/or Jack plug-in)

3.3. Availability

Jack is an open-source project hosted at SourceForge
(jackit.sourceforge.net) and collectively developed by the
Linux audio community.

Jack on MacOSX is an open-source project hosted at
SourceForge with its home at www.jackosx.com. All Ma-
cOSX specifc components are developed thanks to the
help of Johnny Petrantonni and Dan Nigrin and are dis-
tributed in a freely available binary package called Jack-
OSX.

4. MULTI-PROCESSOR VERSION

4.1. Current activation model

In the current activation model (either on Linux or Ma-
cOSX), knowing the data dependencies between clients
allows to sort the client graph to find an activation or-
der. This sorting step is done each time the graph state
changes, for example when connections are made or re-
moved or when a new client opens or closes. This order is
used by the server when activating clients.

Input Ouput

A

B

C D

Figure 3. Client graph: Client A and B could be executed
at the same time, C must wait for A and B end, D must
wait for C end.

Forcing a complete serialization of client activation is
not always necessary: for example clients A and B (Fig 3)
could be executed at the same time since they both only
depend of the ”Input” client. In this graph example, the
current activation strategy choose an arbitrary order to ac-
tivate A and B. This model is adapted to mono-processor
machines, but cannot exploit multi-processors architec-
tures efficiently.

4.2. Data flow model

A graph of Jack clients typically containssequencedand
parallel sub-parts (Fig 4). When parallel sub-graph exist,
clients can be executed on different processors at the same
time. A data-flow model can be used to describe this kind
of system: a node in a data-flow graph becomesrunnable
when all inputs are available. The client ordering step that
was used in the mono-processor model is not necessary
anymore. Each client uses anactivation counterto count
the number of input clients which it depends of. The state
of client connections is updated each time a connection
between ports is done or removed.

Activation will be transfered from client to client dur-
ing each server cycle as they are executed: a suspended
client will be resumed, executes itself, propagates activa-
tion to the output clients, go back to sleep, until all clients

have been activated.2

Input Ouput

A (1)

B (1)

C (2) D (1)

Figure 4. Client graph: each client has an activation
counter containing the number of input clients which it
depends of. Client A and B can be executed in parallel:
the first one that finish decrements the C activation from 2
to 1, the second one decrements the C activation from 1 to
0 and finally resumes C.

4.3. Implementation

For easier evolution of the Jack server, the system has been
simplified to better isolate platform specific sub-parts. Some
data structure have been re-designed, for example the global
port connection state is now located in shared memory.

Starting from this new version, the data-flow model has
been implemented. Feedback loops between clients are
detected and forbidden when connections are done. Each
client uses an inter-processsuspend/resumeprimitive as-
sociated with anactivation counter. An implementation
could be described with the following pseudo code. A
server execution cycle consists of:

1. read audio input buffers

2. write ouput audio buffers computed the previous cy-
cle

3. for each client in client list, reset the activation counter
to its initial value

4. activate all client that depends of the input driver
client or that do not have input dependencies

5. suspend until the next cycle

Activation of a client consists of:

1. atomically decrement its activation counter

2. resume the client if its activation counter equals zero

After being resumed by the system, execution of a client
consists of:

1. call the client process function

2. propagate activation to ouput clients

2The data-flow model will still work on mono-processor machines
and will correctly guaranty a minimum global number of context
switches like the ”pre-sorting step” model.

3. suspend until the next cycle

On each platform, an efficient synchronization primi-
tive must be found to implement the suspend/resume op-
eration.

• MacOSX low-level communications between user
space and kernel are based on Mach ports and mes-
sages. More complex synchronization primitives
are then built in the system on top of these low-
level primitives. The Mach semaphores can be used
to implement thread synchronization. On MacOSX
10.3 version, additional code has to be developed to
have inter-process semaphores.

• Linux kernel 2.6 features the Fast User space mu-
tEx (futex), a new facility that allows two process to
synchronize (including blocking and waking) with
either no or very little interaction with the kernel.
Although we have not yet measured the performance
of futexes in Jack it seems likely that they are better
suited to the task of coordinating multiple processes
than the FIFO’s that the Linux implementation cur-
rently uses.

4.4. Performances

The multi-processor version has been implemented on Ma-
cOSX. Preliminary benchmarks have been done on a mono
and dual 1.8 Ghz G5 machine. Fivejack-metroclients
generating a simple bip are running.

Figure 5. For a server cycle: signal (black), awake (grey)
and finish (white) date measured during 5 sec for each
5 client on a mono 1.8 Ghz G5. The behavior of each
client is then represented in a ”slice” in the graph and all
slices have been concatenated on the X axis. Clients are
connected in sequence thus computations are inevitably
serialized. End date is about 250 microsecond on average.

For a server cycle, thesignal date(when the client re-
sume semaphore is activated), theawake date(when the
client actually wakes up) and thefinish date(when the

client ends its processing and go back to suspended state)
relative to the server cycle start datebefore reading and
writing audio buffershave been measured. The first slice
in the graph also reflects the server behavior: the duration
to read and write the audio buffers can be seen as thesig-
nal date curve offset on the Y-coordinate. After having
signaled the first client, the server returns to the CoreAu-
dio HAL (Hardware Abstract Layer), that mix the output
buffers in the kernel driver (offset between the first client
signaldate and itsawakedate (Fig 5)). Then the first client
will be resumed.

With all clients running at the same time, the measure
is done during 5 seconds. The behavior of each client is
then represented as a 5 seconds ”slice” in the graph and all
slices have been concatenated on the X axis, thus allowing
to have a global view of the system.

Two benchmarks have been done. In the first one, clients
are connected in sequence (client 1 is connected to client
2, client 2 to client 3 and so on), thus computations are
inevitably serialized. One can clearly see that thesignal
date of client 2 happens after thefinisheddate of client 1
and the same behavior happens for other clients. Measures
have been done on the mono (Fig 5) and dual machine (Fig
6).

Figure 6. For a server cycle: signal (black), awake (grey)
and finish (white) date measured during 5 sec for each 5
client on a dual 1.8 Ghz G5. Since client are connected
in sequence, computations are also serialized, but client 1
can start a little earlier on the second processor. End date
is about 250 microsecond on average.

In the second benchmark, clients all only connected to
the input driver, thus they can possibly be executed in par-
allel. The input driver client signal all clients at (almost)
the same date3. Measures have been done on the mono
(Fig 7) and dual (Fig 8) machine. When parallel clients are
executed on the dual machine, one see clearly that compu-
tations are done at the same time on the 2 processors and
the end date is thus lowered.

3Signaling a semaphore has a cost that appears as the ”slope” of the
signal curve.

Figure 7. For a server cycle: signal (black), awake (grey)
and finish (white) date measured during 5 sec for each 5
client on a mono 1.8 Ghz G5. Although the graph can po-
tentially be parallelized, computations are still serialized.
End date is about 250 microsecond on average.

Other benchmarks with different parallel/sequence graph
to check their correct activation behavior and comparaison
with the same graphs runned on the mono-processor ma-
chine have been done. A worst case additional latency
of 150 to 200 microseconds added to the average finished
date of the last client has been measured.

Figure 8. For a server cycle: signal (black), awake (grey)
and finish (white) date measured during 5 sec for each 5
client on a dual 1.8 Ghz G5. Computations are done in
parallel. End date is about 200 microsecond on average.

More complex setup using CoreAudio ”jackified” ap-
plications (using the JAR driver) have been tested to check
the real effect of parallelization with more demanding ap-
plications.

4.5. Optimizations and evolutions

Further optimizations will be tested and possibly imple-
mented.

4.5.1. Suspend/resume semaphore sharing

Each client is currently associated with a semaphore. The
client real-time audio thread is resumed when its semaphore
is signaled by the previous client in the graph. When
clients have the same input dependencies, they could share
the same semaphore. Thesharedsemaphore could be sig-
naled only once and resume a group of waiting real-time
threads. This optimization can be detected and done dur-
ing the connection/disconnection step.

4.5.2. Port sharing

When an input port of client B (port 3) is connected to sev-
eral output ports of client A (port 1 and 2), mixing is done
lazily only when client B asks for its input port 3 (Fig 9).
When several input ports have the same dependencies, the
mixed buffer they will use could be computed only once
and then shared (here port 3 and port 4 both have port 1
and 2 as inputs). Asharedport can be used to represent
this special case. Mixing will be done once and all possi-
ble users of the shared port will see the same mixed result.
Detecting that ports can be shared can be done during the
connection/disconnection step.

Port 1

Port 2

Port 3

Port 4

Port 1

Port 2

Port 3

Port 4

Shared port

Client BClient A

Client BClient A

Figure 9. Port sharing: port 3 and 4 have the same inputs
(port 1 and 2). A shared port can be created to allow
mixing to be done only once.

5. CONCLUSION

The Jack system is a fundamental part of the Linux au-
dio world, where most of music-oriented audio applica-
tions are now Jack compatible. On MacOSX, it has ex-
tended the CoreAudio architecture by adding low-latency
inter-application audio routing capabilities. The multi-
processor version is a first step towards a completely dis-

tributed version, that will take advantage of multi-processor
on a machine and could run on multiple machines in the
future.

6. REFERENCES

[1] ALSA, Advanced Linux Sound Architecture,
http://www.alsa-project.org, Nov. 2002.

[2] BENCINA ROSS, BURK PHIL , PortAudio - an
Open-Source Cross Platform Audio API,Proceed-
ings of the International Computer Music Confer-
ence ICMA, 2001

[3] ORLAREY YANN , LEQUAY HERVE, MidiShare:
a Real Time multi-tasks software module for Midi
applicationsProceedings of the International Com-
puter Music Conference ICMA, 1989 p 234-237

[4] V EHMANEN KAI , WINGO ANDY AND

DAVIS PAUL , Jack Design Documentation
http://jackit.sourceforge.net/docs/design/

[5] WESTERFELD STEFAN, The aRts Handbook
http://www.arts-project.org/doc/handbook/

