
HAL Id: hal-02158910
https://hal.science/hal-02158910

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time Composition in Elody
Stéphane Letz, Dominique Fober, Yann Orlarey

To cite this version:
Stéphane Letz, Dominique Fober, Yann Orlarey. Real-time Composition in Elody. International
Computer Music Conference, 2000, Berlin, Germany. pp.336-339. �hal-02158910�

https://hal.science/hal-02158910
https://hal.archives-ouvertes.fr

Real-time composition in Elody
Stephane Letz, Dominique Fober, Yann Orlarey

Grame 9, rue du Garet 69001 LYON
[letz, fober, orlarey]@grame.fr

Abstract
Elody was initially an environment for musical composition allowing the description and algorithmic manipulation of non real-
time musical structures. To allow the definition of real-time transformation processes, we have added a new primitive in the
language : the real-time input stream. This object can be manipulated and transformed like non real-time objects even before
being known. Evaluating a real-time expression gives as result a command sequence which drives a transformation engine. This
one transforms a real-time input stream in an output stream.

1 Introduction

Elody is a music composition environment based on a visual
functional language, a direct manipulation user interface and
Internet facilities [Orlarey & al.1997]. The programming
language is based on a music description language extended
with lambda-calculus. Programming in Elody basically consist
in defining abstractions from concrete structures and applying
them on new arguments to produce new results.
The functional approach is particularly well suited to non real-
time composition, where values of the language are temporal
objects played later in real-time by a rendering engine. Musical
structures and processes are first class objects that can be freely
composed in more complex ones.
Using the functional paradigm is of growing interest also for
the definition of real-time multimedia languages. The idea is to
describe interactions with an external environment at a high
level of abstraction, and have the system deal with the problem
of low level interactions or side effect primitives ordering.
Following this idea, a very interesting system called Fran (for
Functional Reactive Animation) has been recently developed.
Fran is a Haskell library (or "embedded language") for
interactive animations with 2D and 3D graphics and sound
[Elliot, Hudak] . This system allows the declarative
specification of multimedia presentation in a pure functional
language by combining temporal reactive behaviors.

This paper will show how a simple model of interaction with an
input stream can be introduced in Elody. Interaction will be
limited to transformation processes composed and applied on
the real-time input stream.
Section 2 to 5 describe the method used on a Midi stream, and
show how very complex transformation processes can be
defined. Section 6 will present the same method used on a real-
time audio stream.

2 Input/output in functional languages

There have been many different approaches to the problem of
doing input/output within pure functional languages. The
recurring problem of the integration of input/output scheme in
functional languages is the integration of context-sensitive
transformations rules that describe interactions of programs
with an external environment, with the context-free rules of the
evaluation of functional expressions. Thus they are theoretical
difficulties to describe reactive or real-time systems in a pure
functional manner when an imperative approach with states
and side-effects seem more suitable.

The standard way is to consider input/output operations as
functions which transform the current system state in a new
modified state and possibly return a result. This kind of
function is called an action. Basic actions can be composed in
more complex ones using action combinators in a way that
guarantee their sequential execution and the transmission of
intermediate results between operations. This idea behind
actions comes from the concept of m o n a d where one
distinguish between simple values and computations that
return values, but may have additional computational effects.

A monad is represented by a triple (M, unitM, bindM) consisting
of a type constructor M, and a pair of functions unitM and
bindM [Wadler 1992] . By expressing all input/output
operations using the monad concept, the good properties of
functional languages, like referential transparency are kept.

Another interesting idea is the unique type concept used in the
Clean functional language [Eekelen, Plasmeijer 1998]. The
system global state is modeled using a unique type object and
the language typing system guarantee itÕs correct use : no
duplication and sequential modification of the state.

To allow the description of real-time processes in Elody, the
general action model has been simplified : an action is a
transformation which has a side effect on the input stream,
without returning any result.

3 Extension for real-time in Elody

3.1 The real-time stream

A new primitive element is added in the language : the real-time
input stream . It is an infinite sequence that contains all events
received in real-time by the system. Although this stream is
only known when the expression is evaluated and reduced, it is
possible to manipulate it like a known object. The system is in
charge of translating actions described by the user into
effective operations that will operate in real-time, during
expression rendering. The user makes a specification in terms of
temporal organization and manipulation of the real-time stream,
the rendering engine will execute low level side effect
operations according to the specification.

3.2 Integration in the language

The technique used is separated in 3 steps :

- the evaluation of an expression gives as result a data
structure (actually a tree), which describes the temporal
organization and transformation of parts of the real-time input
stream. The rendering step is decomposed in two parts :

- the compilation produces a time ordered sequence of
commands which describes the transformation to be applied on
the input stream.

- the transformation is done by a rendering engine
that receives a stream of commands and transforms a real-time
input stream into an output stream.

Expression

Commands

Input stream

Output stream

Compilation

Transformation

L3

L2

L1

Evaluation

Value

fig 1: list of treatments

4 Language semantic

Fig 1 shows the list of internal treatments used to produce the
output stream starting from an user defined expression. The L1
language contains expressions defined by the user. After an
evaluation step, a term of the value language L2 is obtained.
After compilation of the value, a term of the command language
L3 is obtained . Commands drive a transformation state
machine which receives the real-time input stream and produces
the output stream.

4.1 Expression evaluation

A new primitive element which denotes the infinite sequence of
received events has been added : input d t c nin[, , ,], the real-time
input stream taken on a duration d, starting at the date tin, with

a compression/expansion ratio c, and a transposition factor n.
The expression built by the user denotes the output stream in
terms of temporal composition (using Seq, Mix, Begin and End
constructors) and transformations of parts of the input stream.
Each reduction rule of the Elody language [Orlarey & al.1997]
has been extended to take account of the new element.

4.2 Value compilation

The value obtained after evaluation of an expression is still a

specification of the expected output stream. The purpose of the
compilation step is to conver t this specification into a
description of real operations to be applied on the input
stream to obtain the desired output stream. A value is compiled
in a sequence of commands. Each command stands for a basic
transformation to be done on all events received during itÕs
duration. Each transformation works on a portion of the real-
time input (characterized by a date tin and a duration din) and

produces a portion of the output stream using a delay value o
and a expansion/compression ratio c, and possibly modify
other parameters like pitch or velocity.

For a given transformation, we have the following scheme :

Input stream

Output stream

Transformation

delay : o

[tin , din]

[tout = tin + o, dout = din*c]

fig 2 : expansion and delay effect done on a portion of the real-
time input

4.3 Real-time transformation

The result after compilation is a sequence of commands coded
as a pair of associated events. The first event starts the
transformation, the second event stops it. The sequence is
played and drives the transformation engine, a state machine
which contains, at a given date, a list of active transformations.
For each received event, all active transformations are executed
and the resulting event list is mixed into the output stream.

Input stream

Output stream

Command
stream

Transformation
List of running
transformationsTransformation
List of running
transformations

fig 3 : the transformation step

5 Examples of real-time transformations

Composing real-time transformations become as easy as
composing and manipulating ordinary musical structures.
Higher order scores (scores of programs) of real-time
transformations processes can be defined using the Seq or Mix
constructors. The score metaphor which gives an explicit
representation of the time dimension now can be used for real-
time processes. They become first class objects which can be
freely composed in more complex transformations.

5.1 Temporal constructions : thru, delay, echo

The simplest program that can be described is a ÒthruÓ process.

It is defined by the following expression : input
� � � � �
∞ 0 1 0

If the real-time input stream is delayed by 1 second, the output
produced starting at date 0 will contain a 1 second rest
followed by the input starting at date 0 : the resulting process
is a delay which re-send each received event with a 1 second
delay : seq sil input[[],1000 0 1 0

� � � � � �
∞

Several instances of the real-time stream can be used
simultaneously and mixed : the following expression describes
an echo process where each received event is sent 3 times :
immediately, with a 1 second delay and with a 2 second delay.

Input

Input

Input

fig 4 : a triple real-time echo

5.2 Temporal manipulation

Like for a non real-time object, one can cut a part of the real-
time input stream : in the following example, the first 5 second
of the real-time input are cut and repeated twice. The resulting
process does a ÒthruÓ on the first 5 second and the result is
repeated twice.

fig 5 : 2 times repetition of the real-time input 5 first seconds

5.3 Compression/expansion

The real-time stream can be compressed or expanded. The
following example is similar to fig 4, but here a compression
ratio of 0.5 is used. Events received between dates 0 and 10 s
can not be played according to the compression ratio. They are
transformed and sent as soon as they are available, that is old
events which are in the past will be sent at the current date. The
section between 5 and 10 s will be played correctly.

fig 6 : 2 time repetition of the 10 first seconds of the real-time
input stream compressed by a ratio of 0.5

5.4 Transformations composed in time

Elody allows to build higher order scores, that is functions

organized in time (using Mix or Seq constructors) that can be
applied on arguments. [Orlarey & al.1997]. Like for usual
musical objects, score of programs can be used to specify (for
example) a sequence of transformations done on successive
parts of the real-time input stream. In the following example, 2
different transformations are done : a canon function between
dates 0 and 5 s and an echo function between dates 5 and 10 s.

fig 7 : sequence of functions applied on the real-time input

5.5 Combination of real-time and non real-time
expressions

Because composing real-time processes is similar to composing
usual musical structures, it is really easy to use in real-time
compositional operations previously defined and used on non
real-time objects. One can also ÒmergeÓ in a unique description,
real-time and non real-time objects. In the following example, a
sequence of abstractions is applied on a structure which mix the
real-time stream and a sequence seq1.

fig 8 : sequence of functions applied on the mix between a non
real-time object and the real-time stream

5.6 Combination of transformation processes

A transformation expression, result of a first level of
composition can be used as the base for more elaborated
constructions. In the following example we have :

- first level : a sequence of transformations is applied
on the real-time input stream, here a canon function applied on
successive portions of 4 seconds.

fig 9 : sequence of canon functions applied on the real-time
input stream

- second level : the resulting stream is separated in
sections of 16 seconds, named A, B and C. These elements are
used to build the following temporal construction :

fig 10 : construction using the result stream obtained in fig 9

The resulting process is now quite complex : the first 16
seconds of the real-time input stream are transformed according
to the first level of transformation. Between dates 16 and 32 s,
the whole result of this first transformation (A section) is
repeated and mixed with the result of the first process, which is
still applied on the real-time input (B section).

Any already transformed object can be freely re-used in more
complex expressions. Abstractions defined using non real-time
expressions can be used to build real-time processes and vice-
versa. Thus very complex transformations processes can be
built by combining and re-using simpler ones.

6 Audio version

An audio version of the mechanism previously described using
a MIDI stream has been implemented. It is based on the new
audio extension developed recently in MidiShare [Fober & al.
1995].

- audio streams are defined as sequences of time-
stamped audio events that contain sample buffers.

- the audio In driver is in charge of splitting the
continuous audio input stream in time-stamped audio events,
that are distributed to each connected application.

- the audio Out driver receives and mix audio event
streams coming from all connected applications, and produces
a continuous audio output stream.

Elody Audio

Mixer + effects

Audio IN Driver

Audio OUT Driver

Audio events

Audio events

fig 11 : Elody audio architecture

In the Elody audio version, the real-time audio input can be
temporally manipulated and transformed by applying audio
effects (chorus, reverb...). After evaluation and compilation, the
command sequence drives the transformation engine which

produces a stream composed of audio events and effects
activation events. This stream is finally sent to the audio
output driver.

7 Conclusion

We have presented an extension implemented in Elody which
allows the description of real-time transformations processes. A
new primitive element is added in the language : the real-time
input stream. It can be manipulated and transformed with the
existing constructors and tools. Real-time transformation
processes are described as expressions which manipulate and
modify the real-time stream. They are evaluated and compiled
into a sequence of time-ordered simple commands executed in
real-time. A rendering engine driven by commands transforms
an input stream into an output stream.

Working at the level of abstract descriptions of interactions
allows the user to free itself about the problems of low level
interactions or side effect primitives ordering. This is achieved
through the definition of more abstract operations that are first
class objects and thus can be freely composed into larger
interactions processes.
This work is a step towards the definition of music interactive
programs using a pure functional language. We plan to add new
primitives to deal with reactive processes which are activated
when external events are received. This will allow to describe a
larger class of interactive programs.

References

[Eekelen, Plasmeijer 1998] Marco Van Eekelen, Rinus
Plasmeijer. Concurrent Clean language report. High Level
Software Tools B.V and University of Nijmegen 1998.

[Elliot, Hudak] Conal Elliott, Paul Hudak. Functional Reactive
Animation. In the proceedings of the 1997 ACM SIGPLAN
International Conference on Functional Programming (ICFP
’97).

[Fober & al. 1995] Fober D., Letz S., Orlarey Y. - MidiShare, un
syst�me d’exploitation musical pour la communication et la
collaboration - Actes des Journ�es d’Informatique Musicale
JIM95, Paris, pp.91-100.

[Orlarey & al.1997] Y Orlarey, D Fober, S Letz. LÕenvironnement
de composition musicale Elody . Actes des 4¡ Journ�es
dÕInformatique Musicale JIM 97 Lyon pp 122- 136.

[Wadler 1992] Philip Wadler Comprehending monads.
Mathematical Structures in Computer Science, Special issue of
selected papers from 6’th Conference on Lisp and Functional
Programming,2 461-493, 1992.

