
HAL Id: hal-02158796
https://hal.archives-ouvertes.fr/hal-02158796

Submitted on 18 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lock-Free Techniques for Concurrent Access to Shared
Objects

Dominique Fober, Yann Orlarey, Stéphane Letz

To cite this version:
Dominique Fober, Yann Orlarey, Stéphane Letz. Lock-Free Techniques for Concurrent Access to
Shared Objects. Journées d’Informatique Musicale, 2002, Marseille, France. pp.143-150. �hal-
02158796�

https://hal.archives-ouvertes.fr/hal-02158796
https://hal.archives-ouvertes.fr

This is a revised version of the previously published paper. It includes a
contribution from Shahar Frank who raised a problem with the fifo-pop algorithm.

Revised version date: sept. 30 2003.

Lock-Free Techniques for
Concurrent Access to Shared Objects

Dominique Fober Yann Orlarey Stephane Letz
Grame - Centre National de Création Musicale

9, rue du Garet BP 1185
69202 LYON CEDEX 01

Tél +33 (0)4 720 737 00 Fax +33 (0)4 720 737 01
[fober, orlarey, letz]@grame.fr

Abstract
Concurrent access to shared data in preemptive multi-tasks environment and in multi-processors
architecture have been subject of many works. Proposed solutions are commonly based on
semaphores which have several drawbacks. For many cases, lock-free techniques constitute an
alternate solution and avoid the disadvantages of semaphore based techniques. We present the
principle of these lock-free techniques with the simple example of a LIFO stack. Then, based on
Michael-Scott previous work, we propose a new algorithm to implements lock-free FIFO stacks
with a simple constraint on the data structure.

1. Introduction
A shared data structure is lock-free if its operations do not require mutual exclusion: if a process is interrupted in
the middle of an operation, it will not prevent the other processes from operating on that object. Lock-free
techniques avoid common problems associated with conventional locking techniques:

• priority inversion: occurs when a high-priority process requires a lock holded by a lower-priority process,
• convoying: occurs when a process holding a lock is descheduled by exhausting its quantum, by a page fault

or by some other kind of interrupt. In this case, running processes requiring the lock are unable to progress.
• deadlock: can occur if different processes attempt to lock the same set of objects in different orders.

In particular locking techniques are not suitable in a real-time context and more generally, they suffer significant
performance degradation on multiprocessors systems.
A lot of works have investigated lock-free concurrent data structures implementations [1, 2, 3, 4]. Advantages
and limits of these works are discussed in [5]. We propose a new lock-free FIFO queue algorithm. It has been
initially designed to be part of a multi-tasks, real-time MIDI operating system [6] in order to support an efficient
inter-applications communication mechanism. Its implementation is based on Michael-Scott [4] but removes the
necessary node allocation when enqueing a value, by introducing a simple constraint on the value data type
structure.
The rest of this paper is organized as follow: section 2 introduces lock-free techniques with the example of a
LIFO stack, section 3 presents our proposed lock-free FIFO queue algorithm, section 4 discuss the correctness of
the FIFO operations and section 5 is dedicated to performances issues.

2. Lock-free LIFO stacks
A LIFO stack is made up of linked cells. A cell can be anything provided it starts with a pointer available to
link together the cells of the stack (figure 1) and the structure of a LIFO is a simple pointer to the top of the
stack (figure 2). The last cell of the LIFO always points to NULL.

structure cell {
next: a pointer to next cell
value: any data type

}

Figure 1: a cell structure

structure lifo {
top: a pointer to a cell

}

Figure 2: a lifo structure

Common operations on a LIFO are:

• lifo-init: to initialize the LIFO stack by setting the top pointer to NULL.
• lifo-push: to push a new cell on top of the stack
• lifo-pop: to pop the top cell of the stack

A naive and unsafe implementation of the push operation is presented in figure 3.
lifo-push (lf: pointer to lifo, cl: pointer to cell)

A1: cl->next = lf->top # set the cell next pointer to top of the lifo
A2: lf->top = cl # set the top of the lifo to cell

Figure 3: non-atomic lifo-push

Obviously, if a process trying to enqueue a new cell is preempted after A1 and if the top pointer has been
modified when it resumes at A2, the push operation will not operate correctly.

2.1. Atomic operations implementation
To guaranty the correctness of the lifo operations, they should appear as taking instantaneously effect, as if they
couldn’t be interrupted. We’ll further talk of “atomic operation” to refer to this property. A common approach is
to make use of an atomic primitive such as compare-and-swap which takes as argument the address of a
memory location, an expected value and a new value (figure 4). If the location holds the expected value, it is
assigned the new value atomically. The returned boolean value indicates whether the replacement occurred.

compare-and-swap (addr: pointer to a memory location, old, new: expected and new values): boolean
x = read (addr)
if x == old

write (addr, new)
 return true
else
 return false
endif

Figure 4: atomic compare-and-swap

The compare-and-swap primitive was first implemented in hardware in the IBM System 370 architecture [7].
More recently, it can be found on the Intel i486 [8] and on the Motorola 68020 [9]. A variation of the compare-
and-swap primitive can also operate in memory on double-words. To differenciate between the two primitives in
the following examples we’ll refer to them with:

CAS (mem, old, new) for single word operations
where mem is a pointer to a memory location

old and new are the expected and the new value
and

CAS2 (mem, old1, old2, new1, new2) for double word operations
where mem is a pointer to a memory location

old1, old2 and new1, new2 are the expected and the new values

On PowerPC architecture, the compare-and-swap primitive may be implemented using the load-and-reserve
instruction associated with a store-conditional instruction [10].
Using compare-and-swap, the operations on the stack are now implemented as shown in figure 5 and 6 and
appear like atomic operations.

lifo-push (lf: pointer to lifo, cl: pointer to cell)
B1: loop
B2: cl->next = lf->top # set the cell next pointer to top of the lifo
B3: if CAS (&lf->top, cl->next, cl) # try to set the top of the lifo to cell
B4: break
B5: endif
B6: endloop

Figure 5: lifo-push
lifo-pop (lf: pointer to lifo): pointer to cell

C1: loop
C2: head = lf->top # get the top cell of the lifo
C3: if head == NULL
C4: return NULL # LIFO is empty
C5: endif
C6: next = head->next # get the next cell of cell
C7: if CAS (&lf->top, head, next) # try to set the top of the lifo to the next cell
C8: break
C9: endif
C10: endloop
C11: return head

Figure 6: lifo-pop

2.2. The ABA problem
However, the above implementation of the LIFO pop operations doesn’t catch the ABA problem. Assume that a
process is preempted while dequeing a cell after C6: severall concurrent push and pop operations may result in a
situation where the top cell remains unchanged but points to a different next cell as shown in figure 7.

A B C X NULL1)

A N X NULL2)

B ?3)

Figure 7: 1) state at the beginning of the pop operation,
2) state after preemption,

3) state after pop completion

The LIFO change won’t prevent the CAS operation to operate in C7, allowing to put a wrong cell on top of the
stack. The solution to the ABA problem consists in adding a count of the cells popped from the stack to the
LIFO structure as shown in figure 8 and to make use of the CAS2 primitive.

structure lifo {
top: a pointer to a cell
ocount: total count of pop operations

}

Figure 8: extended lifo structure

The push operation remains unchanged and the pop operation is now implemented as shown in figure 9: it
checks both for lifo top and output count changes when trying to modify the lifo top.

lifo-pop (lf: pointer to lifo): pointer to cell
SC1: loop
SC2: head = lf->top # get the top cell of the lifo
SC2: oc = lf->ocount # get the pop operations count
SC3: if head == NULL
SC4: return NULL # LIFO is empty
SC5: endif
SC6: next = head->next # get the next cell of cell
SC7: if CAS2 (&lf->top, head, oc, next, oc + 1) # try to change both the top of the lifo and pop count
SC8: break
SC9: endif
SC10: endloop
SC11: return head

Figure 9: lifo-pop catching the ABA problem

3. Lock-free FIFO stacks
The FIFO queue is implemented as a linked list of cells with head and tail pointers. Each pointer have an
associated counter, ocount and icount, wich maintains a unique modification count of operations on head and
tail. The cell structure is the same as above (figure 1) and the fifo structure is shown in figure 10.

structure fifo {
head: a pointer to head cell
ocount: total count of pop operations
tail: a pointer to tail cell
icount: total count of push operations

}

Figure 10: the fifo structure

As in Michael-Scott [4] and Valois [3], the FIFO always contains a dummy cell, only intended to maintain the
consistency. An empty FIFO contains only this dummy cell which points to an end fifo marker unique to the
system: a trivial solution consists in using the FIFO address itself as a unique marker. All along the operations,
head always points to the dummy cell which is the first cell in the list and tail always points to the last or the
second last cell in the list. The double-word compare-and-swap increments the modification counters to avoid
the ABA problem.
The queue consistency is maintained by cooperative concurrency: when a process trying to enqueue a cell detects
a pending enqueue operation (tail is not the last cell of the list), it first tries to complete the pending operation
before enqueing the cell. The dequeue operation also ensures that the tail pointer does not point to the dequeued
cell and if necessary, tries to complete any pending enqueue operation. Figure 11 to 13 presents the commented
pseudo-code for the fifo queue operations.

fifo-init (ff: pointer to fifo, dummy: pointer to dummy cell)
dummy->next = NULL # makes the cell the only cell in the list
ff->head = ff->tail = dummy # both head and tail point to the dummy cell

Figure 11: the fifo initialization operation

fifo-push (ff: pointer to fifo, cl: pointer to cell)
E1: cl->next = ENDFIFO(ff) # set the cell next pointer to end marker
E2: loop # try until enqueue is done
E3: icount = ff->icount # read the tail modification count
E4: tail = ff->tail # read the tail cell
E5: if CAS (&tail->next, ENDFIFO(ff), cl) # try to link the cell to the tail cell
E6: break; # enqueue is done, exit the loop
E7: else # tail was not pointing to the last cell, try to set tail to the next cell
E8: CAS2 (&ff->tail, tail, icount, tail->next, icount+1)
E9: endif
E10: endloop
E11: CAS2 (&ff->tail, tail, icount, cl, icount+1) # enqueue is done, try to set tail to the enqueued cell

Figure 12: the fifo push operation
fifo-pop (ff: pointer to fifo): pointer to cell

D1: loop # try until dequeue is done
D2: ocount = ff->ocount # read the head modification count
D3: icount = ff->icount # read the tail modification count
D4: head = ff->head # read the head cell
D5: next = head->next # read the next cell
D6: if ocount == ff->oc # ensures that next is a valid pointer

to avoid failure when reading next value
D7: if head == ff->tail # is queue empty or tail falling behind ?
D8: if next == ENDFIFO(ff) # is queue empty ?
D9: return NULL # queue is empty: return NULL
D10: endif

tail is pointing to head in a non empty queue, try to set tail to the next cell
D11: CAS2 (&ff->tail, head, icount, next, icount+1)
D12: else if next <> ENDFIFO(ff) # if we are not competing on the dummy next
D13: value = next->value # read the next cell value
D14: if CAS2 (&ff->head, head, ocount, next, ocount+1) # try to set head to the next cell
D15: break # dequeue done, exit the loop
D16: endif
D17: endif
D18: endloop
D19: head->value = value # set the head value to previously read value
D20: return head # dequeue succeed, return head cell

Figure 13: the fifo pop operation

4 Correctness of the FIFO operations
Traditional sequential programs may be viewed as functions from inputs to outputs which may be specified as a
pair consisting of a precondition describing the allowed inputs and postcondition describing the desired results
for these inputs. However for concurrent programs, this approach is too limited and numerous work has been
done for formal verification of concurrent systems. Although informal, two properties introduced by Lamport
[11] are required for correctness of concurrent programs:

• safety property: states that “something bad never happens”,
• liveness property: states that “something good eventually happens”.

Formalizing this classification has been a main motivation for much of the work done on specification and
verification of concurrent systems [12]. Formal methods successfully applied to sequential programs have also
been extended to consider concurrent programming: Herlihy proposed a correctness condition for concurrent
objects called “Linearizability” [13, 14]. It states that a concurrent computation is linearizable if it is equivalent
to a legal sequential computation. An object (viewed as the agregate of a type, which defines a set of possible
values, and a set of primitive operations), is linearizable if each operation appears to take effect instantaneaously
at some point between the operation’s invocation and response. It implies that processes appear to be interleaved
at the granularity of complete operations and that the order of non-overlapping operations is preserved.
Correctness of the FIFO operations formal proof is beyond the scope of this paper, however it will be examined
according to the properties mentionned above.

3.1 Linearizability
The algorithm is linearizable because each operation takes effect at an atomic specific point: E5 for enqueue and
D14 for dequeue. Therefore, the queue will never enter any transient unsafe state: along any concurrent
implementation history, it can only swing between the two different states S0 and S1 illustrated in figure 14
and 15, which are acceptable and safe states for the queue:

Assuming a queue in state S0:
1) consider an push operation : as the queue state is S0, the atomic operation in E5 will succeed and the queue

swings to S1 state. Then the atomic operation in E10 is executed: in case of success, the queue swings back
to S0, in case of failure a successfull concurrent operation occurs on a S1 state and therefore by 3) and 4),
the queue state should be S0.

2) consider a pop operation : if the queue is empty the operation returns in D9 and the state remains
unchanged, otherwise the operation atomically executes D14: in case of success, the queue state remains in
S0, in case of failure, a concurrent dequeue occured and as it has successfully operated on a S0 queue (by
hypothesis) the final state remains also in S0.

head

tail
ocount

icount

Figure 14: FIFO state S0

head

tail
ocount

icount

Figure 15: FIFO state S1

Assuming a queue in state S1:
3) consider an enqueue operation: as the queue state is S1, the operation atomically executes E8 and then

loops. In case of success, the queue swings to S0 otherwise a concurrent dequeue or enqueue successfully
occured and the operation loop should operate on a queue back to S0.

4) consider a dequeue operation: it is concerned by S1 only if tail and head points to the same cell which is
only possible with a queue containing a single cell linked to the dummy cell. In this case, the operation
atomically executes D11 and then loop. In case of success, the queue swings to S0 state. A failure means
that a concurrent dequeue or enqueue successfully occured: a successfull dequeue swing the queue to S0 (but
it is now empty) and a successfull enqueue too (by 3).

3.2 Safety
The main difference with the Michael-Scott algorithm [4] relies on the cells structure constraint, which allows to
avoid nodes allocation and release. In fact, the cells memory management is now in charge of the FIFO clients
and may be optimised to the clients requirements but it doesn’t introduce any change in the algorithm
functionning. Another difference is the modification counts to take account of the ABA problem: they are now
associated only to the head and tail pointers to ensures atomic modifications of these pointers.
The safety properties satisfied by the Michel-Scott algorithm continue to hold ie:

• the linked list is always connected,
• cells are only inserted after the last cell in the linked list,
• cells are only deleted from the beginning of the linked list,
• head always points to the first node in the linked list,
• tail always points to a node in the linked list.

3.3 Liveness
The lock-free algorithm is non-blocking. This is asserted similarly to [4].
Assume a process attempting to operate on the queue:

• the process tries to enqueue a new cell: a failure means that the process is looping thru E8 and then another
process must have succeeded in completing an enqueue operation or in dequeuing the tail cell.

• the process tries to dequeue a cell: a failure means that the process is looping thru D11 or D14. A failure in
D11 means that another process must have succeeded in completing an enqueue operation or in dequeuing
the tail cell. A failure in D14 means that another process must have succeeded in completing a dequeue
operation.

5 Performances
Performances have been measured both for the lock-free LIFO compared to a lock-based implementation and for
the lock-free FIFO algorithm compared to a lock-based implementation and to the Michael Scott algorithm. The
bench has been made on a Bi-Celeron 500MHz SMP station running a 2.4.8 Linux kernel. It measures the time
required for 1 to 8 concurrent threads to perform 500 000 x 6 concurrent push and pop operations on a shared
LIFO or FIFO queue. The code executed by each thread is shown in Figure 16. The lock-based implementation
makes use of the pthread mutex API with a statically allocated mutex.

long stacktest (long n) {
cell* tmp[6]; long i; clock_t t0, t1;

t0 = clock();
while (n--) {

for (i=0; i<6; i++) tmp[i] = pop(&gstack);
for (i=0; i<6; i++) push(&gstack, tmp[i]);

}
t1 = clock();
return t1-t0;

}

Figure 16: the bench task.

The integrity of the queue was checked after the threads had completed their operations. Results are presented by
figures 17 and 18 as average time (in µs) to perform a paired pop and push operations.

10
9
8
7
6
5
4
3
2
1
0

1 2 3 4 5 6 7 8

lock-free

lock-based

threads count

µsec

Figure 17: lock-free LIFO compared to lock-
based.

12

10

8

6

4

2

0
1 2 3 4 5 6 7 8

lock-free

M-S

lock-based

threads count

µsec

Figure 18: lock-free FIFO compared to
Michael-Scott and lock-based.

In the Michael-Scott implementation, nodes allocation is performed using a statically allocated set of nodes and
an index atomically incremented to access the next free node in the table (figure 19). The node table size
prevents multiple node allocation. A node release is implicit and needs no additionnal operation.

node_t * new_node() {
static long index = 0;
long next, i;
do {

i= index;
next = (i >= MAXNODES) ? 0 : i+1;

} while (!CAS(&index, i, next));
return &nodes[next];

}

Figure 19: node allocation in Michael Scott implementation

Comparison between the lock-free and the lock-based operations shows the following:
• in lack of concurrency (single thread), the lock-based operations are more than 2 times more expensive than

the lock-free operations,
• performances are roughly the same for a few concurrency (2 to 5 threads),
• lock-based operations cost dramatically increases in medium-high concurrency to reach more than 7 times

the lock-free cost for 8 concurrent threads.

Comparison between our lock-free FIFO algorithm and the Michael-Scott algorithm shows the following:
• for a single thread, the Michael-Scott operations cost is roughly 2 times more expensive
• when the concurrency increases, this cost is converging to 1.6 times our solution cost.

This behavior may be explained by the necessity to allocate the nodes pushed on the stack and to handle
additionnal concurrency while performing the allocation.

7. Conclusion
Lock-free techniques are clearly more suited to real-time applications than lock-based techniques. They are more
efficient and avoid priority inversion which is a major drawback in a real-time context. We have showed how to
apply this technique to simple objects like LIFO and FIFO queues associated with basic operations. Finaly, our
proposed new algorithm for FIFO operations improves existing algorithms with a simple constraint on the value
data structure which allows more efficient specialized implementations. Although limited to LIFO and FIFO
queues, the presented lock-free techniques may be very useful to solve situations commonly encountered in the
musical domain where events have frequently to be queued while waiting for their deadline.

8. Aknowledgements
Thanks to Shahar Frank <fesh@exanet.com> who reported the fifo-pop problem and for its suggested solution.

References
[1] James H. Anderson, Srikanth Ramamurthy and Kevin Jeffay. “Real-time computing with lock-free shared

objects.” ACM Transactions on Computer Systems Vol. 15, No. 2, May 1997, pp. 134 - 165
[2] M. Herlihy. “A methodology for implementing highly concurrent data objects.” ACM Trans. Program.

Lang. Syst. 1993, Vol. 15, No.5, pp. 745–770.
[3] John D. Valois. “Implementing Lock-Free Queues.” Proceedings of the Seventh International Conference

on Parallel and Distributed Computing Systems, Las Vegas, October 1994, pp. 64-69
[4] M. M. Michael and M. L. Scott. “Simple, Fast, and Practical Non-Blocking and Blocking Concurrent

Queue Algorithms.” 15th ACM Symp. on Principles of Distributed Computing (PODC), May 1996. pp.
267 - 275

[5] M. M. Michael and M. L. Scott. “Nonblocking Algorithms and Preemption-Safe Locking on
Multiprogrammed Shared Memory Multiprocessors.” Journal of Parallel and Distributed Computing,
1998, pp. 1-26.

[6] Y. Orlarey, H. Lequay. “MidiShare : a Real Time multi-tasks software module for Midi applications”
Proceedings of the International Computer Music Conference 1989, Computer Music Association, San
Francisco, pp.234-237

[7] International Business Machines Corp. “System / 370 Principles of Operation” 1983
[8] Intel Corporation. “i486 Processor Programmer’s reference Manual” Intel, Santa Clara, CA, 1990
[9] Motorola. “MC68020 32-Bit Microprocessor User’s Manual” Prentice-Hall, 2nd edition, 1986
[10] IBM Microelectronics, Motorola. “PowrPC 601 RISC Microprocessor User’s Manual”, 1993
[11] L. Lamport. “Proving the Correctness of Multiprocess Programs.” IEEE Transactions on Software

Engineering SE-3, 2 (March 1977), 125-143.
[12] R. Cleaveland, S.A. Smolka & al. “Strategic Directions in Concurrency Research.” ACM Computing

Surveys, Vol. 28, No. 4, December 1996, pp. 607-625
[13] M. P. Herlihy, J. M. Wing. “Axioms for concurrent objects.” In Proceedings of the 14th ACM

Symposium on Principles of Programmmg Languages,Jan. 1987, pp. 13-26.
[14] M. P. Herlihy, J. M. Wing. “Linearizability: A Correctness Condition for Concurrent Objects.” ACM

Transactions on Programming Languages and Systems, Vol. 12, No. 3, July 1990, pp. 463-492.

