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Abstract
Concurrent access to shared data in preemptive multi-tasks environment and in multi-processors 
architecture have been subject of many works. Proposed solutions are commonly based on 
semaphores which have several drawbacks. For many cases, lock-free techniques constitute an 
alternate solution and avoid the disadvantages of semaphore based techniques. We present the 
principle of these lock-free techniques with the simple example of a LIFO stack. Then, based on 
Michael-Scott previous work, we propose a new algorithm to implements lock-free FIFO stacks 
with a simple constraint on the data structure. 

1. Introduction
A shared data structure is lock-free if its operations do not require mutual exclusion: if a process is interrupted in 
the middle of an operation, it will not prevent the other processes from operating on that object. Lock-free 
techniques avoid common problems associated with conventional locking techniques:

• priority inversion: occurs when a high-priority process requires a lock holded by a lower-priority process,
• convoying: occurs when a process holding a lock is descheduled by exhausting its quantum, by a page fault 

or by some other kind of interrupt. In this case, running processes requiring the lock are unable to progress.
• deadlock: can occur if different processes attempt to lock the same set of objects in different orders.

In particular locking techniques are not suitable in a real-time context and more generally, they suffer significant 
performance degradation on multiprocessors systems.
A lot of works have investigated lock-free concurrent data structures implementations [1, 2, 3, 4]. Advantages 
and limits of these works are discussed in [5]. We propose a new lock-free FIFO queue algorithm. It has been 
initially designed to be part of a multi-tasks, real-time MIDI operating system [6] in order to support an efficient 
inter-applications communication mechanism. Its implementation is based on Michael-Scott [4] but removes the 
necessary node allocation when enqueing a value, by introducing a simple constraint on the value data type 
structure. 
The rest of this paper is organized as follow: section 2 introduces lock-free techniques with the example of a 
LIFO stack, section 3 presents our proposed lock-free FIFO queue algorithm, section 4 discuss the correctness of 
the FIFO operations and section 5 is dedicated to performances issues.

2. Lock-free LIFO stacks
A LIFO stack is made up of linked cells. A cell can be anything provided it starts with a pointer available to 
link together the cells of the stack (figure 1) and the structure of a LIFO is a simple pointer to the top of the 
stack (figure 2). The last cell of the LIFO always points to NULL.

structure cell {
next: a pointer to next cell
value: any data type

}

Figure 1: a cell structure

structure lifo {
top: a pointer to a cell

}

Figure 2: a lifo structure

Common operations on a LIFO are:



• lifo-init: to initialize the LIFO stack by setting the top pointer to NULL.
• lifo-push: to push a new cell on top of the stack
• lifo-pop: to pop the top cell of the stack

A naive and unsafe implementation of the push operation is presented in figure 3.
lifo-push (lf: pointer to lifo, cl: pointer to cell)

A1: cl->next = lf->top # set the cell next pointer to top of the lifo
A2: lf->top = cl # set the top of the lifo to cell

Figure 3: non-atomic lifo-push

Obviously, if a process trying to enqueue a new cell is preempted after A1 and if the top pointer has been 
modified when it resumes at A2, the push operation will not operate correctly. 

2.1. Atomic operations implementation
To guaranty the correctness of the lifo operations, they should appear as taking instantaneously effect, as if they 
couldn’t be interrupted. We’ll further talk of “atomic operation” to refer to this property. A common approach is 
to make use of an atomic primitive such as compare-and-swap which takes as argument the address of a 
memory location, an expected value and a new value (figure 4). If the location holds the expected value, it is 
assigned the new value atomically. The returned boolean value indicates whether the replacement occurred.

compare-and-swap (addr: pointer to a memory location, old, new: expected and new values): boolean
x = read (addr)
if x == old

write (addr, new)
 return true
else
 return false
endif

Figure 4: atomic compare-and-swap

The compare-and-swap primitive was first implemented in hardware in the IBM System 370 architecture [7]. 
More recently, it can be found on the Intel i486 [8] and on the Motorola 68020 [9]. A variation of the compare-
and-swap primitive can also operate in memory on double-words. To differenciate between the two primitives in 
the following examples we’ll refer to them with:

CAS (mem, old, new) for single word operations
where mem is a pointer to a memory location

old and new are the expected and the new value
and 

CAS2 (mem, old1, old2, new1, new2) for double word operations
where mem is a pointer to a memory location

old1, old2 and new1, new2 are the expected and the new values

On PowerPC architecture, the compare-and-swap primitive may be implemented using the load-and-reserve 
instruction associated with a store-conditional instruction [10].
Using compare-and-swap, the operations on the stack are now implemented as shown in figure 5 and 6 and 
appear like atomic operations.

lifo-push (lf: pointer to lifo, cl: pointer to cell)
B1: loop
B2: cl->next = lf->top # set the cell next pointer to top of the lifo
B3: if CAS (&lf->top, cl->next, cl) # try to set the top of the lifo to cell
B4: break
B5: endif
B6: endloop

Figure 5: lifo-push
lifo-pop (lf: pointer to lifo): pointer to cell

C1: loop
C2: head = lf->top # get the top cell of the lifo
C3: if head == NULL
C4: return NULL # LIFO is empty
C5: endif
C6: next = head->next # get the next cell of cell
C7: if CAS (&lf->top, head, next) # try to set the top of the lifo to the next cell
C8: break
C9: endif
C10: endloop
C11: return head

Figure 6: lifo-pop



2.2. The ABA problem
However, the above implementation of the LIFO pop operations doesn’t catch the ABA problem. Assume that a 
process is preempted while dequeing a cell after C6: severall concurrent push and pop operations may result in a 
situation where the top cell remains unchanged but points to a different next cell as shown in figure 7. 

A B C X NULL1 )

A N X NULL2 )

B ?3 )

Figure 7: 1) state at the beginning of the pop operation, 
2) state after preemption, 

3) state after pop completion

The LIFO change won’t prevent the CAS operation to operate in C7, allowing to put a wrong cell on top of the 
stack. The solution to the ABA problem consists in adding a count of the cells popped from the stack to the 
LIFO structure as shown in figure 8 and to make use of the CAS2 primitive.

structure lifo {
top: a pointer to a cell
ocount: total count of pop operations

}

Figure 8: extended lifo structure

The push operation remains unchanged and the pop operation is now implemented as shown in figure 9: it 
checks both for lifo top and output count changes when trying to modify the lifo top.

lifo-pop (lf: pointer to lifo): pointer to cell
SC1: loop
SC2: head = lf->top # get the top cell of the lifo
SC2: oc = lf->ocount # get the pop operations count
SC3: if head == NULL
SC4: return NULL # LIFO is empty
SC5: endif
SC6: next = head->next # get the next cell of cell
SC7: if CAS2 (&lf->top, head, oc, next, oc + 1) # try to change both the top of the lifo and pop count
SC8: break
SC9: endif
SC10: endloop
SC11: return head

Figure 9: lifo-pop catching the ABA problem

3. Lock-free FIFO stacks
The FIFO queue is implemented as a linked list of cells with head and tail pointers. Each pointer have an 
associated counter, ocount and icount, wich maintains a unique modification count of operations on head and 
tail. The cell structure is the same as above (figure 1) and the fifo structure is shown in figure 10.

structure fifo {
head: a pointer to head cell
ocount: total count of pop operations
tail: a pointer to tail cell
icount: total count of push operations

}

Figure 10: the fifo structure

As in Michael-Scott [4] and Valois [3], the FIFO always contains a dummy cell, only intended to maintain the 
consistency. An empty FIFO contains only this dummy cell which points to an end fifo marker unique to the 
system: a trivial solution consists in using the FIFO address itself as a unique marker. All along the operations, 
head always points to the dummy cell which is the first cell in the list and tail always points to the last or the 
second last cell in the list. The double-word compare-and-swap increments the modification counters to avoid 
the ABA problem. 
The queue consistency is maintained by cooperative concurrency: when a process trying to enqueue a cell detects 
a pending enqueue operation (tail is not the last cell of the list), it first tries to complete the pending operation 
before enqueing the cell. The dequeue operation also ensures that the tail pointer does not point to the dequeued 
cell and if necessary, tries to complete any pending enqueue operation. Figure 11 to 13 presents the commented 
pseudo-code for the fifo queue operations.



fifo-init (ff: pointer to fifo, dummy: pointer to dummy cell)
dummy->next = NULL # makes the cell the only cell in the list
ff->head = ff->tail = dummy # both head and tail point to the dummy cell

Figure 11: the fifo initialization operation

fifo-push (ff: pointer to fifo, cl: pointer to cell) 
E1: cl->next = ENDFIFO(ff) # set the cell next pointer to end marker
E2: loop # try until enqueue is done
E3: icount = ff->icount # read the tail modification count
E4: tail = ff->tail # read the tail cell
E5: if CAS (&tail->next, ENDFIFO(ff), cl) # try to link the cell to the tail cell
E6: break; # enqueue is done, exit the loop
E7: else # tail was not pointing to the last cell, try to set tail to the next cell
E8: CAS2 (&ff->tail, tail, icount, tail->next, icount+1)
E9: endif
E10: endloop
E11: CAS2 (&ff->tail, tail, icount, cl, icount+1) # enqueue is done, try to set tail to the enqueued cell

Figure 12: the fifo push operation
fifo-pop (ff: pointer to fifo): pointer to cell

D1: loop # try until dequeue is done
D2: ocount = ff->ocount # read the head modification count
D3: icount = ff->icount # read the tail modification count
D4: head = ff->head # read the head cell
D5: next = head->next # read the next cell
D6: if  ocount == ff->oc # ensures that next is a valid pointer

# to avoid failure when reading next value
D7: if  head == ff->tail # is queue empty or tail falling behind ?
D8: if  next == ENDFIFO(ff) # is queue empty ?
D9: return NULL # queue is empty: return NULL
D10: endif

# tail is pointing to head in a non empty queue, try to set tail to the next cell
D11: CAS2 (&ff->tail, head, icount, next, icount+1)
D12: else if next <> ENDFIFO(ff) # if we are not competing on the dummy next
D13: value = next->value # read the next cell value
D14: if CAS2 (&ff->head, head, ocount, next, ocount+1) # try to set head to the next cell
D15: break # dequeue done, exit the loop
D16: endif
D17: endif
D18: endloop
D19: head->value = value # set the head value to previously read value
D20: return head # dequeue succeed, return head cell

Figure 13: the fifo pop operation

4 Correctness of the FIFO operations
Traditional sequential programs may be viewed as functions from inputs to outputs which may be specified as a 
pair consisting of a precondition describing the allowed inputs and postcondition describing the desired results 
for these inputs. However for concurrent programs, this approach is too limited and numerous work has been 
done for formal verification of concurrent systems. Although informal, two properties introduced by Lamport 
[11] are required for correctness of concurrent programs:

• safety property: states that “something bad never happens”,
• liveness property: states that “something good eventually happens”.

Formalizing this classification has been a main motivation for much of the work done on specification and 
verification of concurrent systems [12]. Formal methods successfully applied to sequential programs have also 
been extended to consider concurrent programming: Herlihy proposed a correctness condition for concurrent 
objects called “Linearizability” [13, 14]. It states that a concurrent computation is linearizable if it is equivalent 
to a legal sequential computation. An object (viewed as the agregate of a type, which defines a set of possible 
values, and a set of primitive operations), is linearizable if each operation appears to take effect instantaneaously 
at some point between the operation’s invocation and response. It implies that processes appear to be interleaved 
at the granularity of complete operations and that the order of non-overlapping operations is preserved. 
Correctness of the FIFO operations formal proof is beyond the scope of this paper, however it will be examined 
according to the properties mentionned above.



3.1 Linearizability
The algorithm is linearizable because each operation takes effect at an atomic specific point: E5 for enqueue and 
D14 for dequeue. Therefore, the queue will never enter any transient unsafe state: along any concurrent 
implementation history, it can only swing between the two different states S0 and S1 illustrated in figure 14 
and 15, which are acceptable and safe states for the queue: 

Assuming a queue in state S0: 
1) consider an push operation : as the queue state is S0, the atomic operation in E5 will succeed and the queue 

swings to S1 state. Then the atomic operation in E10 is executed: in case of success, the queue swings back 
to S0, in case of failure a successfull concurrent operation occurs on a S1 state and therefore by 3) and 4), 
the queue state should be S0.

2) consider a pop operation : if the queue is empty the operation returns in D9 and the state remains 
unchanged, otherwise the operation atomically executes D14: in case of success, the queue state remains in 
S0, in case of failure, a concurrent dequeue occured and as it has successfully operated on a S0 queue (by 
hypothesis) the final state remains also in S0.

head

tail
ocount

icount

Figure 14: FIFO state S0

head

tail
ocount

icount

Figure 15: FIFO state S1

Assuming a queue in state S1:
3) consider an enqueue operation: as the queue state is S1, the operation atomically executes E8 and then 

loops. In case of success, the queue swings to S0 otherwise a concurrent dequeue or enqueue successfully 
occured and the operation loop should operate on a queue back to S0.

4) consider a dequeue operation: it is concerned by S1 only if tail and head points to the same cell which is 
only possible with a queue containing a single cell linked to the dummy cell. In this case, the operation 
atomically executes D11 and then loop. In case of success, the queue swings to S0 state. A failure means 
that a concurrent dequeue or enqueue successfully occured: a successfull dequeue swing the queue to S0 (but 
it is now empty) and a successfull enqueue too (by 3).

3.2 Safety
The main difference with the Michael-Scott algorithm [4] relies on the cells structure constraint, which allows to 
avoid nodes allocation and release. In fact, the cells memory management is now in charge of the FIFO clients 
and may be optimised to the clients requirements but it doesn’t introduce any change in the algorithm 
functionning. Another difference is the modification counts to take account of the ABA problem: they are now 
associated only to the head and tail pointers to ensures atomic modifications of these pointers.
The safety properties satisfied by the Michel-Scott algorithm continue to hold ie:

• the linked list is always connected,
• cells are only inserted after the last cell in the linked list,
• cells are only deleted from the beginning of the linked list,
• head always points to the first node in the linked list,
• tail always points to a node in the linked list.

3.3 Liveness
The lock-free algorithm is non-blocking. This is asserted similarly to [4].
Assume a process attempting to operate on the queue:

• the process tries to enqueue a new cell: a failure means that the process is looping thru E8 and then another 
process must have succeeded in completing an enqueue operation or in dequeuing the tail cell.

• the process tries to dequeue a cell: a failure means that the process is looping thru D11 or D14. A failure in 
D11 means that another process must have succeeded in completing an enqueue operation or in dequeuing 
the tail cell. A failure in D14 means that another process must have succeeded in completing a dequeue 
operation.



5 Performances
Performances have been measured both for the lock-free LIFO compared to a lock-based implementation and for 
the lock-free FIFO algorithm compared to a lock-based implementation and to the Michael Scott algorithm. The 
bench has been made on a Bi-Celeron 500MHz SMP station running a 2.4.8 Linux kernel. It measures the time 
required for 1 to 8 concurrent threads to perform 500 000 x 6 concurrent push and pop operations on a shared 
LIFO or FIFO queue. The code executed by each thread is shown in Figure 16. The lock-based implementation 
makes use of the pthread mutex API with a statically allocated mutex.

long stacktest (long n) {
cell*  tmp[6]; long i; clock_t t0, t1;

t0 = clock();
while (n--) {

for (i=0; i<6; i++) tmp[i] = pop(&gstack);
for (i=0; i<6; i++) push(&gstack, tmp[i]);

}
t1 = clock();
return t1-t0;

}

Figure 16: the bench task.

The integrity of the queue was checked after the threads had completed their operations. Results are presented by 
figures 17 and 18 as average time (in µs) to perform a paired pop and push operations.
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Figure 17: lock-free LIFO compared to lock-
based.
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Figure 18: lock-free FIFO compared to 
Michael-Scott and lock-based.

In the Michael-Scott implementation, nodes allocation is performed using a statically allocated set of nodes and 
an index atomically incremented to access the next free node in the table (figure 19). The node table size 
prevents multiple node allocation. A node release is implicit and needs no additionnal operation.

node_t * new_node() {
static long index = 0;
long next, i;
do {

i= index;
next = (i >= MAXNODES) ? 0 : i+1;

} while (!CAS(&index, i, next));
return &nodes[next];

}

Figure 19: node allocation in Michael Scott implementation

Comparison between the lock-free and the lock-based operations shows the following:
• in lack of concurrency (single thread), the lock-based operations are more than 2 times more expensive than 

the lock-free operations,
• performances are roughly the same for a few concurrency (2 to 5 threads), 
• lock-based operations cost dramatically increases in medium-high concurrency to reach more than 7 times  

the lock-free cost for 8 concurrent threads.

Comparison between our lock-free FIFO algorithm and the Michael-Scott algorithm shows the following:
• for a single thread, the Michael-Scott operations cost is roughly 2 times more expensive
• when the concurrency increases, this cost is converging to 1.6 times our solution cost.

This behavior may be explained by the necessity to allocate the nodes pushed on the stack and to handle 
additionnal concurrency while performing the allocation.



7. Conclusion
Lock-free techniques are clearly more suited to real-time applications than lock-based techniques. They are more 
efficient and avoid priority inversion which is a major drawback in a real-time context. We have showed how to 
apply this technique to simple objects like LIFO and FIFO queues associated with basic operations. Finaly, our 
proposed new algorithm for FIFO operations improves existing algorithms with a simple constraint on the value 
data structure which allows more efficient specialized implementations. Although limited to LIFO and FIFO 
queues, the presented lock-free techniques may be very useful to solve situations commonly encountered in the 
musical domain where events have frequently to be queued while waiting for their deadline. 
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