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The steady-state Navier-Stokes equations in thin structures lead to some elliptic
second order equation for the macroscopic pressure on a graph. At the nodes of
the graph the pressure satisfies Kirchoff-type junction conditions. In the non-steady
case the problem for the macroscopic pressure on the graph becomes nonlocal in
time. In the paper we study the existence and uniqueness of a solution to such
one-dimensional model on the graph for a pipe-wise network. We also prove the
exponential decay of the solution with respect to the time variable in the case when
the data decay exponentially with respect to time. C© 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4891249]

I. INTRODUCTION

The Newtonian fluid flows in tube structures were considered in Refs. 3 and 5. Such flow domains
are connected finite unions of thin finite cylinders (in the 2D case, respectively, thin rectangles).

Each tube structure may be schematically represented by its graph. Letting the thickness of
tubes to zero we find out that tubes degenerate to segments (see Figs. 1 and 2).

It is known that the steady-state Navier-Stokes equations in thin structures lead to some elliptic
second order equation for the macroscopic pressure on a graph (see Refs. 3–5 and 1) (for general
theory of differential equations on graphs see Refs. 2 and 8). At the nodes of the graph the pres-
sure satisfies some Kirchhoff-type junction conditions. In the non-steady case the problem for the
macroscopic pressure on the graph becomes nonlocal in time. In the present paper we introduce
the 1D-model on the graph for a non-stationary pipe-wise network. We study the existence and
uniqueness of a solution to this problem and prove its exponential decay with respect to the time
variable in the case when the data decay exponentially with respect to time.

II. GRAPHS

Let O1, O2, . . . , ON be N different points in Rn, n = 2, 3, and e1, e2, . . . , eM be M closed
segments each connecting two of these points (i.e., each e j = Oi j Ok j , where ij, kj ∈ {1, . . . , N}, ij
�= kj). All points Oi are supposed to be the ends of some segments ej. The segments ej are called
edges of the graph. A point Oi is called node if it is the common end of at least two edges and Oi is
called vertex if it is the end of the only one edge. Any two edges ej and ei can intersect only at the
common node. The set of vertices is supposed to be non-empty.

Denote B =
N⋃

j=1
e j the union of edges and assume that B is a connected set. The graph G is

defined as the collection of nodes, vertices, and edges.
The union of all edges having the same end point in Ol is called the bundle B(l).
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FIG. 1. Fluid flow domains: Tube structures.

Let e be some edge, e = Oi O j . Consider two Cartesian coordinate systems in Rn . The first one
has the origin in Oi and the axis Oi x (e)

n has the direction of the ray [OiOj); the second one has the
origin in Oj and the opposite direction, i.e., Oi x̃ (e)

n is directed over the ray [OjOi).
Further in various situations we will chose one or another coordinate system denoting the local

variable in both cases as xe and pointing out which end is taken as the origin of the coordinate
system.

III. FORMULATION OF THE STEADY-STATE PROBLEM ON THE GRAPH

Let H 1(B) be the set of all continuous on B functions such that for any edge e they belong to
H1((0, |e|)). Introducing the inner product

(p, q)H 1(B) =
M∑

i=1

|ei |∫
0

(
p(ei )q (ei ) + ∂p(ei )

∂x (ei )
n

∂q (ei )

∂x (e)
n

)
dx (ei )

n

it can be easily checked that H 1(B) is a Hilbert space.
Consider the following steady-state problem set on the graph B. Given real constants � l, l = 1,

. . . , N, positive constants κei and functions F (ei ) ∈ L2(B), i = 1, . . . , M, find a function p ∈ H 1(B)
such that equations

− ∂

∂x (e)
n

(
κe

∂p

∂x (e)
n

(x (e)
n )

)
= f (e)(x (e)

n ), x (e)
n ∈ (0, |e|),

− ∑
e:Ol∈e

(
κe

∂p

∂x (e)
n

)
(0) = �l , l = 1, . . . , N1,

−
(
κe

∂p(e)

∂x (e)
n

)
(0) = �l , l = N1 + 1, . . . , N ,

(3.1)

FIG. 2. Graphs of tube structures.
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hold for all edges e = ei, i = 1, . . . , M, i.e., the first equation holds on every edge e of the graph, the
second equation holds at every node and the sum is taken over all edges of the bundle B(l), the third
equation holds at every vertex Ol. In conditions (3.1)2 and (3.1)3 the local coordinate system has the
origin Ol.

This problem describes the one-dimensional steady state flow in a pipe-wise network. Here p
stands for the macroscopic pressure and the right-hand sides describe given sources distributed in
the edges or concentrated at the nodes and vertices of the graph. The pressure is supposed to be
continuous on the graph B. Alternatively, one can consider the condition of prescribed known jumps
of the pressure at the nodes instead of the continuity condition. Evidently, this new problem can be
reduced to the previous one by a change of the unknown function (and respectively, of the right-hand
sides).

Problem (3.1) admits a variational formulation. By a weak solution of problem (3.1) we call a
function p ∈ H 1(B) satisfying for any test function q ∈ H 1(B) the integral identity

M∑
i=1

|ei |∫
0

κei

∂p(ei )

∂x (ei )
n

∂q (ei )

∂x (ei )
n

dx (ei )
n =

M∑
i=1

|ei |∫
0

f (ei )q (ei )dx (ei )
n +

N∑
l=1

�lq(Ol ), (3.2)

where q (ei ) = q|ei .
Consider now a subspace H 1

0,N (B) of H 1(B) consisting of functions vanishing in one vertex,
say in ON.9 By standard arguments one can prove the Poincaré-Friedrichs inequality for functions
u ∈ H 1

0,N (B).

Lemma 3.1. Let u ∈ H 1
0,N (B). The following estimate

M∑
i=1

|ei |∫
0

∣∣u(ei )
∣∣2

dx (ei )
n ≤ CP F

M∑
i=1

|ei |∫
0

∣∣∣∂u(ei )

∂x (ei )
n

∣∣∣2
dx (ei )

n (3.3)

holds. Here CP F = L2

2
, L =

M∑
i=1

|ei |.
Moreover,

sup
x∈B

|u(x)| ≤
M∑

i=1

|ei |∫
0

∣∣∣∂u(ei )

∂x (ei )
n

∣∣∣dx (ei )
n ≤

(
L

M∑
i=1

|ei |∫
0

∣∣∣∂u(ei )

∂x (ei )
n

∣∣∣2
dx (ei )

n

)1/2
. (3.4)

One can look for the solution of problem (3.2) which additionally satisfies the condition p(ON)
= 0, i.e., p ∈ H 1

0,N (B). In this case we have to take the test functions q ∈ H 1
0,N (B) and the last sum

in integral identity (3.2) is taken from 1 to N − 1.

Theorem 3.1. Let f ∈ L2(B). Problem (3.2) has a unique solution p ∈ H 1
0,N (B) if and only if

the compatibility condition

M∑
i=1

|ei |∫
0

f (ei )dx (ei )
n +

N∑
l=1

�l = 0 (3.5)

holds. For the solution p the following inequality

‖p‖H 1(B) ≤ 1 + CP F

κmin

(
‖ f ‖L2(B) + √

L N
( N−1∑

l=1
|�l |2

)1/2
)

(3.6)

holds. Here κmin = min
i∈{1,...,M}

κei , ‖ f ‖2
L2(B) =

M∑
i=1

|ei |∫
0

| f (ei )|2dx (ei )
n .

The proof of this theorem is a standard application of Riesz theorem on the representation of
linear bounded functionals in Hilbert spaces.

Corollary 3.1. Let the condition (3.5) be valid. Then problem (3.2) admits a unique (up to an
additive constant) solution p ∈ H 1

2 (B). If p is normalized so that p ∈ H 1
0N (B), then the following
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estimate

‖p‖2
H 1(B) ≤ C

(
‖ f ‖2

L2(B) +
N∑

l=1

|�l |2
)

(3.7)

holds. Here

C = L2/2 + 1

κmin
max{1,

√
L N }, κmin = min

i∈{1,...,M}
κei . (3.8)

Proof. By the Poincaré-Friedrichs inequality (3.3) we have

κmin‖p‖2
H 1(B) ≤

( L2

2
+ 1

) M∑
i=1

κe1

|ei |∫
0

∣∣∣∂p(ei )

∂x (ei )
n

∣∣∣2
dx (ei )

n

=
( L2

2
+ 1

)( M∑
i=1

|ei |∫
0

f (ei )(x (ei )
n )p(ei )(x (ei )

n )dx (ei )
n +

N∑
l=1

�l p(Ol)
)

≤
( L2

2
+ 1

)(
‖ f ‖L2(B)‖p‖H 1(B) +

√
N

( N∑
l=1

�2
l

)1/2
max
x∈B

| p̂(x)|
)

≤
( L2

2
+ 1

)(
‖ f ‖L2(B) +

√
L N

( N∑
l=1

�2
l

)1/2
)
‖p‖H 1(B).

So, we have proved inequality (3.7) with the constant C defined by (3.8). �
IV. OPERATOR RELATING THE PRESSURE DROP AND THE FLUX IN AN INFINITE
TUBE; THE NON-STEADY CASE

With every edge ej we associate a bounded domain σ j ⊂ Rn−1 having Lipschitz boundary ∂σ j,
j = 1, . . . , M, and the operator L(e) relating the pressure drop S(τ ) and the flux (flow rate) H(τ ) in an
infinite cylindric pipe with the cross-section σ (e). Namely, consider the following initial boundary
value problem for the heat equation: for given S ∈ L2(0,+∞) find V ∈ L2(0,+∞; H 1

0 (σ (e))) with
∂V
∂τ

∈ L2(0,+∞; L2(σ (e))) such that

∂V
∂τ

(y(e)′, τ ) − ν�′
y(e)′V(y(e)′, τ ) = S(τ ), y(e)′ ∈ σ (e), τ > 0,

V(y(e)′, τ )|∂σ (e) = 0, τ > 0,

V(y(e)′, 0) = 0, y(e)′ ∈ σ (e),

(4.1)

and denote

L (e)S(τ ) =
∫

σ (e)

V(y(e)′, τ )dy(e)′.

Evidently, L(e) is bounded linear operator acting from L2(0, + ∞) to H 1
0 (0,+∞). It was proved in

Refs. 6 and 7 that the operator L(e) admits the bounded inverse (L (e))−1 : H 1
0 (0,+∞) 
→ L2(0,+∞),

i.e., there holds the following

Theorem 4.1. Let H ∈ H 1
0 (0,+∞) be given. There exists a unique pair

(V,S)
satisfying (in

the sense of distributions) Eq. (4.1) and the flux condition∫
σ (e)

V(y(e)′, τ )dy(e)′ = H(τ ).
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Moreover, V ∈ L2(0,+∞; H 1
0 (σ (e))),

∂V
∂τ

∈ L2(0,+∞; L2(σ (e))), S ∈ L2(0,+∞), and the follow-
ing estimate

‖V‖L2(0,T̂ ;H 1
0 (σ (e))) +

∥∥∥∂V
∂τ

∥∥∥
L2(0,T̂ ;L2(σ (e)))

+ ‖S‖L2(0,T̂ )

≤ c‖H‖H 1(0,T̂ )

(4.2)

holds for any T̂ > 0 with the constant c independent of T̂ .

Thus, the following estimate

C−1
L ‖Q‖L2(0,T̂ ) ≤ ‖L (e) Q‖H 1(0,T̂ ) ≤ CL‖Q‖L2(0,T̂ ) ∀Q ∈ L2(0, T̂ ), (4.3)

holds. In (4.3) CL > 0 is a constant independent of T̂ .

V. FORMULATION OF THE NON-STEADY PROBLEM ON THE GRAPH

Consider the following non-steady problem set on the graph B. Let T̂ > 0. Given functions
�l ∈ H 1

0 (0,+∞), l = 1, . . . , N, and functions F (ei ) ∈ H 1
0 (0,+∞; L2(B)), i = 1, . . . , M, find a

function p ∈ L2(0, T̂ ; H 1(B)) such that equations

− ∂

∂x (e)
n

(
L (e) ∂p

∂x (e)
n

(x (e)
n , τ )

)
= f (e)(x (e)

n , τ ), x (e)
n ∈ (0, |e|),

− ∑
e:Ol∈e

(
L (e) ∂p

∂x (e)
n

)
(0, τ ) = �l(τ ), l = 1, . . . , N1,

−
(

L (e) ∂ p̂(e)

∂x (e)
n

)
(0, τ ) = �l(τ ), l = N1 + 1, . . . , N ,

(5.1)

hold for all t ∈ (0, T̂ ) and for all edges e = ei, i = 1, . . . , M. Here the right-hand sides f (e)(x (e)
n , τ ),

� l(τ ), l = 1, . . . , N, depend on the time variable τ . Note that, applying the operator L(e) to
∂p

∂x (e)
n

(x (e)
n , τ ) we treat the variable x (e)

n as a parameter.

This problem describes the one-dimensional flow in a pipe-wise network. Here p stands for
the macroscopic pressure and the right-hand sides describe given non-steady sources distributed
in the edges or concentrated at the nodes and vertices of the graph. The pressure is supposed to
be continuous on the graph B. Alternatively, as for the steady state problem, one can consider the
condition of prescribed known jumps of the pressure at the nodes instead of the continuity condition.
Evidently, this new problem can be reduced to the previous one by a change of the unknown function
(and respectively, of the right-hand sides).

VI. EXISTENCE AND UNIQUENESS OF A SOLUTION TO THE PROBLEM ON THE GRAPH

Differentiating relations (5.1) with respect to time τ , we get an equivalent problem having the
following variational formulation

aT̂ (p, ψ) = bT̂ (ψ)∀ψ ∈ L2(0, T̂ ; H 1(B)), (6.1)

where

aT̂ (p, ψ) =
M∑

i=1

T̂∫
0

|ei |∫
0

∂(L (ei ) p)τ

∂x (ei )
n

∂ψ

∂x (ei )
n

dx (ei )
n dτ

and

bT̂ (ψ) =
M∑

i=1

T̂∫
0

|ei |∫
0

( f (ei ))τψdx (ei )
n dτ +

N∑
l=1

T̂∫
0

(�l)τ (τ )ψ(Ol, τ )dτ.
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Here gτ = ∂g

∂τ
.

Theorem 6.1. Let �l ∈ H 1
0 (0,+∞), l = 1, . . . , N, and f (ei ) ∈ H 1

0 (0,+∞; H 1(B)), i = 1, . . . ,
M. Problem (5.1) admits a unique solution p ∈ L2(0, T̂ ; H 1(B)) vanishing at the vertex ON if and
only if (3.5) holds for almost all τ ∈ (0, T̂ ).10

Proof. The main idea of the proof is the Lax-Milgram lemma argument and the application
of inequality (4.3) on any edge e. Indeed, consider the subspace H 1

0,N (B) of functions of H 1(B)
vanishing at the vertex ON. We check directly using (4.3) that aT̂ is a bilinear form continuous with
respect to the norm of L2(0, T̂ ; H 1

0,N (B)), and that bT̂ is bounded linear functional. The coerciveness
of aT̂ is a consequence of the following estimates, which hold for any edge e and the solution (V,S)
to problem (4.1):

T̂∫
0

(L (e)S)τSdτ =
T̂∫

0

∫
σ (e)

(V(y(e)′, τ ))τS(τ ) dy(e)′dτ

=
T̂∫

0

∫
σ (e)

{
|(V(y(e)′, τ ))τ |2 + ν

2

∂

∂τ

∣∣∇y(e)′V(y(e)′, τ )
∣∣2

}
dy(e)′dτ

≥
T̂∫

0

∫
σ (e)

|(V(y(e)′, τ ))τ |2dy(e)′dτ

≥ 1

|σ (e)|

T̂∫
0

( ∫
σ (e)

(V(y(e)′, τ ))τ dy(e)′
)2

dτ = 1

|σ (e)|

T̂∫
0

|(L (e)S)τ |2dτ

≥ 1

2|σ (e)|

T̂∫
0

|(L (e)S)τ |2dτ + 1

T̂ 2|σ (e)|

T̂∫
0

|L (e)S|2dτ

≥ min
(1

2
,

1

T̂ 2

) C−2
L

|σ (e)|

T̂∫
0

|S(τ )|2dτ.

Thus,

aT̂ (p, p) ≥ min
(1

2
,

1

T̂ 2

) C−2
L

mini=1,...,M |σ (ei )| (p, p)T̂ , (6.2)

where

(p, ψ)T̂ =
M∑

i=1

T̂∫
0

|ei |∫
0

∂p

∂x (ei )
n

∂ψ

∂x (ei )
n

dx (ei )
n dτ.

Thus, all conditions of the Lax-Milgram lemma are verified in the Hilbert space
L2(0, T̂ ; H 1

0N (B)). So, we have proved the existence and uniqueness of the solution to problem (6.1)
projected on the subspace L2(0, T̂ ; H 1

0,N (B)). Finally, as usually, one can check directly that if condi-
tion (3.5) is valid, then (6.1) still holds for any test function from the larger space L2(0, T̂ ; H 1(B)). In-
deed, let ψ belongs to L2(0, T̂ ; H 1(B)); decompose it in a sum ψ(x (ei )

n , τ ) = ψ̃(x (ei )
n , τ ) + ψ(ON , τ ),
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where ψ̃ ∈ L2(0, T̂ ; H 1
0,N (B)). Taking into account that ψ̃ satisfies (6.1), that the x (ei )

n -derivative of
ψ(ON, τ ) is equal to zero (so that aT̂ (p, ψ(ON , τ )) = 0), and that, due to (3.5), bT̂ (ψ(ON , τ )) = 0,
we get (6.1) for all ψ ∈ L2(0, T̂ ; H 1

0,N (B)). The necessity of condition (3.5) follows from the identity
(6.1) written for ψ = ψ(τ ), an arbitrary function of L2(0, T̂ ). The theorem is proved. �

Remark 6.1. Estimate (6.2) yields the inequality√
(p, p)T̂ ≤ C∗T̂ 2 ∀ T̂ > 1, (6.3)

where the constant C∗ ≥ 0 is independent of T̂ .

VII. EXPONENTIAL DECAY IN TIME OF THE SOLUTION

Assume that the data of problem (5.1) decay exponentially as τ → ∞. Denote L2,β (0,+∞) the
space of functions f ∈ L2(0, + ∞) such that

+∞∫
0

| f (τ )|2 exp{2βτ }dτ < ∞,

H1
β(0,+∞) the space of functions f ∈ H1(0, + ∞) such that f, f ′ ∈ L2,β (0,+∞). Let H1

0,β(0,+∞)
be the subspace of H1

β(0,+∞) consisting of functions vanishing at τ = 0.

Theorem 7.1. Let p be solution to problem (6.1) for all T̂ > 0 and let �l ∈ H1
0,β (0,+∞), l

= 1, . . . , N, f (ei ) ∈ H1
0,β(0,+∞; L2(ei )), i = 1, . . . , M. Then p ∈ L2,β1 (0,+∞; H 1(B)) with some

positive β1.

The proof of this theorem is based on the uniform with respect to T̂ bounds for the bilinear and
linear forms

a(γ )
T̂ ,β

(p, ψ) =
T̂∫

0

exp{2βτ }aγ,τ (p, ψ)dτ, b(γ )
T̂ ,β

(ψ) =
T̂∫

0

exp{2βτ }bγ,τ (ψ)dτ,

with γ = β, where

aγ,τ (p, ψ) =
M∑

i=1

|ei |∫
0

∂{(L (ei ) p)τ + γ L (ei ) p}
∂x (ei )

n

∂ψ

∂x (ei )
n

dx (ei )
n ,

bγ,τ (ψ) =
M∑

i=1

|ei |∫
0

{( f (ei ))τ + γ f (ei ))}ψdx (ei )
n +

N∑
l=1

{(�)τ (τ ) + γ�(τ )}ψ(Ol, τ ).

In order to get these bounds, we shall use the following lemma:

Lemma 7.1. Let H ∈ H 1(0, T̂ ). Then for any γ > 0 the following inequality

T̂∫
0

H 2(τ ) exp{2γ τ }dτ ≤ 1

γ 2

T̂∫
0

(H ′(τ ))2 exp{2γ τ }dτ + 1

γ
H 2(T̂ ) exp{2γ T̂ }

holds.

Proof. Integrating by parts and using the Young inequality we get

T̂∫
0

H 2(τ ) exp{2γ τ }dτ =
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= 1

2γ
(H 2(T̂ ) exp{2γ T̂ } − H 2(0)) − 2

T̂∫
0

H (τ )H ′(τ )
exp{2γ τ }

2γ
dτ

≤ 2

T̂∫
0

{γ
2

H 2(τ ) + 1

2γ
(H ′(τ ))2}exp{2γ τ }

2γ
dτ + 1

2γ
H 2(T̂ ) exp{2γ T̂ }.

Hence,

T̂∫
0

H 2(τ ) exp{2γ τ }dτ ≤ 1

2

T̂∫
0

H 2(τ ) exp{2γ τ }dτ+

+ 1

2γ 2

T̂∫
0

(H ′(τ ))2 exp{2γ τ }dτ + 1

2γ
H 2(T̂ ) exp{2γ T̂ }

and the lemma is proved. �
From Lemma 7.1 immediately follows the Poincaré–Friedrichs inequality for weighted spaces.

Corollary 7.1. (Poincaré–Friedrichs inequality for weighted spaces). Let H ∈ H1(0, + ∞). Then
for any γ > 0 the following inequality

+∞∫
0

H 2(τ ) exp{2γ τ }dτ ≤ 1

γ 2

+∞∫
0

(H ′(τ ))2 exp{2γ τ }dτ

holds (this inequality makes sense if the right-hand side is finite).

Lemma 7.2. Let f ∈ L2, loc(0, +∞) and let there exist a constant C > 0 and a real number α

such that for any T̂ > 1,
T̂∫
0

f 2(τ )dτ ≤ CT̂ α. Then for any γ > 0,

+∞∫
0

f 2(τ ) exp{−γ τ }dτ < +∞.

Proof. For any integer N > 0,

N∫
0

f 2(τ ) exp{−γ τ }dτ ≤
N−1∑
j=0

j+1∫
j

f 2(τ )dτ exp{−γ j} ≤ C
N−1∑
j=0

( j + 1)α exp{−γ j}.

Evidently, this sum is uniformly bounded with respect to N. �
Proof of Theorem 7.1. For any S ∈ L2(0, T̂ ) and for every e = ei we have

I (e)(S) =
T̂∫

0

(
(L (e)S)τ (τ )S(τ ) + β(L (e)S)(τ )S(τ )

)
exp{2βτ }dτ

=
T̂∫

0

∫
σ (e)

{
(V(y(e)′, τ ))τ + βV(y(e)′, τ )

}
dy(e)′S(τ ) exp{2βτ }dτ
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=
T̂∫

0

∫
σ (e)

{
|(V(y(e)′, τ ))τ |2 + ν

2

∂

∂τ
(∇y(e)′V(y(e)′, τ ))2

+βν|∇y(e)′V(y(e)′, τ )|2 + β

2

∂

∂τ
(V(y(e)′, τ ))2

}
dy(e)′ exp{2βτ }dτ.

Integrating by parts with respect to the time variable in the second and the fourth terms, we get

I (e)(S) =
T̂∫

0

∫
σ (e)

{
|(V(y(e)′, τ ))τ |2 − νβ|∇y(e)′V(y(e)′, τ )|2

+βν|∇y(e)′V(y(e)′, τ )|2 − β2|V(y(e)′, τ )|2
}

dy(e)′ exp{2βτ }dτ

+
∫

σ (e)

ν

2
|∇y(e)′V(y(e)′, T̂ )|2dy(e)′ exp{2β T̂ } +

∫
σ (e)

β

2
|V(y(e)′, T̂ )|2dy(e)′ exp{2β T̂ }.

Simplifying the second and the third terms and applying Lemma 7.1 to the first term yield

I (e)(S) ≥ β2

T̂∫
0

∫
σ (e)

|V(y(e)′, τ )|2dy(e)′ exp{2βτ }dτ

−β

∫
σ (e)

|V(y(e)′, T̂ )|2dy(e)′ exp{2β T̂ } + ν

2

∫
σ (e)

|∇y(e)′V(y(e)′, T̂ )|2dy(e)′ exp{2β T̂ }

+β

2

∫
σ (e)

|V(y(e)′, T̂ )|2dy(e)′ exp{2β T̂ } − β2

T̂∫
0

∫
σ (e)

|V(y(e)′, τ )|2dy(e)′ exp{2βτ }dτ

= ν

2

∫
σ (e)

|∇y(e)′V(y(e)′, T̂ )|2dy(e)′ exp{2β T̂ } − β

2

∫
σ (e)

|V(y(e)′, T̂ )|2dy(e)′exp{2β T̂ }.

Applying now the Poincaré-Friedrichs inequality in the domain σ (e) with constant CPF we get

for β <
ν

2CP F
:

I (e)(S) ≥ β

2

∫
σ (e)

|V(y(e)′, T̂ )|2dy(e)′ exp{2β T̂ }

≥ β

2

1

|σ (e)|
( ∫

σ (e)

V(y(e)′, T̂ )dy(e)′
)2

exp{2β T̂ }

≥ β

2

1

|σ (e)| |L
(ei ) p(ei )(T̂ )|2 exp{2β T̂ }.

So, for all T̂ > 1,

a(β)
T̂ ,β

(p, p) ≥ β

2

1

max
e

|σ (e)| exp{2β T̂ }
M∑

i=1

|ei |∫
0

∣∣∂(L (ei ) p)

∂x (ei )
n

∣∣2
dx (ei )

n .
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On the other hand,

a(β)
T̂ ,β

(p, p) = b(β)
T̂ ,β

(p)

and for any positive δ ≤ β,

b(β)
T̂ ,β

( p̂) ≤

√√√√√ T̂∫
0

exp{2δτ }
M∑

i=1

|ei |∫
0

(
( f (ei ))τ (τ ) + β f (ei )(τ )

)2
dx (ei )

n dτ ×

×

√√√√√ T̂∫
0

exp{−2δτ }
M∑

i=1

|ei |∫
0

∣∣∣ ∂p

∂x (ei )
n

∣∣∣2
dx (ei )

n dτ +

+

√√√√√ T̂∫
0

exp{2δτ }
N∑

l=1

(
(�l (Ol, τ ))τ + β�l (Ol, τ )

)2
dτ ×

×

√√√√√ T̂∫
0

exp{−2δτ }
N∑

l=1

|p(Ol, τ )|2dτ

is bounded uniformly with respect to T̂ due to (6.3) and Lemma 7.2.
So, for any edge ei, i = 1, . . . , M,

exp{2β T̂ }
M∑

i=1

|ei |∫
0

∣∣∣∂(L (ei ) p(ei ))

∂x (ei )
n

∣∣∣2
dx (ei )

n

is bounded uniformly. This implies that for any edge ei, i = 1, . . . , M, the inclusion

∂(L (ei ) p(ei ))

∂x (ei )
n

∈ L2,β2 (0,+∞; L2(ei )),

holds for every β2 < β. Consequently, there exists a positive β1 such that

∂p(ei )

∂x (ei )
n

∈ L2,β1 (0,+∞; L2(ei )).

So, finally, by Lemma 3.1,

p ∈ L2,β1 (0,+∞; H 1(B)).

Theorem 7.1 is proved. �
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