Automatic Computation of Potential Energy Surfaces for MCTDH Quantum Dynamics using Reparametrized Semiempirical Hamiltonians - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2019

Automatic Computation of Potential Energy Surfaces for MCTDH Quantum Dynamics using Reparametrized Semiempirical Hamiltonians

Résumé

A correct description of quantum effects is necessary if a physically correct molecular simulation is aimed for [1]. Despite the current boost in semiclassical and full quantum dynamical methods, the availability of a Potential Energy Surfaces (PES) is still a major bottleneck. For grid- based ones, the PES is represented globally, formally as a multidimensional tensor and, in the case of on-the-fly approaches, the PES is expressed in a local representation at every time-step. In the first category, the limitation lies on the possibility of fitting the PES to an appropriate functional form for a large number of degrees of freedom. Powerful and accurate as the existing methods are, a high degree of expertise is still required to master and apply these techniques, particularly when considering medium-large systems (>6D), thus preventing a wider-spread use. In the second case, the limiting factor is the number of electronic structure calls (energies, gradients, Hessians, properties, etc.) needed to perform the propagation. Consequently, on-the-fly approaches are constrained to modest levels of theory. We present Specific Reaction Parameter Multigrid POTFIT (SRP-MGPF) [2], a method which constitutes a well-balanced solution to the aforementioned issues. SRP-MGPF allows, in a single fitting process, the generation of a chemically-accurate (<1 kcal/mol) global (molecular or intermolecular) PES at the cost of semiempirical potentials. SRP-MGPF relies on three steps: (i) a fully automated topographical characterisation of the PES in terms of all minima and transition states using the TSSCDS [3] or the vdW-TSSCDS [4] methods; (ii) a global reparametrization of a semiempirical Hamiltonian (SRP) using reference geometries derived from the set of stationary points [2]; and (iii) direct tensor-decomposition of the SRP PES into sum-of-products form with the MGPF algorithm [5]. To show the capabilities of our approach, we have compared Multiconfiguration Time-Dependent Hartree (MCTDH) [6] calculations of vibrational eigenstates and wavepacket propagations using a reference HONO (6D) PES of CCSD(T) quality [7] and our SRP-MGPF PES. References [1] F. Gatti (Ed.), Molecular Quantum Dynamics, Springer (Heidelberg), (2014). [2] R. L. Panadés-Barrueta, E. Martínez-Núñez, D. Peláez, Front. Chem. (submitted) [3] E. Martínez-Núñez, J. Comp. Chem. 36, 222 (2015). [4] S. Kopec, E. Martínez-Núñez, J. Soto, D. Peláez, Int. J. Quantum Chem. (accepted). [5] D. Peláez, H.-D. Meyer, J. Chem. Phys., 138, 014108 (2013). [6] M. H. Beck, A. Jäckle, G. A. Worth, H.-D. Meyer, Phys. Rep., 324, 1 (2000). [7] F. Richter, M. Hochlaf, P. Rosmus, F. Gatti, H.-D. Meyer, J. Chem. Phys., 120, 1306 (2004)
Fichier non déposé

Dates et versions

hal-02157097 , version 1 (15-06-2019)

Identifiants

  • HAL Id : hal-02157097 , version 1

Citer

Ramón Lorenzo Panadés-Barrueta, Emilio Martinez-Nunez, Daniel Peláez. Automatic Computation of Potential Energy Surfaces for MCTDH Quantum Dynamics using Reparametrized Semiempirical Hamiltonians. 10th International Meeting on Atomic and Molecular Physics and Chemistry 2019, Jun 2019, Madrid, Spain. ⟨hal-02157097⟩
78 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More