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Abstract: This paper presents an LPV damping force observer of ElectroRheological (ER)
dampers for a real automotive suspension system, taking the dynamic characteristic of damper
into account. First, an extended nonlinear quarter-car model is considered, where the time
constant representing the damper dynamics is varying according to the control level. This is
rewritten as an LPV model which is used to design an LPV observer. The objective of the LPV
observer is to minimize the effects of bounded unknown input disturbances (unknown road
profile and measurement noises) on the state estimation errors through an H∞ criterion, while
the damper nonlinearity is bounded using a Lipschitz condition. Two low-cost accelerometers
(the sprung mass and the unsprung mass accelerations) are used as inputs for the proposed
methodology only. To experimentally assess the proposed approach, it is implemented on the
1/5-scaled real vehicle-INOVE testbench of GIPSA-lab. This shows the ability of the observer to
estimate the damper force in real-time, face to unknown inputs disturbance and sensor noises.

Keywords: LPV Observer, Semi-active suspension, Electrorheological damper, Lipchitz
nonlinearity, damping force estimation,

1. INTRODUCTION

Nowadays, the semi-active damper for automotive suspen-
sion systems is one of the key components which improves
safety and comfort for on-board passengers. Therefore, it
has received a lot of attention from industry and academia
(Savaresi et al. (2010) and references therein). Several
control methods were proposed in the literature (see a
review in Poussot-Vassal et al. (2012)). Based on the
implementation aspects, these methods can be broadly
classified into: a) use of an inverse model or look-up tables (
Poussot-Vassal et al. (2008), Do et al. (2010), Nguyen et al.
(2015)) and b) use of an inner force tracking controller
(Priyandoko et al. (2009), Aubouet (2010)). However, as
damper force sensors are expensive and difficult to install
in practice, the real-time estimation of the damper force
is of paramount importance for suspension control.
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The key requirements for designing damper force observer
are to use classical on-board sensors (such as accelerom-
eters), to take into account the nonlinear dynamical be-
havior of the damper and to handle sensor noises and
unknown road profile disturbances. To this aim, several
estimation methodologies were proposed. Some are only
considering a static damper model such as the Kalman
filter presented in (Koch et al. (2010)). In order to con-
sider the dynamical characteristic of the damper, robust
observers (H∞, LPV-H∞, H∞ Lipschitz and unified H∞
observers) were proposed in Estrada-Vela et al. (2018),
Tudon-Martinez et al. (2018), Pham et al. (2019a), Pham
et al. (2019b). Although the estimation methodologies
provide interesting results, the varying time constant of
the dynamical nonlinear model has been ignored as far as
we know.

In this paper, we aim first to extend the estimation method
in Pham et al. (2019a) to LPV systems in order to
deal with the varying time constant of the damper. An
LPV observer is then developed to estimate the damper
force of the suspension system in real-time, using two
accelerometers only. The major contributions of this paper
are as follows:



• A quarter-car suspension nonlinear model is aug-
mented with a first order nonlinear dynamical damper
model and is rewritten as an LPV model for which
the scheduling variable is the damper time constant
(modelled by a polynomial function of the control
input).
• A polytopic LPV approach for Lipchitz nonlinear

system is developed to design an observer minimizing,
in an L2-induced gain objective, the effect of unknown
inputs (road profile and measurement noises) and to
dealing with the varying of the time constant in the
dynamic model.
• The proposed observer has been implemented on

a real scaled-vehicle test bench, through the Mat-
lab/Simulink Real-Time Workshop to experimentally
assesses the performance of the observer.

The rest of this paper is organized as follows. Section 2
presents the semi-active damper modeling and quarter-car
system description and section 3 the design of the LPV
observer. In section 4 and 5, simulation and experimen-
tal results are shown, respectively. Section 5 gives some
concluding remarks.

2. SEMI-ACTIVE DAMPER MODELING AND
QUARTER-CAR SYSTEM DESCRIPTION

Fig. 1. 1/4 car model with semi-active suspension

2.1 Physical model and identification

This section introduces the quarter-car model including
the semi-active ER suspension system depicted in Fig.1.
The well-known model consists of the sprung mass (ms),
the unsprung mass (mus), the suspension components
(spring with stiffness ks and damper) located between
(ms) and (mus) and the tire which is modelled as a spring
with stiffness kt. From Newton’s second law of motion, the
system dynamics around the equilibrium are given as:{

msz̈s = −Fs − Fd
musz̈us = Fs + Fd − Ft

(1)

In (1), the spring force Fs and the tire force Ft are given
as follows:

Fs = ks(zs − zus)
Ft = kt(zus − zr) (2)

where zs and zus are the displacements of the sprung and
unsprung masses, respectively; zr is the road displacement
input.

Let us now describe the proposed semi-active damper
modelling method. First following Guo et al. (2006), a
phenomenological damper model is expressed as{

Fd = k0(zs − zus) + c0(żs − żus) + Fnl
Fnl = fc · u · tanh(k1(zs − zus) + c1(żs − żus))

(3)

where Fd is the damper force; c0, c1, k0, k1, fc are constant
parameters. In the ER damper, the control input u is the
voltage input that provides the electrical field to control
the ER damper. In practice, it is the duty cycle of the
PWM signal that controls the application.

However, the above model does not consider the dynamical
damper behavior, while, for semi-active dampers, it is
known to be an important issue for modelling and control
(see Koo et al. (2006)).

In order to take into account the varying dynamical
behavior of the ER fluid, the above model (3) is completed
by a first-order dynamical equation of the controlled part
Fnl:

τ(u)Ḟer + Fer = Fnl (4)

Therefore, the complete nonlinear dynamical model is
given as

Fd = k0(zs − zus) + c0(żs − żus) + Fer
Fnl = fc · u · tanh(k1(zs − zus) + c1(żs − żus))
τ(u)Ḟer = −Fer + Fnl

(5)
According to Koo et al. (2006), the varying time constant
τ(u) depends on the control input u and can be identified
following the next steps.

In order to identify τ(u), the experimental tests consid-
ered the velocity input within the range [−0.15 , 0.15] m

s
and the fixed PWM (i.e. ueq) signals inside the set
{0 , 10 , 15 , 20 , 25 , 30}%. The identification process is then
divided into both following steps:
Step 1: During each experimental test with a constant
value ueq, the corresponding force Fer is obtained from the
test bed force sensor (see section 5) while Fnl is calculated
based on the static model of ER damper. Then, the fixed
time constant τ(ueq) can be identified by using Least
Squares method. Finally, the set of time constants τ for
all ueq is shown in Table 1.

Table 1. Values of time constant τ with differ-
ent PWM signals

PWM τ Unit

0 0 ms
0.1 0.0137 s
0.15 0.0221 s
0.2 0.0365 s
0.25 0.055 s
0.3 0.0631 s

Step 2: Based on the values in Table 1, the relationship
between τ and u can be approximated by the following
polynomial function (Figure 2)

τ(u) = 0.3643u2 + 0.1124u (6)
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Fig. 2. The relation between τ and u

It is noted that linear and nonlinear identification method-
ologies are used to determine all the parameters of the
model (3) (shown in table 2). They are not described here
since it is out of the scope of this paper.

Table 2. Parameter values of the quarter-car
model equipped with an ER damper

Parameter Description value Unit

ms Sprung mass 2.27 kg
mus unsprung mass 0.25 kg
ks Spring stiffness 1396 N/m
kt Tire stiffness 12270 N/m
k0 Passive damper stiffness coefficient 170.4 N/m
c0 Viscous damping coefficient 68.83 N.s/m
k1 Hysteresis coefficient due to displacement 218.16 N.s/m
c1 Hysteresis coefficient due to velocity 21 N.s/m
fc Dynamic yield force of ER fluid 28.07 N

2.2 LPV modelling

In this section, the quarter-car system is rewritten into the
LPV form for observer design.

By selecting the system states as x = [x1, x2, x3, x4, x5]T =
[zs − zus, żs, zus − zr, żus, Fer]T ∈ R5, the measured vari-
ables y = [z̈s, z̈us]

T ∈ R2 and the scheduling variable
ρ = 1

τ(u) ∈ R, the system dynamics can be written in

the following LPV form:{
ẋ = A(ρ)x+B(ρ)Φ(x)u+D1ω

y = Cx+D2ω
(7)

where ω =

(
żr
n

)
, in which, żr is the road profile derivative

and n is the sensor noises.

Φ(x) = tanh(k1x1 + c1(x2 − x4))

= tanh(Γx)

with Γ = [k1, c1, 0, −c1, 0]

A =



0 1 0 −1 0

− (ks + k0)

ms
− c0
ms

0
c0
ms

− 1

ms
0 0 0 1 0

(ks + k0)

mus

c0
mus

− kt
mus

− c0
mus

1

mus
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C =

− (ks + k0)

ms
− c0
ms

0
c0
ms

− 1

ms
(ks + k0)

mus

c0
mus

− kt
mus

− c0
mus

1
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B =


0
0
0
0

fc · ρ

 , D1 =


0 0
0 0
−1 0
0 0
0 0

 , D2 =

[
0 0.01
0 0.01

]

Remark: Since control input signal u are accessible in
observer design, the scheduling variable ρ = 1

τ(u) is known

online via the function of control input signal u and τ (6).

According to Apkarian et al. (1995), since the scheduling
parameter ρ varies in a polytope Y of 2 vertices ρ ∈ [ρ, ρ],
the matrices A(ρ), B(ρ) can be transformed into a convex
interpolation as follows:

A(ρ) =

2∑
i=1

αi(ρ)Ai, B(ρ) =

2∑
i=1

αi(ρ)Bi (8)

αi(ρ) > 0,

2∑
i=1

αi(ρ) = 1, (9)

where A1 = A(ρ), A2 = A(ρ), B1 = B(ρ), B2 = B(ρ)

3. LPV OBSERVER DESIGN

In this section, a polytopic LPV observer is proposed
to estimate the ER damper force accurately. An H∞
criterion is used to minimize the effect of the unknown
disturbance ω on the state estimation errors and to bound
the nonlinearity by Lipschitz constant.

The considered problem is to estimate the damper force
Fd. Following the modelling step above, the estimated
force F̂d is then defined as:

F̂d = k0x̂1 + c0(x̂2 − x̂4) + x̂5 (10)

Therefore, the state variables to be accurately estimated
by the observer are representing by the vector z =
[x1, x2, x4, x5]T ∈ R4.

The polytopic LPV observer for the quarter-car system
(7) has the following structure:{

˙̂x = A(ρ)x̂+ L(ρ)(y − Cx̂) +B(ρ)Φ(x̂)u

ẑ = Czx̂
(11)

where x̂ is the estimated states of the states x, ẑ is
the estimated variables of the variables z and Cz =1 0 0 0 0

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

.

The observer gains L(ρ) to be determined in the next steps
are defined as follows:

L(ρ) =

2∑
i=1

αi(ρ)Li (12)

with Li ∈ R5×2

The estimation error is given as

e(t) = x(t)− x̂(t) (13)

Differentiating e(t) with respect to time and using (7) and
(11), one obtains




ė = ẋ− ˙̂x

= (A− L(ρ)C)e+B(ρ)∆Φ · u
+(D1 − L(ρ)D2)ω

ez = Cze

(14)

where ∆Φ = Φ(x)− Φ(x̂)

Φ(x) satisfies the Lipschitz condition in x, x̂, as:

‖Φ(x)− Φ(x̂)‖ 6 ‖Γ(x− x̂)‖,∀x, x̂ (15)

Therefore, the LPV observer design problem is stated
below:

• The system (14) is stable for ω(t) = 0
• ‖ez(t)‖L2

< γ‖ω(t)‖L2
for ω(t) 6= 0

The extension of our previous works (Pham et al. (2019a),
Pham et al. (2019b)) is stated in the following theorem
that solves the LPV observer design problem.

Theorem 1. Consider the system model (7) and the ob-
server (11) . The above design problem is solved if there
exist a symmetric positive definite matrix P , a matrix Yi
with i = 1, 2 and positive scalar εl minimizing γ such that:

Ωi PBi PD1 + YiD2

∗ −εlId 0n,d
∗ ∗ −γ2I

 < 0 (16)

where Ωi = ATi P + PAi + YiC + CTY Ti + εlΓ
TΓ + CTz Cz

the observer vertex matrices are then Li = −P−1Yi

Proof. Consider the following Lyapunov function candi-
date

V (t) = e(t)TPe(t) (17)

Differentiating V (t) along the solution of (14) yields

V̇ (t) = ė(t)TPe(t) + e(t)TP ė(t)

= [(A(ρ)− L(ρ)C)e+B(ρ)∆Φ · u
+ (D1 − L(ρ)D2)ω]TPe+ eTP [(A(ρ)− L(ρ)C)e

+B(ρ)∆Φ · u+ (D1 − L(ρ)D2)ω] (18)

For brevity, define η =

[
e

∆Φ · u
ω

]
, then one obtains

V̇ (t) = ηTMη (19)

where

M =

 Ω1(ρ) PB(ρ) P (D1 − L(ρ)D2)
B(ρ)TP 0 0

(D1 − L(ρ)D2)TP 0 0


with Ω1(ρ) = (A(ρ)− L(ρ)C)TP + P (A(ρ)− L(ρ)C)

From (15), the following condition is obtained

(∆Φ)T (∆Φ) 6 eTΓTΓe (20)

Since 0 6 u 6 1, the inequality (20) implies

(∆Φ · u)T (∆Φ · u) 6 eTΓTΓe

⇔ηTQη 6 0 (21)

where Q =

−ΓTΓ 0 0
0 I 0
0 0 0



In order to satisfy the objective design w.r.t. the L2 gain
disturbance attenuation, the H∞ performance index is
defined as:

J = eTz ez − γ2ωTω

= ηTRη (22)

where R =

CTz Cz 0 0
0 0 0
0 0 −γ2I


By applying the S-procedure (Boyd et al. (1994)) to both

contraints (21) and J ≥ 0, V̇ (t) < 0 if there exists a scalar
εl > 0 such that

V̇ (t)− εl(ηTQη) + J < 0

⇔ηT (M − εlQ+R)η < 0 (23)

The condition (23) is equivalent to

M − εlQ+R < 0

⇔

Ω1(ρ) + εlΓ
TΓ + CTz Cz PB(ρ) P (D1 − L(ρ)D2)

B(ρ)TP −εlI 0
(D1 − L(ρ)D2)TP 0 −γ2I

 < 0

(24)

Let define Yi = −PLi and substitute (8), (12) into (24),
the LMI (16) is obtained. �

4. ANALYSIS OF THE OBSERVER DESIGN

In this section, the synthesis result of the LPV observer
is shown and some simulation scenarios are performed.

4.1 Synthesis results

In INOVE testbed available at GIPSA-lab, the control
signal u (duty cycle of PWM signal) is limited in the
range of [0.01, 0.3], since the corresponding damper forces
are enough to control the real 1/5-scaled car (in terms
of improvements for passenger comfort and road holding).
Therefore, applying Theorem 1 with the vertices ρ = 10
and ρ = 100, we obtain the L2 gain γ = 1.7409, εl = 4 and
the observer gains.

4.2 Simulation

To emphasize the effectiveness of the proposed approach,
the simulations are performed using the nonlinear quarter-
car model (7).

The initial conditions of the proposed design are as follows:

x0 = [0, 0, 0, 0, 0]
T

x̂0 = [0.01, −0.1, 0.001, −0.1, 8]
T

Two simulation scenarios are used to evaluate the perfor-
mance of the observer as follows:

Scenario 1: The sequence of sinusoidal bumps and the
control input u is constant (u = 0.2).

Scenario 2: An ISO 8608 road profile signal (Type C)
is used and control input u is obtained from a Skyhook
controller.

In order to assess the robustness of the proposed method
w.r.t. uncertainties on the scheduling variable, the simu-
lation scenarios are induced two cases: ρ = 1

τ(u) (Nominal



case) and ρ = 1
τ(u)+∆τ (Uncertain case) where ∆τ is a

random number such that ∆τ ∈ [−0.006, 0.006].
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Fig. 3. Simulation scenario 1: (a) Damping force estima-
tion, (b) Estimation error, (c) Scheduling parameter,
d) road profile
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Fig. 4. Simulation scenario 2: (a) Damping force estima-
tion, (b) Estimation error, (c) Scheduling parameter,
d) road profile

Table 3. Normalized Root-Mean-Square Errors
(NRMSE)-Simulation results

Scenario simulation Nominal case Uncertain case

Scenario 1 0.0228 0.0239
Scenario 2 0.0150 0.0164

The simulation results of two tests are shown in Fig. 3
and Fig. 4. According to Fig. 3, the performance of LPV
observer to the sine wave road profile disturbance is guar-
anteed. Fig. 4 illustrated the robustness of the proposed
LPV observer when scheduling parameter varies infinitely
fast. Besides, to further illustrate the effectiveness of the
proposed observer, in case, nominal and uncertain schedul-
ing variable, Table 3 compares the normalized root-mean-
square errors in the simulation scenarios 1 and 2.

5. EXPERIMENTAL VALIDATION

To experimentally assess the effectiveness of the proposed
algorithm, the proposed observer is implemented on the
1/5 car scaled car INOVE available at GIPSA-lab, shown
in Fig. 5.

This test-bench is equipped 4 semi-active ER suspensions,
controlled in real-time using Matlab Real-Time Workshop
and a host computer. The proposed observer system is
implemented with the sampling period Ts = 0.005s. Note
that the experimental platform is fully equipped with
sensors to measure its vertical motion. At each corner
of the system, a DC motor is used to generate the road
profile.

The observer is applied for the rear-left corner using two
accelerometers: the unsprung mass z̈us and the sprung
mass z̈s. For validation purpose only, the damper force
sensor is used to compare the measured force with the esti-
mated one. The block-scheme illustrates the experimental
scenario of the observer (shown in Fig. 6)

Fig. 5. The experimental testbed INOVE at GIPSA-lab
(see www.gipsa-lab.fr/projet/inove)

Fig. 6. Block diagram for implementation of the H∞
damper force observer

Two experimental scenarios are tested as follows:

Experiment 1: The road profile is a sequence of sinusoidal
bumps and the control input u is obtained from a Skyhook
controller.

Experiment 2: An ISO 8608 road profile signal (Type C) is
used and the control input u is obtained from a Skyhook
controller.
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Fig. 7. Experiment 1: (a) Damping force estimation, (b)
Estimation error, (c) Scheduling parameter, d) road
profile
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Fig. 8. Experiment 2: (a) Damping force estimation, (b)
Estimation error, (c) Scheduling parameter, d) road
profile

Table 4. Normalized Root-Mean-Square Errors
(NRMSE)

Road Profile NRMSE

Sinusoidal bumps 0.1021
ISO 8608 road 0.1153

The experimental results of the observer are presented in
Fig. 7. The results illustrate the accuracy and efficiency of
the proposed observer. To further describe this accuracy,
Table 4 presents the normalized root-mean-square errors,
considering the difference between the estimated and mea-
sured forces in experiment 1 and experiment 2.

6. CONCLUSION

This paper developed a polytopic LPV observer to es-
timate the damper force, using the dynamic nonlinear
model of the ER damper. For this purpose, the quarter-
car system is represented in LPV form by considering a
phenomenological model of the damper. Based on two
accelerometers, an LPV observer is designed, giving a
good estimation result of the damping force. The estima-
tion error is minimized accounting for the effect of un-
known inputs (road profile disturbance and measurement
noises) and the nonlinearity term bounded by a Lipchitz
condition. Both simulation and experiment results assess
the ability and the accuracy of the proposed models to
estimate the damping force of the ER semi-active damper.
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