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Abstract. In the image processing field, many tracking algorithms rely
on prior knowledge like color, shape or even need a database of the
objects to be tracked. This may be a problem for some real world appli-
cations that cannot fill those prerequisite. Based on image compression
techniques, we propose to use Self-Organizing Maps to robustly detect
novelty in the input video stream and to produce a saliency map which
will outline unusual objects in the visual environment. This saliency map
is then processed by a Dynamic Neural Field to extract a robust and
continuous tracking of the position of the object. Our approach is solely
based on unsupervised neural networks and does not need any prior
knowledge, therefore it has a high adaptability to different inputs and a
strong robustness to noisy environments.
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Introduction

Visual tracking is currently an important research topic in computer vision. It
is a complex problem that requires a strong robustness and adaptation to envi-
ronmental variability when used in a real world context that current methods
do not offer convincingly [6]. The field of computer vision has been historically
dominated by models without or with limited learning capabilities, so that the
algorithm performances were dependent on prior knowledge of the object to
track and a fixed architecture that only took into account a selected number
of arbitrarily chosen features. Recent works highlighted the efficiency of deep
neural networks to detect and classify objects in a video stream [9] in a super-
vised way. But this approach relies on a considerable amount of labelled data
and considerable computation. Our idea is to use unsupervised neural network
properties to efficiently and robustly detect and track objects in a video input
stream. Contrary to supervised learning, unsupervised methods need much less
data and no labels to learn features, which in turn results in much less compu-
tation required and opens the way to embedded tracking in video surveillance
for instance.

Self-Organizing Maps (SOM) have already been used as a novelty detection
tool or rather as a fault or anomaly detection tool as in [15], [7] or [8]. SOMs
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are well known for their vector quantization and clustering properties, and for
preserving neighborhood relations of the input space when projecting data onto
the neural map. Novelty detection relies on these properties by detecting ele-
ments that are too far from the neural clusters and that do not fit the topology
learned. These properties can be interestingly applied to the image processing
field, as in [2] or [16]. Our aim is to use these models to perform novelty detection
within images without any prior knowledge, so as to be able to extract unex-
pected targets from image sequences and track them. Current change detection
algorithms struggle with problems like a moving camera, intermittent motions
and turbulence [14]. With our method, the change detection will be robust to
camera movements and turbulences, as it does not rely on precise previous pixel
values in the image. It also has the advantage of not relying on local motion in-
formation (optical flow) to detect novelty and therefore it is able to track static
objects or objects that stopped moving.

Following the seminal work of [3], we choose to couple our autonomous nov-
elty detection tool to a robust bio-inspired tracking technique based on Dynamic
Neural Fields (DNF). DNF are populations of partial differential equations first
mathematically analyzed by [1] in a continuous framework. We use a discrete
DNF built from populations of excitatory and inhibitory neurons that inter-
act continuously, with a on-center off-surround approach modeled as a synaptic
kernel computed as a difference of gaussians applied to the distance between neu-
rons in the neural map. These DNF have been successfully applied to sequential
visual exploration of an environment [3] or in [13], with great robustness prop-
erties that can even improve with some adaptation like the use of simple spiking
neurons [12].

The paper is organized as follows. After a short description of the standard
SOM model and of the notations used throughout the paper, section 1 explains
how SOM can be applied to image compression by means of a quantization of
the thumbnails extracted from the image. Section 2 briefly describes the DNF
model and its main properties. The proposed coupling between SOM and DNF
for tracking novelty in video sequences is detailed in section 3 and preliminary
results obtained with real-world images are given in section 4.

1 Image Representation with SOM

1.1 Self-Organizing Maps

In this paper, we use a standard Self-organizing map (SOM) with a 2D grid
neural structure as can be found in [5]. Self-organizing maps (SOMs), initially
proposed by Kohonen [4], consist of neighbouring neurons commonly organized
on one- or two- dimensional arrays that project patterns of arbitrary dimension-
ality onto a lower dimensional array of neurons. More precisely, each neuron in
a SOM is represented by a d-dimensional weight vector, m € R?, also known
as prototype vector, where d is equal to the dimension of the input vectors x.
The neurons are connected to adjacent neurons by a neighbourhood relation-
ship, which defines the structure of the map. The mechanism for selecting the
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winning neuron requires a centralized entity, so that the usual Kohonen SOM is
not a fully distributed model as in the cortex organization [10]. After learning,
or self-organization, two vectors that are close in the input space will be repre-
sented by prototypes of the same or of neighbouring neurons on the neural map.
Thus the learned prototypes become ordered by the structure of the map, since
neighbouring neurons have similar weight vectors.

It starts with an appropriate (usually random) initialization of the weight
vectors, m;. The input vectors are presented to the neural map in multiple
iterations. For each iteration, i.e., for each input vector x, the distance from x
to all the weight vectors is calculated using some distance measure. The neuron
whose weight vector gives the smallest distance to the input vector x is usually
called the best matching unit (BMU), denoted by ¢, and determined according
to:

I — .| = min x — my 1)

where ||-|| is the distance measure, typically the Euclidean distance, x is the
input vector and m; is the weight vector of neuron ¢. The winner ¢ and its
neighbouring neurons i € N,, update their weights according to the SOM rule:

my (¢ + 1) = my(t) + a(t)hei(1)[x(2) — my(1)] (2)

where ¢ denotes the time, x(t) is an input vector randomly drawn from the input
data set at time ¢, (¢) the learning rate at time ¢, and h;(t) is the neighbourhood
kernel around c¢. The learning rate «(t) defines the strength of the adaptation,
which is application-dependent. Commonly «(t) < 1 is a monotonically (e.g.
linearly) decreasing scalar function of ¢.

The neighbouring kernel h.;(t), which is a function of the distance between
the winner neuron ¢ and neuron ¢, can be computed using a Gaussian function:

(1) — _ [re — riH2
hei(t) = exp 2072(1) } (3)

The term ||r. — r;|| is the distance between neuron ¢ and the winner neuron c.
The precise value of o(t) does not really matter, as long as it is fairly large in
the beginning of the process, for instance in the order of 20% of the longer side
of the SOM array, after which it is gradually reduced to a small fraction of it,
e.g. 5% of the shorter side of the array [5].

We chose to compute the distance between neurons weights and the input
vectors as an euclidean distance. We parameterized it with a linearly decreasing
o starting from 0.5 down to 0.001. The learning parameter « starts at 0.6 and
linearly decreases to a final value of 0.05. We ran the SOM for 40 epochs for
the training and with 10 x 10 neurons. Increasing the number of epochs or
neurons improves the quality of the image representation at the cost of more
computation. But as our experimental result could be assimilated to a binary
result (the new object is tracked or is not tracked) it is not sensitive to a small
performance change. So we chose to limit ourselves to a small but sufficient
number of neurons and epochs.
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1.2 Image Representation

In order to train the SOM to learn an image, we inspired ourselves from the
common application of lossy image compression [2]. A picture or series of pictures
to be compressed is split into smaller k£ x k pixels wide thumbnails. When the
image height or width is not divisible by &, we crop it on the right and bottom.
We then use these thumbnails as training samples of a Vector Quantization
model. Once the training is finished, the compressed image is composed of the
whole codebook, and the index of the Best Matching Unit for each thumbnail
extracted from the image or sequence of images. The result is similar to the
original image, but with every thumbnail replaced by the codeword learned by
its Best Matching Unit. Figure 1 illustrates this compression process.

Sub-images SOM Compressed

Training Image
o[1[2[3]4] [Aal&]|c A[ATATATA
5/6[7]8[9] Al TF[A]A
Image 1012121314 { D | E | F AlE|E|I|A
19161718/19 - AlE|D[A[A
2021222324, | G| H | | AlA[A[A[A

Fig. 1. Simplified scheme of the image compression process (with only 25 sub-images
and 9 neurons) with a simple test example underneath.

2 Dynamic Neural Fields

Continuous Neural Fields Theory (CNFT) has lead to the development of two
dimensional Dynamic Neural Fields (DNF) [11]. Neural fields are models that
represent the evolution of a population of neurons. In our case, we use a two
dimensional DNF. The number of neurons is dependent and equal to the size of
the input map, because neurons are connected in a retinotopic way to afferent
inputs, and are connected in an all-to-all connection scheme between them. All
neurons also have a real value attached to them that we call potential. This
potential u(z,t), with  being the neuron position in the field and ¢ the time of
the simulation, is ruled by the following differential equation :

Ou(x,t)
ot

T = —u(z,t) + /u(x’,t)w(Hx — 2'||)0y + Input(z, t)
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With :

— 7 is the time constant.

— —u(z,t) is the decay term. It is meant to suppress already activated neurons
when there is no input or lateral excitation.

— w(|]xz — 2'|]) is the lateral interaction. It represents the effect of the other
neurons onto this neuron’s potential. We are using a difference of gaussian
with the excitatory gaussian part being narrow with high intensity and the
inhibitory one being wide with low intensity. This leads to close neurons
having an excitatory effect onto each other and far away neurons inhibiting
themselves.

— Input(z,t) is the current value of the afferent input extracted from the input
map for this neuron.

For the sake of simplicity and computability, we implement a spatially and
temporaly discretized version of the previous formula. It is obtained by handling
potentials of a discrete set of neurons (neural map instead of neural manifold)
and by using a simple Euler method to estimate the state of u(x, t+ At) knowing
u(z, t):

At (—u(z,t) + > u(@', t)w(||z — 2'||) + Input(z, t + At))

u(z, t+ At) = u(z, t)+

At is the time step between two estimations, it can be the same for all neurons
(synchronous) or different each time (asynchronous). It should be noted that in
the original DNF formula, there are more parameters such as resting potential
but since we do not use them here, we did not mention them.

It is often difficult to understand how a DNF will behave just from the
formula. We have set it up with optimized parameters in order to have a winner-
takes-all behaviour where the most prominent and spatially coherent features in
the input map create a local bubble of activation in the neural map and suppress
the ability of other such bubbles to appear elsewhere in the map.

Fig. 2. Example of a DNF. The noisy input with two attractors is on the left, and on
the right there is the DNF potentials with a winner takes all behavior.
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3 Our Tracking Application

DNF have already been used for tracking applications [3]. It has shown strong
resistance to noise and distractions but it needs an a priori knowledge of the
features that are to be tracked. SOM on the other hand does not need any a
priori knowledge of the input, it can learn and organize itself to represent the
input as a concept, meaning that the neurons representing a certain feature will
activate when the general pattern of this feature appears. But when there is a
completely new input, the distance between it and the BMU will be high. We
use this property in order to create a saliency map that robustly outlines novelty
in the inputs.

WS T

Fig. 3. The learning part of the process. On the left, our "background" image from
which we will compare the following received images, composed of white, green and
blue stripes. In the center, the codebook learned by the SOM with 16 neurons (4x4)
and displaying their learned weights or codewords as 10x 10 pixel thumbnails. On the
right, the reconstructed image from the learned SOM weights and the BMU indexes
(see Figure 1 for more details).

The first part of the algorithm relies on the SOM learning the features of the
background. This learning will make this SOM able to construct its perception
of the main features of the "usual" visual environment. The background can
be composed of a single image or a series of similar images in order to have a
learning that is more tolerant to small changes in the input. The learning is the
slowest part in SOMs, and one advantage of our method is that we only learn
once so it is not so penalizing. An example of learning can be found on figure 3.

The second part of the algorithm is the tracking. For each new frame cap-
tured by our camera, we reconstruct it with the SOM as if we were to compress
and decompress it. If no new object has appeared in the image, then the com-
pression will be pretty satisfactory and the result will look similar to the whole
image captured. If a new object is present, at the compression will be much less
satisfactory in the precise location of this "unexpected" object. We thus com-
pute the salient map as the difference between the current captured image and
its reconstruction by the SOM. New objects will stand out on this salient map
because of this locally unsatisfactory reconstruction, along with noise on the
whole map due to inherently lossy compression (particularly around the edges).
Finally to extract and track the "interesting" new object and remove the noise
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from the saliency map, we use a DNF that will focus on the most prominent and
spatially coherent activation on the salient map, and that will be able to track
it despite significant variations of saliency between consecutive frames, taking
advantage of the natural ability of DNFs to self-maintain bubbles of activity.
This is illustrated in figure 4.

» ¥

Fig. 4. Example of the tracking process. From left to right; the perceived image with
a new object (a red star); the reconstructed image from the learned SOM, the star
not having been learned, the SOM cannot reconstruct it; the saliency map obtained
by making the difference between the first and second images; lastly the DNF output
focusing on the new object and eliminating noise.

Our inputs are colored images. Two completely different ways can be consid-
ered to handle color by the SOM. The first way is to make each pixel represented
by 3 color values (so 10x10 thumbnails will become input vectors of size 300 for
instance instead of 100 for grey-scale images). The other way is to use one SOM
by color channel. We are going to explore these two possibilities in the following
section.

4 Results

In this section we present and discuss results that have been obtained on real
camera footage. We have selected a few video clips where the camera is static,
that have moving elements in them (like water ripples, wind or snow) and where
a new object appears during the clip. This is for now only a proof of concept, so
the experiments presented here are only showing the potential of this approach.
But nonetheless these results are already interesting as they confirm some of our
hypotheses and give us hints at what future research on this topic should focus
on in order to improve the performance and robustness of this kind of coupled
unsupervised novelty detection and neural tracking.

Figures 5 illustrate how the proposed approach performs on some real-world
examples. Several observations result from considering the saliency map. The
first one is that our assumption that new objects unknown to the SOM appear
in the saliency map seems correct. We can also note that the edges of the treeline
is badly learned by the SOM because it usually struggles with the sharp edges of
the stem of the trees and the chaotic nature of the foliage. We have observed this
phenomenon in multiple images where there is no smooth separation of colors.
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A more expected source of noise is the ripple of the water but we can see in the
saliency map that it is nearly invisible. This seems to indicate that there is some
sort of generalization of the concept of "water flow" learned in the SOM that
makes it robust to small changes there.

The DNF part manages to focus correctly on the object to be tracked when
it is there, but in some cases the background noise is too strong and the signal
too weak so that the bubble of activity locks itself on badly compressed parts
of the image instead of new elements. Let us also note that when there is no
new object the DNF focuses on some part of the background. Thus the DNF is
not useful to directly detect if something new has appeared, it can only follow
the stimulus after it has been detected that something significantly new has
appeared. Another example of tracking can be found in figure 6.

Background (1°* image from sequence)

Camera feed (15th image from sequence

Saliency map DNF focus map

Fig. 5. We can observe on the saliency map the noise from the lossy image reconstitu-
tion by the SOM combined with the new input (the ducks). The DNF manages here
to correctly focus on the new target.

Another interesting result is that separating colors into channels and learn-
ing all of them separately seems to slightly degrade the performance. The visual
artefacts observed on figure 7 are due to the lack of consistency between the
BMUs of different color channels. It strongly suggests that learning colors to-
gether should be preferred, even if tracking results are not significantly different
in our first experiments. There is also a theoretical argument in favor of not
separating colors, considering that diminishing the dimensionality of the code-
words also reduces the outlierness of new elements of the image because the
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Saliency map DNF output

Fig. 6. A second example with a snowy landscape and a dog appearing from the bottom
right corner.

distance between them and the closest neuron would be smaller, thus degrading
the performance.

Fusioned Colors Separated Colors

Fig. 7. Learning color channels separately on different SOMs degrades the result with
visual artefacts.

Conclusion

In this paper, we have presented a new approach for autonomous tracking using
Self-Organizing Maps and Dynamic Neural Fields without any pre-requisite in-
formation about the target that we want to track. We have shown that novelty
detection can be used for tracking, and that some inherent robustness features
of SOM and DNF are a good fit for this application. Furthermore, the unsu-
pervised learning base makes us hope that a low computational cost, real time
implementation is possible. The current obstacle to a direct application is the
unequal compression of the SOM when it comes to edges and chaotic landscapes
that deteriorates the quality of the saliency map. For future works, we aim to
improve in this area in order to be able to compare our method with current
state of the art tracking models.
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