M. Watanabe, T. H. , M. Suzuki, Y. Amaike, and Y. , Electric conduction in bending electrostriction of polyurethanes, Appl. Phys. Lett, vol.74, pp.2717-2719, 1999.

L. Irusta and M. J. Fernandez-berridi, Photooxidative behavior of segmented aliphatic polyurethanes, Polym. Deg. & Stab, vol.63, pp.113-119, 1999.

C. Putson, L. L. , D. Guyomar, N. Muensit, P. Cottinet et al., Effects of copper filler sized on the dielectric properties and the energy harvesting capability of nonpercolated polyurethane composites, J. Appl. Phys, vol.109, p.24104, 2011.

U. Szeluga, B. Kumanek, and B. Trzebicka, Synergy in hybrid polymer/nanocarbon composites. A review, Composites Part A, vol.73, pp.204-231, 2015.

Z. M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q. Q. Lei, Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites, Adv. Mater, vol.19, pp.852-857, 2007.

Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, vol.63, pp.2223-2253, 2003.

J. Zhu, J. D. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku et al., Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization, Nano Lett, vol.3, pp.1107-1113, 2003.

H. Xia and M. Song, Preparation and characterization of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites, J. Mater. Chem, vol.16, pp.1843-1851, 2006.

M. H. Gass, K. K. Koziol, A. H. Windle, and P. A. Midgley, Four-dimensional spectral tomography of carbonaceous nanocomposites, Nano Lett, vol.6, pp.376-379, 2006.

J. Yu, K. Lu, E. Sourty, N. Grossiord, C. E. Koning et al., Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology, Carbon, vol.45, pp.2897-2903, 2007.

H. S. Kim, J. H. Kim, C. M. Yang, and S. Y. Kim, Synergistic enhancement of thermal conductivity in composites filled with expanded graphite and multi-walled carbon nanotube fillers via melt-compounding based on polymerizable low-viscosity oligomer matrix, Journal of Alloys and Compounds, vol.690, pp.274-280, 2017.

E. M. Campo, D. Yates, B. Berson, W. Rojas, A. D. Winter et al., Macromol. Mater. Eng, 2017.

F. Dalmas and L. Roiban, Three-dimensional Microstructural Characterization of Polymer Nanocomposites by Electron Tomography, in Functional and Physical Properties of Polymer Nanocomposites, 2016.

B. Natarajan, N. Lachman, T. Lam, D. Jacobs, C. Long et al., The evolution of carbon nanotube network structure in unidirectional nanocomposites resolved by quantitative electron tomography, ACS, vol.9, pp.6050-6058, 2015.

K. Gnanasekaran, R. Snel, G. De-with, and H. Friedrich, Quantitative nanoscopy: tackling sampling limitations in (S)TEM imaging of polymers and composites, vol.160, pp.130-139, 2016.

A. Mikhalchan, T. Gspann, and A. Windle, Aligned carbon nanotube-epoxy composites: the effect of nanotube organization on strength, stiffness, and toughness, J. Mater. Sci, vol.51, pp.10005-10025, 2016.

K. Gnanasekaran, G. De-with, and H. Friedrich, Quantitative analysis of connectivity and conductivity in mesoscale multiwalled carbon nanotube networks in polymer composites, J. Phys. Chem. C, vol.120, pp.27618-27627, 2016.

M. H. Jomaa, K. Masenelli-varlot, L. Seveyrat, L. Lebrun, M. C. Jawhar et al., Investigation of elastic, electrical and electromechanical properties of polyurethane/grafted carbon nanotubes nanocomposites, Composites Science and Technology, vol.121, pp.1-8, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01265826

H. Xia, M. Song, J. Jin, and L. Chen, Poly(propylene glycol)-Grafted Multi-Walled Carbon Nanotube Polyurethane, Macromol. Chem. Phys, vol.207, pp.1945-1952, 2006.
DOI : 10.1002/macp.200600349

K. Masenelli-varlot, A. Malchère, J. Ferreira, H. Mezerji, S. Bals et al., Wet-STEM tomography: principles, potentialities and limitations, Micros. and Microanal, vol.20, pp.366-375, 2014.
DOI : 10.1017/s1431927614000105

Z. Saghi and P. A. Midgley, Electron tomography in the (S)TEM: from nanoscale morphological analysis to 3D atomic imaging, Annual Review of Materials Research, vol.42, pp.59-79, 2012.

A. Bogner, G. Thollet, D. Basset, P. H. Jouneau, and C. Gauthier, Wet STEM : a new development in environmental SEM for imaging nano-objects included in a liquid phase, Ultramicroscopy, vol.104, pp.290-301, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00436771

M. Maiorca, E. Hanssen, E. Kazmierczak, B. Maco, M. Kudryashev et al., Improving the quality of electron tomography image volumes using pre-reconstruction filtering, J Struct. Biol, vol.180, pp.132-174, 2012.

C. Messaoudi, T. Boudier, C. O. Sorzano, and S. Marco, TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy, BMC Bioinformatics, vol.8, p.288, 2007.

R. Gordon and G. Herman, Three-Dimensional Reconstruction from Projections: A Review of Algorithms, International Review of Cytology, vol.38, pp.111-151, 1974.

M. Radermacher, Weighted Back-projection Methods, 2007.

T. Sanders, J. D. Roehling, K. J. Batenburg, B. C. Gates, A. Katz et al., Advanced 3-D Reconstruction Algorithms for Electron Tomography, Microsc. Microanal, vol.20, pp.794-795, 2014.

D. Chen, B. Goris, F. Bleichrodt, H. H. Mezerji, S. Bals et al., The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections, pp.137-148, 2014.

I. Arganda-carreras, V. Kaynig, C. Rueden, K. Eliceiri, J. Schindelin et al., Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification, Bioinformatics, issue.15, pp.2424-2426, 2017.

E. H. Meijering, W. J. Niessen, and M. A. Viergever, Quantitative Evaluation of onvolution-Based Methods for Medical Image Interpolation, Medical Image Analysis, vol.5, pp.111-123, 2001.

A. Fedorov, R. Beichel, J. Kalpathy-cramer, J. Finet, J. C. Fillion-robin et al.,

R. Pieper and . Kikinis, 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network, Magn Reson Imaging, vol.30, issue.9, pp.1323-1341, 2010.

C. Ma, W. Zhang, Y. Zhu, L. Ji, R. Zhang et al., Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field, Carbon, vol.46, pp.706-720, 2008.

X. L. Xie, Y. W. Mai, and X. P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix : a review, Mater. Sci. Eng, vol.49, pp.89-112, 2005.

E. H. Kerner, The elastic and thermo-elastic properties of composite media, Proc. Phys. Soc, vol.69, p.808, 1956.

R. A. Dickie, Interpretation of the dynamic mechanical response of heterogeneous polymer blends in terms of continuum models, Polym. Eng. Science, vol.19, pp.1042-1045, 1979.

J. C. Halpin, Environmental Factors in Composite Materials Design, pp.67-423, 1967.

J. C. Halpin and J. L. Kardos, Moduli of crystalline polymers employing composite theory, J. Appl. Phys, vol.43, p.2235, 1972.

J. Pascual, F. Peris, T. Boronat, O. Fenollar, and R. Balart, Study of the effects of multiwalled carbon nanotubes on mechanical performance and thermal stability of polypropylene, Polym. Engin. Sci, vol.52, pp.733-740, 2012.

C. W. Bastiaansen, P. J. Leblans, and P. Smith, The Theoretical Modulus of Biaxially Oriented Polymer-Films, Macromolecules, vol.23, pp.2365-2370, 1990.

J. Yu, H. K. Choi, H. S. Kim, and S. Y. Kim, Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect, Composites Part A, vol.88, pp.79-85, 2016.

J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun'ko, Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites, Carbon, vol.44, pp.1624-1652, 2006.

Q. P. Feng, X. J. Shen, J. P. Yang, S. Y. Fu, Y. W. Mai et al., Synthesis of epoxy composites with high carbon nanotube loading and effects of tubular and wavy morphology on composite strength and modulus, Polymer, vol.52, pp.6037-6045, 2011.

R. Arasteh, M. Omidi, A. H. Rousta, and H. Kazerooni, A study on effect of waviness on mechanical properties of multi-walled carbon nanotube/epoxy composites using modified Halpin-Tsai theory, J. Macromol. Sci. Part B Phys, vol.50, pp.2464-2480, 2011.

M. K. Yeh, N. H. Tai, and J. H. Liu, Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes, Carbon, vol.44, pp.1-9, 2006.

Y. Brechet, J. Y. Cavaillé, L. Chabert, R. Chazeau, L. Dendievel et al., Polymer based nanocomposites : effects of filler-filler and filler-matrix interactions, Adv. Eng. Mat, vol.3, pp.571-577, 2001.

V. Favier, H. Chanzy, and J. Y. Cavaillé, Polymer nanocomposites reinforced by cellulose whiskers, Macromol, vol.28, pp.6365-6367, 1995.
DOI : 10.1021/ma00122a053

URL : https://hal.archives-ouvertes.fr/hal-00310722

S. Etienne, J. Y. Cavaillé, J. Perez, R. Point, and M. Salvia, Automatic system for analysis of micromechanical properties, Rev. Sci. Instrum, vol.53, p.1261, 1982.