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ABSTRACT 

The interface formation and energy band alignment at interfaces between polycrystalline BiVO4 

and high work function RuO2 and low work function Sn-doped In2O3 (ITO) has been studied 

using photoelectron spectroscopy with in-situ thin film deposition of the contact materials. The 

Schottky barrier heights for both contact films differ by 0.85 eV, which is smaller than the 

difference in work function and the differences observed for other semiconducting oxides, 

indicating a partial Fermi level pinning. Based on the present results and the comparison with 

other photoelectrochemically active oxides, the differences of band alignment obtained from 

solid/electrolyte and from solid/solid interfaces, which can exhibit substantial differences, are 

discussed.   

. 
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1. INTRODUCTION 

A transition from fossil to renewable energy sources is highly needed to reduce the impact of 

the carbon dioxide emissions on the Earth’s climate. In this regard, hydrogen can play a crucial 

role as renewable energy carrier and chemical reactant. A sustainable way to produce hydrogen 

is through water splitting, which can be achieved either by a combination of photovoltaics and 

subsequent water electrolysis or through direct photoelectrosynthetic processes. A direct 

photo(electro)chemical system would allow easy use of solar heat to enhance the electrochemical 

reactions and may offer cost benefits compared to a combined photovoltaic-electrolysis system.1 

However, up until now, no material combination has been found that fulfills all prerequisites for 

efficient and stable photo(electro)chemical hydrogen production.2 

The photochemical production of hydrogen by titanium dioxide (TiO2) was first demonstrated 

more than 45 years ago.3 Since then, more than 130 compounds have been identified as catalysts 

for photo(electro)chemical oxygen evolution, hydrogen evolution or overall water splitting.4 

Mostly wide band-gap semiconductors such as TiO2 and zinc oxide (ZnO) have been studied for 

water splitting. However, the wide band-gap of these semiconductors only allows to absorb a 

minor fraction of the solar spectrum, which limits the efficiency according to the Shockley-

Queisser limit.5 Several alternatives with reduced band-gaps have been proposed, i.e. iron oxide 

(Fe2O3, 2.2 eV), cuprous oxide (Cu2O, 2.0 eV) and bismuth vanadate (BiVO4, 2.4 eV), which, 

however, do not reach sufficient photovoltage for water splitting, so that sacrificial agents or a 

bias have to be applied.6 BiVO4 is promising due to its relatively good stability and its reduced 

band-gap, allowing to reach a theoretical solar to hydrogen efficiency of 9.2 %.7 In a 

photoelectrochemical setup BiVO4 could be used as a photoanode for oxygen evolution in the 

water splitting process. However, BiVO4 based devices should be carefully structured to 
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overcome the inherent slow reaction kinetics and inefficient charge carrier separation of BiVO4. 

The structuring strategies that have been investigated are nanostructuring, co-catalyst deposition 

and creation of p-n junctions.8–12 Combining these strategies with the incorporation of hexavalent 

impurities have allowed to achieve efficiencies approaching the theoretical efficiency of BiVO4 

based devices, which require PV cells for unbiased water splitting.7,13 Current research efforts 

are focused on determining and quantifying the beneficial effects of heterostructuring to figure 

out whether surface passivation, improved reaction kinetics or enhanced charge carrier collection 

has the strongest influence on the efficiency of BiVO4. 
14,15 

The beneficial role of heterostructures is related to the particular alignment of the energy bands 

at the interface. This can be estimated from the band positions before contact,16,17 which neglects 

the actual surface and interface structures and the possibility of Fermi level pinning, however. A 

more reliable approach consists in determining the band alignment and phenomena such as 

Fermi level pinning experimentally. However, such experiments are only performed rarely and 

mostly interface phenomena are just derived from the band positions before contact. The band 

positions before contact are commonly probed through (electrochemical) flat band potential 

measurements, whereby the Mott-Schottky analysis is used most often.18–23 The energy bands are 

then aligned with respect to the standard H+/H2 redox potential.24,25 From such studies, the 

conduction band of BiVO4 has been found to lie about 0.1 eV below the hydrogen reduction 

potential.26 The alignment at the interface between two materials is then obtained by subtracting 

the energy level alignment with respect to the hydrogen evolution potential. This is not a direct 

measurement but assumes that band alignments are transitive. Up to now, this hypothesis has not 

been demonstrated yet for electrochemical alignments and has been proven to not be valid for 
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classical semiconductors.27 Additionally, the Mott-Schottky approach is based on several 

assumptions which are not always met experimentally.28 

To obtain direct information on heterojunctions and the transitivity of band alignment, the 

heterostructure formation has to be studied directly, i.e. in situ. This can be done through a 

combination of thin film deposition and photoelectron spectroscopy.29,30  

In this report, this approach was used to analyze the interfaces of BiVO4 with tin-doped indium 

oxide (Sn-doped In2O3, ITO) and ruthenium(IV) oxide (RuO2). The two contact materials were 

selected due to their strong difference in work function and their ability to form non-reactive 

interfaces with oxides.31,32 Additionally, RuO2 has been identified as one of the most efficient 

stand-alone electrocatalysts for the oxygen evolution reaction.33 For BiVO4, RuO2 has been 

successfully used as a co-catalyst for the thiophene photooxidation and water oxidation in a Z-

scheme system.34,35 ITO on the other side is a transparent conductive oxide since it has a high 

conductivity combined with a high optical transparency.36,37 Because of these properties it can be 

implemented as a transparent electrode in photovoltaic devices38,39 or photoelectrochemical 

cells40. In BiVO4 photoanodes both ITO and fluorine-doped SnO2 (FTO) have been used as back 

contacts.7,13    

2. MATERIALS AND METHODS 

2.1. Synthesis of BiVO4 thin films and Mo:BiVO4 single crystals 

The polycrystalline BiVO4 thin films were prepared by reactive magnetron sputtering using a 

home-built magnetron sputtering system equipped with a load lock.41 A co-sputtering setup was 

used with two separate 2 inches diameter metallic Bi (99.9 %) and V (99.99 %) targets, inclined 

by 30° to each other and focused onto a soda lime glass substrate with a size of 22 x 22 mm2. 

The glass substrates were coated with a highly conductive and transparent SnO2:F film, which 
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served as back contact during the XPS measurements. The sputtering atmosphere was an Ar/O2 

gas mixture (20 % O2) at a total sputtering pressure of 1 Pa. The DC power at the Bi target was 

about 20-30 W, while the DC power at the V target was 450 W. While the V-target-to-substrate 

distance was 6 cm, the Bi- target-to-substrate distance was 12 cm. Since no rotation stage was 

used during sputtering, every sample contained a Bi/V compositional gradient along the sample 

width. After sputtering, the films were annealed in a muffle furnace at 500 °C in air for 2 hours, 

using a temperature ramp of 10 K/min. 

A molybdenum doped BiVO4 single crystal (Mo:BiVO4) with an exposed (010) surface was 

used as a reference for XPS and Raman measurements. The single crystal was grown through the 

Czochralski method with RF induction heating and automatic control of the crystal diameter.42 

The amount of molybdenum oxide in the crucible was adjusted to reach a 1% substitution of 

vanadium.  

Raman spectra were recorded with a Raman spectrometer (LabRAM HR) using an Argon laser 

(488nm) as excitation source with a laser power on the sample of approximately 10mW and a 

10x objective generating a spot size of approximately 2µm.  

2.2. Interface formation and analysis 

Surface analysis and interface experiments were performed at the Darmstadt Integrated System 

for Materials research (DAISY-MAT).31,43 This setup is a combination of several thin film 

deposition chambers, including ALD, CVD and sputtering, with a Physical Electronics PHI 5700 

multi-technique surface analysis system, used for recording Ultraviolet (UPS) and X-ray (XPS) 

photoelectron spectra. Transferring the samples between the different compartments is possible 

without breaking the ultrahigh vacuum (UHV) conditions, avoiding contamination in between 

deposition and analysis. XPS measurements were performed using Al Kα radiation with an 
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energy resolution of approximately 400meV, determined from the Gaussian broadening of the 

Fermi edge of a sputter cleaned Ag sample. The Fermi edge of the silver sample was also used to 

calibrate the binding energies of all measured samples. Background subtraction was performed 

with a Tougaard function for the Bi 4f peaks and Shirley functions for V 2p3/2 and O 1s peaks. 

To determine the V/Bi surface ratio with XPS, peak areas of the Bi 4f and V 2p3/2 background 

corrected peaks were integrated and then corrected using machine specific sensitivity factors.44 

Ultraviolet photoelectron spectra were measured using He I radiation. 

To study the band alignment of BiVO4 in contact with a specific compound, the following 

interface experiments were performed. First, the BiVO4 substrates were cleaned with acetone in 

an ultrasonic bath for 15 minutes, then rinsed with ethanol and water and subsequently dried 

using compressed air. The substrates were then entered through a load lock into the DAISY-

MAT. Remaining organic compounds were removed from the substrate surface with an oxygen 

plasma treatment of 15 minutes. Then the interface experiments were performed, whereby the 

target compound was stepwise sputtered onto the BiVO4 substrate, which was held at room 

temperature during deposition. After each deposition step, core level binding energies of BiVO4 

and the sputtered compound were measured through XPS. Additionally, UPS was performed on 

the BiVO4 substrate and on the deposited film to measure the secondary electron cutoff, which 

was used to obtain the work functions of both materials. The deposition parameters of the 

investigated contact materials, RuO2 and ITO, can be found in Table 1. RuO2 was reactively 

sputtered from a metallic Ru target and ITO was sputtered from a ceramic ITO target. All targets 

had a diameter of 2 inches.   
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Table 1. Magnetron Sputtering Deposition Parameters for RuO2 and ITO Thin Filmsa 

 RuO2 ITO 

Tsub (°C) RT RT 

Pr (Pa) 1 0.5 

O2/Ar ratio (%) 7.5 0 

P (W) 10 (DC) 25 (RF) 

Flux (sccm) 

d (cm) 

R (nm.min-1) 

10 

9.1 

3 

6.6 

9.6 

5 

aTsub is substrate temperature, RT is room temperature, 

Pr stands for pressure, P is the power applied to the 

sputter target, d is the target-to-substrate distance and R 

stands for the deposition rate of the film. 

 

3. RESULTS 

3.1. Substrate analysis 

Due to the absence of sample rotation during BiVO4 thin film co-sputtering, a lateral variation 

in the Bi/V composition is observed. Hereby, Raman spectroscopy was used to identify the 

phases along the Bi/V gradient. Raman spectra at specific positions along the lateral Bi/V 

gradient are shown in Figure 1. Along the entire gradient, monoclinic BiVO4 is observed as the 

main phase with characteristic resonances at 127, 213, 328, 370, 712, 828 cm-1.45 Features at 828 

and 712 cm-1 can be attributed to antisymmetric and symmetric stretching vibration modes of the 

VO4 tetrahedra.46 The bending modes of the VO4 tetrahedra are the cause of the resonances at 

370 and 328 cm-1 whereas the peaks at 213 and 147 cm-1 correspond to external modes47 and 

crystal lattice vibration of BiVO4.
46 In the V rich part of the film additional peaks appear at 147, 



 9 

287, 531, 997 cm-1. These peaks correspond to the frequencies of the Raman active modes of 

orthorhombic V2O5.
45,48 Towards the middle of the film, at 10 mm distance from the Bi edge, no 

extra peaks can be observed anymore, which indicates that no  

 

Figure 1. Raman spectra of the BiVO4 gradient thin film and of a Mo:BiVO4 single crystal. The 

Raman spectra of the gradient thin film were measured at specific distances from the Bi rich 

edge.  

 

other phases besides monoclinic BiVO4 are present. The amount of noise increases while moving 

further to the Bi rich edge, making it difficult to distinguish any other phases besides monoclinic 

BiVO4. 

The surface composition and electronic properties of the BiVO4 gradient thin films were also 

studied by photoelectron spectroscopy. In Figure 2 X-ray photoelectron survey spectra were 

recorded with a spot size of 1 mm2 along the Bi/V gradient. The main elements present at the 

film surface are Bi, V and O since the Bi4d, Bi4f, Bi5d, V2p, V3s, V3d and O1s core level 

emissions are detected at every measurement position. Additionally, at some positions a weak 

signal of the Sn3d core level was registered. The detection of tin is due to small holes between 
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the grains of the BiVO4 film that form during coalescence of the grains at elevated temperatures, 

exposing some of the underlying FTO layer. Due to an oxygen plasma treatment, used to remove 

the carbon contamination layer, no core level emissions corresponding to carbon were detected 

(Figure S1). Besides the removal of carbon from the surface the oxygen plasma resulted in slight 

binding energy shifts but did not change the chemical composition of the film as can be noticed 

form the more detailed core level spectra of Bi4f, V2p3/2 and O1s in Figure S2. 

 

Figure 2. Survey XP spectra of the gradient BiVO4 thin film at specific distances from the Bi 

rich edge. 

More detailed core level spectra were recorded for Bi4f, V2p3/2 and O1s (Figure 3). The Bi4f7/2 

core level binding energy is around 159.0 eV, which matches to Bi3+
 in BiVO4 and the V2p3/2 

core level position around 516.7 eV is typical for V5+
 in BiVO4.

45 All core level binding energies 

shift towards higher energies with increasing V content in the film. This increase is partly due to 

a changing Fermi energy since Bi4f and O1s binding energies both shift similarly by 0.18 eV. 

However, the core level of V2p3/2, shifts 0.30 eV up in energy, which is slightly different from 

the other core level shifts and is probably due to a change in surface chemistry. The chemical 

change can be due to the presence of V2O5, which was detected with Raman spectroscopy.  

 

In
te

n
s
it
y
 (

a
rb

.u
n
it
s
)

600 500 400 300 200 100 0

 Binding energy (eV)

4mm

7mm

10mm

13mm

16mm

20mm

O
 1

s
V

 2
p

S
n
 3

d

B
i4

d
5

/2

B
i4

d
3

/2

B
i4

f

B
i5

d
 /

 V
3
d

V
3
s



 11 

 

Figure 3. Bi4f, V2p3/2, O1s core level and valence band XP spectra of the gradient BiVO4 thin 

film at specific distances from the Bi rich edge. 

The core level spectra were also used to determine the surface V/Bi ratio by integrating the 

peak areas of the Bi4f and V2p3/2 core levels and multiplying the integrated areas by the 

respective tabulated sensitivity factors.44 In Figure 4 the V/Bi ratios are shown as a function of 

the distance to the Bi rich edge of the film. Preferably, interface experiments are performed on 

stoichiometric BiVO4 and for pure stoichiometric BiVO4 a V/Bi ratio of 1:1 would be expected. 

However, there is no position on the film where this ratio is observed. After 15 mm, there is a 

sudden increase to a V/Bi ratio of 1.4, indicating that the surface is V rich at this position, which 

is probably due to the presence of the vanadium oxide phase, which was detected by Raman 

spectroscopy.  From 4 mm to 13 mm the V/Bi ratio increases almost linearly from 0.5 to 0.76. In 

this region the surface, thus, seems Bi rich.  
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Figure 4. XPS V/Bi ratio: using the tabulated sensitivity factors (red crosses) and after applying 

the correction factor determined from the (010) exposed Mo:BiVO4 single crystal (green 

squares). In the inset the V/Bi ratio of the (010) Mo:BiVO4 single crystal is shown after various 

treatments: 0: no treatment; 1: polished; 2: polished + 15 min O2 plasma; 3: 2nd time polished + 

15 min O2 plasma. 

However, in Raman no additional Bi rich phase was found so it is not clear where this high 

off-stoichiometry comes from. Possibly, the calculated V/Bi ratios are different from the real 

V/Bi ratios, because the sensitivity factors used in the calculations do not accurately correct for 

the difference in detection probability of Bi4f and V2p3/2 core electrons. Instrument specific 

sensitivity factors were used, but it could be that they are not specific for BiVO4. Improper 

determination of stoichiometry has also been observed at the same system, whenever large 

cations are involved, as for example for CdS.49 

In order to provide more information about the stoichiometry determination, a monoclinic 1% 

Mo doped BiVO4 single crystal with a (010) exposed crystal facet was used as a reference to find 

the sensitivity factors that correctly predict the detection probability of Bi4f and V2p3/2 core 

electrons and to eventually determine more accurate V/Bi ratios. The Raman spectrum of the 

Mo:BiVO4 single crystal in Figure 1 confirms that it is monoclinic BiVO4 because the observed 

peaks (at 127, 213, 328, 370, 712, 828 cm-1) correspond to the Raman active modes expected for 

monoclinic BiVO4.
45  
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Figure 5. A) V2p3/2, Bi4f core level and valence band XP spectra and B) UP spectra of the 

gradient BiVO4 thin film at 13 mm from the Bi rich edge (red) and the polished (010) surface of 

the Mo:BiVO4 single crystal (blue). Both samples were cleaned by sputtering with an oxygen 

plasma. 

The single crystal was polished along the (010) surface to expose the internal structure and 

sputter cleaned with an oxygen plasma for 15 minutes. In Figure 5A the Bi4f, V2p3/2 and valence 

band X-ray photoelectron spectra of the polished and sputter cleaned Mo:BiVO4 single crystal 

are shown as well as those of a sputter cleaned gradient BiVO4 thin film at 13 mm from the Bi 

rich edge. The Bi4f and V2p3/2 spectra of the single crystal are shifted by about 0.2 eV towards 

higher binding energies and its Ef-EVB lies at 2.2 eV, compared to an Ef-EVBM 1.8 eV for the 

gradient thin film. The shift towards higher binding energies could be due to a shift in the Fermi 

level position, originating from the Mo doping in the single crystal. However, due to the low 

conductivity of BiVO4 the binding energy shift in the XP spectra could also be due to surface 

charging. The effect of surface charging can be clearly seen in the UP spectra of the 

corresponding samples (Figure 5B) where the EF-EVBM and secondary electron edge of the single 

crystal are shifted by about 2.5 eV towards higher energies, a shift too large to be explained by 

doping. The eventual surface charging has, however, no impact on the XP core level peak areas, 
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so that the V/Bi ratio could still be determined from the integrated Bi4f7/2 and V2p3/2 peak areas 

(inset Figure 4). After polishing and O2 plasma exposure, a V/Bi ratio of 0.79 was obtained using 

the standard instrument sensitivity factors. This V/Bi ratio differs largely from the expected ratio 

of 0.99, considering that 1% of the vanadium lattice sites are substituted by molybdenum. Thus, 

the V/Bi surface ratios calculated from the tabulated sensitivity factors are incorrect and should 

be adjusted by a correction factor. A correction factor of 1.25 can be calculated by dividing the 

expected V/Bi ratio of 0.99 through the sensitivity factor determined ratio of 0.79. The corrected 

V/Bi ratios for the gradient BiVO4 thin films are included in Figure 4. A V/Bi ratio of 0.95 is 

obtained at 13 mm from the Bi edge, which is closer to stoichiometric BiVO4. The bulk V/Bi 

ratio was determined through EDS and showed that at 11 mm distance a V/Bi ratio of 1.02 was 

obtained, thus very similar to the XPS result (Figure S3).  

From Raman, EDS and XPS measurements it can be concluded that at 13 mm distance from 

the Bi rich edge the gradient film consists of single phase monoclinic BiVO4. Therefore, this 

position was used to interpret interface experiments between monoclinic polycrystalline BiVO4 

and various contact layers. During interface experiments all photoelectron spectra were, thus, 

measured at 13 mm distance from the Bi rich edge. 

3.2. Interface analysis 

First, the interface between BiVO4 and RuO2 was studied. RuO2 films with increasing 

thickness were subsequently sputtered on a BiVO4 thin film and the changes during the 

BiVO4/RuO2 interface formation were probed through photoelectron spectroscopy. The X-ray 

photoelectron spectra of Bi4f, V2p3/2, O1s, Ru3d core levels and valence band are shown in 

Figure 6 after each deposition step of RuO2. The increasing thickness of RuO2 can be monitored 

as the intensity of the Ru3d core level peak increases while the intensity of Bi4f and V2p3/2 core 
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levels decreases after each deposition step. To investigate how the energy bands between 

semiconducting BiVO4 and metallic RuO2 align, the change in VB maximum of BiVO4 should 

be followed.  

 

 

Figure 6. O1s, V2p3/2, Ru3d, Bi4f core level and valence band XP spectra for the BiVO4/RuO2 

interface. RuO2 deposition times are denoted at the O1s spectra. 

However, following this change is not feasible due to superposition of BiVO4 and RuO2 

valence bands. Therefore, the change in substrate valence band maximum (VBM) has to be 

evaluated from the change of the substrate core level energies. This method is commonly 

referred to as the Kraut method.50 The Bi4f and V2p3/2 core level spectra shift gradually to lower 

binding energies. As both Bi4f7/2 and V2p3/2 core levels have a similar shift of 0.71 eV, the shift 

can be attributed to a change of Fermi level at the substrate surface due to RuO2 induced band 

bending.  

Next, the interface between ITO and BiVO4 was investigated. The core level spectra of Bi4f, 

V2p3/2, O1s, In3d5/2 and valence bands for the stepwise sputter deposition of ITO on BiVO4 are 
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displayed in Figure 7. As the In3d core level intensity increases, the Bi4f, V2p3/2 core level 

intensity drops. The O1s core level intensity stays approximately constant with increasing ITO 

thickness. In contrast to the RuO2 deposition, the Bi4f and V2p3/2 peak maxima shift to higher 

binding energies after ITO deposition. This is expected since the work function of ITO is 

substantially lower than the work function of RuO2.  

 

Figure 7. O1s, V2p3/2, In3d5/2, Bi4f core level and valence band XP spectra for BiVO4/ITO 

interface. ITO deposition times are denoted in the O1s spectra. 

After the first deposition step the peak maxima of both V2p3/2 and Bi4f7/2 shift by 

approximately 0.16 eV. Thereafter, both peak maxima stay around the same value with 

increasing film thickness. Since both V2p3/2 and Bi4f7/2 shift in the same way, the shift can be 

interpreted as a shift caused by downward band bending.  

Combining the information from the interface experiments with the determined work functions 

from ultraviolet photoelectron spectra (Figure 8: 5.6-5.7 eV for BiVO4, 6.5 eV for RuO2 and 4.4 

eV for ITO) allow to construct complete energy band diagrams for the BiVO4/RuO2 and 
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BiVO4/ITO interfaces (Figure 9). The band-gap of BiVO4, 2.4 eV, and from ITO, 2.8 eV, were 

taken from literature.51,52 

The energy bands displayed in Figure 9 include the vacuum energy levels of the materials, 

which are derived from work function measurements using UPS. According to the measured 

work functions, the vacuum energies of BiVO4 and RuO2 are aligned while there is a dipole 

potential  

 

Figure 8. UP spectra (He I excitation) of RuO2 (blue), BiVO4 (from RuO2 interface experiment) 

(gold), BiVO4 (from ITO interface experiment), and ITO (red) with secondary electron edge 

(SEE) values. 
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Figure 9. Energy band diagrams of the BiVO4/RuO2 and BiVO4/ITO interface derived from the 

combination of X-ray and ultraviolet photoelectron spectroscopy. The Fermi level, band-gap, 

band bending and barrier heights are shown, whereby all energy values are denoted in eV. The 

band-gaps of BiVO4  and ITO were taken from literature.51,52. 

step of about 1 eV between BiVO4 and ITO. The latter might be caused by a high density of 

interface states in the BiVO4, which pin the Fermi energy.  

It is known, however, that semiconducting oxides often exhibit a huge dipole potential step 

upon forming a Schottky barrier with RuO2.
31 These Schottky barrier heights would imply a 

work function of RuO2 of about 5.6 eV; if this work function would be considered instead of the 

work function of 6.5 eV measured in Figure 8, a similar dipole potential step would be present at 

both the BiVO4/RuO2 and BiVO4/ITO interfaces. The dipole potential step is possibly due to the 

oxygen plasma treatment of the BiVO4 surface, which could lead to a more negatively charged 

surface compared to the ITO or RuO2 contact layer. The difference in Fermi energy at the 
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BiVO4/RuO2 and BiVO4/ITO interfaces amounts to 0.85 eV (1.11 vs 1.96 eV for EF-EVBM, 

respectively, see Figure 9. 

4. DISCUSSION 

Capacitance-derived flat-band potential measurements from Mott-Schottky plots give, next to 

information on the kinetics and energetics of the semiconductor-liquid junctions, information on 

the location of the band positions with respect to the reference electrode. Such measurements 

were often performed in the early days of semiconductor electrochemistry (1970s – 1980s), 

mostly on defined surfaces of single crystals. These were used to align the commonly studied 

semiconductor electrodes relative to the H+/H2 redox potential.20–23 By assuming transitivity of 

band alignment this provides a comparison of band edge energies of the different 

photoelectrodes. The energy band alignment of different oxides inferred from such studies is 

shown in Figure 10. 

From the electrochemical alignment of the energy bands, which positions the valence and 

conduction band energies relative to the H+/H2 redox potential and which is established in 

literature,20,22,53 the relative alignment between two semiconducting oxides can be directly 

extracted by assuming transitivity. In principle, the same can be achieved using the Fermi level 

position at the interfaces of the oxides with the same metal, also assuming transitivity.54 The 

interface experiments with RuO2 and ITO described in this article can, in principle, both be used  
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Figure 10. Conduction band and valence band alignment of a series of semiconductor oxides 

relative to the H+/H2 standard redox potential and the Fermi level position of these oxides at the 

interfaces with RuO2 (blue) and ITO (red).   

to compare the band edge energies.32,55 Transitivity of band alignment is, however, not 

necessarily valid when Fermi level pinning is involved in interface formation, as this affects the 

measured Fermi level positions.31,43,56,57 In the extreme case of pinning, known as Bardeen limit, 

the Fermi level at an interface becomes independent on metal work function. In such a case, the 

Fermi level at the interfaces with RuO2 and ITO would be identical. This is definitely not the 

case, as evidenced by Figure 10. Additionally, the band edge positions or dipole layer at the 

interface may drift due to adsorbates as well as ionic surface terminations. Such offsets may be 

expected, especially for semiconductor/electrolyte interfaces, but they have hardly been studied 

yet in a systematic manner.30 

For classical semiconductors, Fermi level pinning might be induced by virtual gap states 

54,58,or by deposition-induced defects.59 The latter are almost always observed during deposition 

of elementary metals on clean oxide surfaces,31,60,61 but can be avoided by contact formation with 

conducting metal oxides, depending on the applied deposition parameters.31 The Fermi levels 

observed at contacts of BiVO4 (this work) and other oxides with RuO2 (high work function) and 

ITO (low work function) are included in Figure 10. In the present case, the variation of Fermi 
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level position at the interfaces of BiVO4 amounts to 0.85 eV. This variation is slightly higher 

than observed for rutile and anatase TiO2,
62 but lower than the variation observed for 

SrTiO3.
31,63,64 The experimentally observed variation of Fermi level positions therefore indicates 

that the Fermi level at the studied BiVO4 interfaces can vary but not as much as for other oxides. 

Whether this reduced splitting of the Fermi level is caused by an insufficient upward shift of EF 

at the BiVO4/ITO interface or by an insufficient downward shift of EF at the BiVO4/RuO2 

interface or both cannot be discriminated from the present experiments. More extended studies of 

the variation of the Fermi energy using different sample treatments and interface formation 

would be required to resolve this. However, the partial Fermi level pinning will most likely have 

no severe effect on the efficiency of BiVO4 photoanodes, since an upwards band bending of 0.71 

eV was observed for the contact between BiVO4 and the high work function material, RuO2. The 

possibility of high upwards band bending makes that holes can be efficiently separated from 

electrons to partake in water oxidation at the BiVO4 photoanode surface. 

In the case of (Ba,Sr)TiO3 and Pb(Zr,Ti)O3, the alignment determined using transitivity with 

ITO or RuO2 and the alignment extracted from direct interface formation all agree within 0.2 eV, 

giving substantial credit to this approach.32 However, there is substantial deviation between the 

electrochemical alignment and those obtained by aligning the Fermi energies at interfaces with 

RuO2 and ITO for the materials included in Figure 10. This difference is valid even if the 

different magnitude of Fermi level splitting for the different oxides is taken into account. An 

instructive example is given by anatase and rutile TiO2, where it was shown recently using 

complementary approaches that the valence band of rutile is about 0.7 eV higher than that of 

anatase, which substantially differs from the alignment obtained using electrochemical studies. 

62,65,66  
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With respect to BiVO4, the valence band maximum is 0.4 eV above that of SrTiO3 according 

to the electrochemical alignment from flatband potential measurements.67,68 Using the RuO2 and 

ITO interfaces, the valence band of BiVO4 would be 0.75/1.25 eV higher than that of SrTiO3. 

The latter alignment would correspond well with the alignment of SrTiO3 with other perovskites 

having Bi3+ or Pb2+ as A-site cations.32,69,70 The higher valence band maximum of the latter 

perovskites is explained by the contribution of the occupied 6s orbitals of Bi or Pb.71 As higher 

valence band maxima are quite generally observed for such compounds, it seems reasonable to 

expect that the valence band maximum of BiVO4 is also about 1 eV higher than that of SrTiO3, 

which would better agree with the alignment obtained from transitivity of RuO2 and ITO 

interfaces.    

Using the Butler-Ginley approach, which is based on electronegativities of the involved atoms, 

the energy bands of BiVO4 are positioned about 0.4 eV lower in energy compared to the 

electrochemical alignment shown in Figure 10.72,73 In the light of the discussion above this seems 

to be unrealistic, which concurs with the observation that band positions calculated from absolute 

electronegativities deviate from experimental measurements for ternary oxides.74 

The deviation of the energy band alignment obtained using transitivity from electrochemical or 

solid-state interfaces may be explained either by the presence of Fermi level pinning or by a 

fundamental difference between solid/electrolyte and solid/solid interfaces. For solid/solid 

interfaces, the presence or the degree of Fermi level pinning can be obtained by comparing the 

variation of the Fermi energy using contact materials with different work functions. Such 

experiments should, however, take into account that Fermi level pinning might also be caused by 

lattice defects, which are frequently introduced on oxide surfaces by metal deposition.31,75 

However, even in the case of unreactive interfaces, such as those between two oxides used in the 
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present study, bulk or surface defects may also result in a substantial variation of band 

alignment.56,76–78 As a consequence, one may expect a substantial dependence of band alignment 

on preparation conditions. For instance, different concentrations of oxygen vacancies in ZnO and 

metallic precipitates in Cu2O result in a variation of band alignment by more than 1 eV at the 

interface between these materials.56 In contrast, the effect of defects on the band alignment at 

oxide/liquid interfaces has been less extensively studied.   

In addition, specific surface interaction mechanisms must be considered for solid/electrolyte 

interfaces, which will be different in solid/solid interfaces. First of all, the substrate surface may 

be terminated in a different way due to specific adsorption of H+, OH-, or molecular H2O species 

from the solution phase. Specific adsorption of supporting electrolyte species and solution 

contaminants may also play a role. The adsorption of ionic species results in the formation of a 

charged inner Helmholtz layer, which does not exist in similar form on solid surfaces. 

Additionally, an electrochemical double layer, the outer Helmholtz layer is formed due to 

electrostatic attraction of charged species or dipoles in the electrolyte to the (charged) solid 

surface. Due to thermal diffusion and dipolar interactions this layer can extend up to several 

hundreds of nm into the electrolyte solution (Gouy-Chapman or Stern layer). Finally, the 

different procedures in contact formation may lead to additional differing defect formation or 

passivation reactions at the interface. For solid/solid interfaces, defect passivation or surface 

reactions typically take place during contact formation, after which the contact properties show 

little or no further changes. In contrast, the properties of the solid/electrolyte interface can be 

easily—and often reversibly—modified afterwards by e.g. applying a potential, changing the pH 

of the solution, or by illumination in case of a semiconducting solid.          
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The RuO2 interface experiment revealed an upward band bending of 0.7 eV after the 

deposition of a 3 nm thick RuO2 film. Thus, a Schottky junction is formed that should provide 

effective charge carrier separation and, together with the good electrocatalytic properties, make 

RuO2 a suitable oxidation co-catalyst for BiVO4. Possible limitations could still be its high cost, 

compared to less expensive co-catalysts such as CoPi and FeOOH/NiOOH, and its inefficient 

surface passivation.7,10,15 Regarding the ITO interface, electrons should flow efficiently from 

BiVO4 into ITO due to the small difference in conduction band energy. This observation agrees 

well with the use of ITO as ohmic contact to BiVO4.
7,13  

 

5. CONCLUSION 

 A combination of thin film sputtering and photoelectron spectroscopy was used to study the 

BiVO4/RuO2 and the BiVO4/ITO interfaces. Because of the strongly different work functions of 

RuO2 and ITO, different Schottky barriers were induced in BiVO4 after depositing the respective 

contact layers. An upwards band bending of 0.71 eV for BiVO4/RuO2 and a downwards band 

bending of 0.16 eV for BiVO4/ITO were observed. The difference in Schottky barrier height of 

0.85 eV is lower than what was observed in similar interface experiments on other oxide 

semiconductors, which indicates a partial Fermi level pinning. The assumed transitivity of the 

RuO2 and ITO interface experiments allowed to align BiVO4 relative to other oxides studied for 

photo(electro)chemical water splitting, showing that the alignment based on solid/electrolyte and 

solid/solid interfaces differ from each other. These findings clearly show that the alignment 

based on solid/electrolyte interfaces cannot be used to interpret the junctions of heterostructured 

materials. Thus, interface experiments, which allow the direct analysis of the contact properties 
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of newly formed junctions, helps to understand such heterojunctions and may help to design 

more efficient photoelectrodes. 
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