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Abstract 

A high prevalence of skin pigmented lesions of 15% was recently reported in coral trout 

Plectropomus leopardus, a commercially important marine fish, inhabiting the Great Barrier 

Reef. Herein, fish were sampled at two offshore sites, characterised by high and low lesion 

prevalence. A transcriptomic approach using the suppressive subtractive hybridisation (SSH) 

method was used to analyse the differentially expressed genes between lesion and normal skin 

samples. Transcriptional changes of 14 genes were observed in lesion samples relative to 

normal skin samples. These targeted genes encoded for specific proteins which are involved in 

general cell function but also in different stages disrupted during the tumourigenesis process of 

other organisms, such as cell cycling, cell proliferation, skeletal organisation and cell 

migration. In addition, a partial Xmrk sequence was isolated from coral trout skin cDNA. The 

results highlight transcripts that are associated with the lesion occurrence, contributing to a 

better understanding of the molecular aetiology of this coral trout skin disease.  
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1. Introduction 

 
Fish tumours have been monitored for many years in order to assess the impact of exposure to 

anthropogenic stressors on the health of marine ecosystems (Malins et al. 1984). While the 

molecular aetiology and histological characteristics of tumours in bottom dwelling fish living 

in temperate marine ecosystems are well documented (Mix, 1986; Feist et al. 2015), relatively 

less is known on tumours of fish species from tropical regions, with examples limited to 

neurogenic tumours in damselfish (Schmale et al. 2002) and isolated instances of melanomas in 

the butterfly fish such as Chaetodon multicinctus and C. miliaris, (Okihiro, 1988), and the 

surgeon Ctenochaetus strigosus (Work and Aeby, 2014). In contrast, in controlled aquaria 

settings, several model species of tropical fish are routinely used in mechanistic studies, 

(induced via UV- and hereditary routes), associated with human melanoma development 

(Patton et al. 2010; Regneri and Schartl, 2012; Schartl et al. 2012).   

Melanomas are a type of skin tumour that derives from the malignant transformation of 

cutaneous melanocytes, the pigment-producing cells that reside in the basal layer of the 

epidermis in skin. In fish, melanophores are the specialized cells containing melanosomes, 

vesicles storing melanin, which are black or dark-brown in colour (Okohito et al. 1988). To 

date, various aetiologies of wild fish melanoma have been suggested, including exposure to 

waterborne chemicals (Kimura et al. 1984), UV radiation (Setlow et al. 1986; Sweet et al. 

2012), oncogenic viruses (Ramos et al. 2013) or genetic predisposition (Patton et al. 2010), 

however, as yet no cause-effect relationship at the underpinning molecular mechanistic level 

has been established yet. 

A high prevalence of skin lesions, upwards of 15%, was recently reported in coral trout 

(Plectropomus leopardus) populations from the southern Great Barrier Reef (GBR)(Sweet et 

al. 2012). In the absence of microbial pathogens, and given the strong histopathological 

similarities of UV-induced melanomas in Xiphophorus, Sweet et al. (2012) have previously 
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suggested that these lesions in coral trout may be examples of environmentally-induced 

melanomas. This wild fish species, of high economic value, has been overfished and is now 

considered under threat by the International Union for Conservation of Nature (IUCN). 

Previous studies on coral trout have focused on conservation ecology (Morris et al. 2000), 

reproduction (Carter et al. 2014), larval behaviour, mitochondrial genomes (Zhang et al. 2013; 

Xie et al. 2014) and more recently on transcriptomic analyses of two colour morphs (Wang et 

al. 2015). Meanwhile, further studies on the skin pigmented lesions in this species have yet to 

be conducted. In this study we therefore aimed to better assess the aetiology of the lesions 

reported by Sweet et al. (2012) by isolating key genes associated with the skin lesion 

development in coral trout.  

      

2. Materials and Methods 

2.1. Sample collection 

  Coral trout were sampled during 2013 at two locations on the Great Barrier Reef, 

Australia; Heron Island and Townsville (Table 1). All individuals were captured by rod and 

reel, or hand line fishing with a barbless 8/0 hook. Upon capture each individual was measured 

(cm total length), photographed and the percentage body cover of the lesions noted (Table 1). 

Individuals were sacrificed and immediately placed on ice for dissection and skin sampling. 

Samples were collected from individuals with lesions and without lesions (52.3 ± 5.0 cm, mean 

± SD, n = 8, 41.3 ± 8.3 cm, mean ± SD, n = 8, respectively). Samples included skin and 

attached musculature and were stored at -80°C prior to analysis. 
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Table 1. Sampling site location coordinates (latitude and longitude), lesion body cover (%) and 

lentgh (mm) of the fish collected at Heron Island and Townsville Reefs, Australia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

*no diseased individuals have been collected in this region so prevalence is low, possibly 0 

†Additional samples used for qPCR analysis which were not included in the original SSH experiment 

 

2.2. Suppression Subtractive Hybridisation (SSH) 

 The SSH method was performed to enable the identification of genes which were 

differentially expressed between normal skin samples and lesion samples from coral trout. For 

each skin tissue sample from individual fish, total RNAs were extracted using the High Pure 

RNA Tissue kit (Roche Diagnostics Ltd, West Sussex, UK) according to the supplier’s 

instructions. RNA quality of the 16 samples was evaluated by electrophoresis on a 1% agarose-

Heron Island Reef 

Sample name Latitude Longitude Body cover (%) Length (mm) 

lesion MS3 -23.439 151.901 85 554 

lesion MCCTA1 -23.447 151.912 20 540 

lesion MCCTA2 -23.433 151.927 95 540 

lesion MCCTA3 -23.435 151.909 20 560 

lesion MCCTA4 -23.448 151.913 30 592 

lesion MCCTA5 -23.448 151.913 80 460 

lesion MS4† -23.433 151.928 75 476 

lesion MCCTA5† -23.448 151.913 80 460 

Townsville Reefs * 

Sample name Latitude Longitude Body cover (%) Length (mm) 

normal MC1 -18.746 147.258 0 364 

normal MC2 -18.746 147.258 0 366 

normal MC3 -18.687 147.093 0 405 

normal MC5 -18.687 147.093 0 334 

normal MC6 -18.687 147.093 0 443 

normal MC7 -18.687 147.093 0 384 

normal MC4† -18.687 147.093 0 410 

normal MC8† -18.620 147.301 0 600 
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formaldehyde gel. For the SSH procedure, 6 samples from each treatment group (normal and 

lesion) were used to create a pooled sample from each treatment, each represented at an equal 

concentration (150 ng/μL) (Table 1). SMARTer PCR cDNA Synthesis Kit reagents (Clontech, 

Saint-Germain-en-Laye, France) were used to create cDNA and the Advantage 2 PCR Kit 

(Clontech, France) reagents were used for PCR reactions. The SSH procedure was performed 

using PCR-Select cDNA Subtraction Kit reagents (Clontech, France) with normal skin tissue 

as the driver and lesion skin tissue samples as the tester. The protocol was carried out 

according to the manufacturer’s guidelines.   

 

2.3. Subcloning and sequence identification 

 Two approaches were used to purify the final PCR products from the SSH reaction, 

prior to ligation and sub-cloning, in order to obtain clones containing variously sized gene-

inserts. In the first approach, the PCR products were purified using the NucleoSpin® Extract II 

Kit (Macherey Nagel, UK), followed by ethanol precipitation to concentrate the samples. For 

the second approach, PCR products were run on a 1.5% TBE agarose gel post-stained with 

ethidium bromide (Invitrogen, Paisley, UK) and each lane of the gel was cut into four sections 

which were purified from the gel with the NucleoSpin® Extract II Kit (Macherey Nagel, UK), 

in order to reduce the effect of any potential size-bias the cloning procedure may exhibit.   

 Sub-cloning with blue/white screening was carried out with both the purified PCR 

products and the purified gel-excised PCR products. These were conducted using the Original 

TA Cloning Kit with the pCR2.1 vector (Life Technologies, UK) or the TOPO TA Cloning Kit 

For Sequencing with the pCR4-TOPO vector (Life Technologies, UK) as per the 

manufacturer’s instructions, with the exception of the heat shock stage extension to 75 s. The 

chemically competent cells used were MAX Efficiency DH10B E.coli (Life Technologies, UK) 

and TOP10 E. coli (Life Technologies, UK). Following transformation, cells were grown 
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overnight on LB miller agar plates containing kanamycin (50 µg/mL), white colonies were 

used to inoculate LB miller liquid cultures, which were then incubated overnight at 37
o
C and 

200 rpm. Overnight cultures were used directly in a PCR reaction, using M13 primers, to 

identify plasmids requiring purification with NucleoSpin® Extract II Kit reagents (Macherey 

Nagel, UK). Plasmids were sequenced by a commercial company (EZ Seq Service, Macrogen 

Europe, The Netherlands).   

 Sequences were identified by nucleotide (Blastn) and protein (Blastx) BLAST searches 

on the NCBI database (http://blast.ncbi.nlm.nih.gov/Blast.cgi) with results showing an E value 

of less than 10
-5

 excluded.   

 

2.4. Quantitative real-time PCR validation of SSH results 

 In order to validate the results of the SSH experiment, 4 genes were selected for qPCR 

analysis. Two up-regulated transcripts were associated with lesion samples: amyloid-like 

protein 2 (APLP2) and Kelch repeat and BTB domain-containing protein 8 (KBTBD8), along 

with two down-regulated transcripts: creatine kinase M-type (CKM) and strawberry notch 

homolog 2 (SNO). RNA was prepared from skin samples of the 12 individuals used for the 

SSH analysis (n = 6 for normal fish and n = 6 for lesion fish samples) with the addition to two 

further samples obtained for each sample type (Table 1). RNA extraction was performed using 

the High Pure RNA Tissue Kit reagents (Roche, UK). In order to increase the RNA yield, an 

additional step in the extraction protocol involving the addition of ~10 U proteinase K (~800 

U/mL) (Thermo Scientific, UK) and 1 µL (28 mM final concentration) beta-mercaptoethanol 

(Agilent Technologies, UK), followed by a 1 hr incubation at room temperature, was 

performed after rotor stator homogenisation. The total RNA concentrations were calculated 

using a Qubit 1.0 Fluorometer (Life Technologies, UK) and the Qubit RNA BR Assay Kit 

(Life Technologies, UK). cDNA synthesis was performed using 190 ng of total RNA for each 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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sample with reagents from the SuperScript® VILO cDNA Synthesis Kit (Life Technologies, 

UK). cDNA samples were then treated with Ribonuclease H enzyme (at a final concentration 

of 125 U/mL) with the corresponding 10X RNase H Reaction Buffer (New England Biolabs, 

Hitchin, UK). 

 Primers for the qPCR reactions were designed based on the sequences obtained from 

the SSH experiment (Table 2) using the online bioinformatics resource Primer Designing Tool 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Primer sequences and their corresponding 

amplicon sizes are shown in Table 2. qPCR reactions were performed on a CFX96 Real-Time 

PCR Detection System (BioRad, UK) and consisted of the following reagents: 10 µL FastStart 

Universal SYBR Green Master (Rox) (Roche, UK), 7 µL molecular-grade water (Fisher 

Scientific, UK), 1 µL of each primer (at a final concentration of 300 nM) and 1 µL of template 

cDNA. The following thermal cycling conditions were used: 95 
o
C for 2 min, followed by 45 

cycles of 95 
o
C for 10 s, 60 

o
C for 1 min, and 72 

o
C for 1 min. Finally a melt curve generation 

step was included which heated samples from 60 
o
C to 95 

o
C in 0.5 

o
C increments to allow 

melt curve generation allowing primer specificity to be confirmed. Template-negative controls 

were included alongside all runs to confirm lack of contamination and lack of secondary 

product formation such as primer dimers. Primer efficiencies were calculated for all primer 

pairs over a 10X dilution range of cDNA template and were all found to be within the desired 

90 – 110% range.   

 

Table 2. Primer pairs used for qPCR validation of SSH results. 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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  The delta Ct method (2
-ΔCt

) was used to normalise the gene expression data of each of 

the genes of interest to that of the reference gene (Livak and Schmittgen, 2001). The GraphPad 

InStat v3 (GraphPad Software Inc., La Jolla, USA) program was used to perform the statistical 

analyses, which consisted of unpaired t-tests to assess the suitability of EF1 as a stably 

expressed reference gene and to detect differences in relative gene expression levels for each of 

the different genes of interest between normal and lesion samples. Values of p < 0.05 were 

considered significant. 

 

3. Results 

3.1. Skin lesion incidence 

Fifteen percent of the fish caught at Heron Island Reef displayed dark skin lesions covering 20 

to 95 % of the body surface (Table 1, Figure 1). No skin lesions were observed in fish caught at 

Townsville reefs.  

 

Gene Primer name Sequence (5’-3’) Tm (˚C) 
Amplicon 

size (bp) 

EF1 

EF1_F3 GTG TTG AGA CCG GTG TCC TG 57.9 

111 
EF1_R3 CAG CCT CAG GCA GAG ATT CG 57.9 

Notch 

SNO_F1 CCT CGG ACC TAC TCC CTC TC 58.2 

129 

SNO_R1 TTG ATG GAG CCC GCT AAC AC 57.6 

Creatine 

kinase 

CKM_F1 TAG CCG TGA CCA GAC TAT GC 56.5 

169 

CKM_R1 CCA TCA AGA GGA CAC TCC ACA 56.5 

Kelch8 

Kelch_F3 TTC TGA GGG CAC GGT TCA AG 57.5 

110 

Kelch_R3 ACA TTC AGT GAG GAC GTG AGG 56.7 

Amyloid 

AP2_F1 TGC TTA GTG CCA CAC CTT GT 57.0 

136 

AP2_R1 AGG GTC ATG CTT TTC ACC TGT 56.8 
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Figure 1. Coral trout displaying (A) normal skin, and increasing percent lesion coverage of (B) 

20%, (C) 30%, (D) 75%, (E) 85%. 

A       

 

B 

    
C         

  
D 

 
E 
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3.2. SSH analysis 

 A total of 14 genes were identified as differentially expressed between normal and 

lesion skin samples, 6 up-regulated and 8 down-regulated genes were present in lesion samples 

(Table 3). These were identified based on sequence similarity to NCBI database sequences and 

in all cases the greatest degree of sequence similarity was shared with other fish species. All 

coral trout sequences generated here were submitted to the NCBI database and awarded 

accession numbers (Table 3).  

 

3.3. Validation of differentially expressed transcripts 

 No statistically significant difference was detected between the EF1expression levels of 

healthy samples compared with lesion samples (unpaired t-test, p = 0.7507), a result indicating 

that this transcript shows stable expression levels between treatments and is suitable for use as 

a reference gene with which samples can be normalised.  The relative expression levels of the 4 

gene transcripts selected for qPCR validation are shown in Figure 2. For the genes identified by 

SSH as up-regulated in lesion samples, a statistically significant difference was found for 

amyloid APLP2 (p = 0.02) and, although the expected trend was shown by Kelch (KBTBD8), 

the difference was not quite pronounced enough to be considered statistically significant (p = 

0.07). For the genes for which SSH revealed down-regulation in lesion samples, creatine 

kinase (CKM) and Notch (SNO), no statistically significant differences were detected (p = 

0.3986 and p = 0.6044 respectively), however CKM showed the expected trend (Figure 2).  
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Table 3. Coral trout sequences obtained from SSH which are either up-regulated or down-regulated in skin pigmented lesion samples, and their 1 

identifications based on sequence similarity obtained by NCBI database BLAST searches.  Asterisks denote genes selected for qPCR validation. 2 

3 
Clone accession 

number 
Gene identity 

Amplicon size 

(bp) 
Species match 

Accession number of 

match 
E value 

Up-regulated in lesion samples 

JZ693893 Amyloid-like protein 2-like* 332 
Haplochromis 

burtoni 
XM_005943131.1 3.00E-91 

JZ693894 
Guanine nucleotide-binding protein G(i) subunit alpha-2-

like 
368 

Oreochromis 

niloticus 
XM_003441449.2 3.00E-77 

JZ693895 Kelch repeat and BTB domain-containing protein 8-like* 297 O. niloticus XM_003442681.2 2.00E-57 

JZ693896 Rap1 GTPase-GDP dissociation stimulator 1-like 187 O. niloticus XM_005465283.1 3.00E-33 

JZ693897 Iroquois-class homeodomain protein IRX-5-like 398 O. niloticus XM_003437536.2 5.00E-95 

JZ693898 Importin subunit alpha-4-like 175 O. niloticus XM_003451617.2 4.00E-06 

Down-regulated in lesion samples 

JZ693899 
NudC domain-containing protein 2-like protein (NUDC2) 

and cyclin G1 (CCNG1) genes 
162 Perca flavescens JX629441.1 3.00E-53 

JZ693900 Ubiquitin carboxyl-terminal hydrolase 7-like 69 H. burtoni XM_005943595.1 3.00E-24 

JZ693901 60S ribosomal protein L4-A-like 252 Maylandia zebra XM_004553076.1 5.00E-78 

JZ693902 Fructose-bisphosphate aldolase A-like 58 
Neolamprologus 

brichardi 
XM_006805719.1 2.00E-14 

JZ693903 
Calcium/calmodulin-dependent protein kinase type II 

subunit gamma-like 
358 Poecilia formosa XM_007562456.1 2.00E-23 

JZ693904 Myocyte-specific enhancer factor 2A-like 129 N. brichardi XM_006789383.1 3.00E-32 

JZ693905 Creatine kinase M-type-like* 436 O. niloticus XM_003456381.2 2.00E-27 

JZ693906 Protein strawberry notch homolog 2-like* 288 M. zebra XM_004554876.1 8.00E-72 
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Figure 2. Bar charts showing relative gene expression of healthy and lesion-containing coral 4 

trout skin samples for  SNO,CKM, KBTBD8, and APLP2 with mean data plotted ± SEM; n = 6 5 

to 8.  6 
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 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

20 
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 4. Discussion 21 

Dark skin lesions, due to the overproduction of melanin, have been previously 22 

identified in fish as melanoma based on histological observations (Okihiro et al. 1993; Sweet et 23 

al. 2012; Work and Aedy, 2014). Sampling for this study revealed that 15% of coral trout 24 

sampled at Heron Island Reef displayed a dark skin lesions covering 20 to 95 % of their body 25 

surface, reflecting the numbers initially reported by Sweet et al. (2012). Furthermore, this 26 

coverage percentage is in the range of what has been previously reported for other fish species 27 

including the goldring surgeon fish (Work and Aedy, 2014), and the pacific rockfish (Okihiro 28 

et al. 1993). Interestingly, although the same sample effort was conducted in the northern 29 

reaches of the GBR, no coral trout were found to be suffering from the disease at this location. 30 

Such variance in prevalence between locations (separated by 700 km) could have important 31 

repercussions to commercial and recreational fisheries, especially since the aetiology of the 32 

disease remains unknown.  33 

In this study, two subtracted libraries, enriched with transcripts that differ between 34 

normal skin and lesions, have been constructed. Transcriptional changes of several transcripts, 35 

up- or down- regulated, relative to normal skin samples, were found in fish skin lesions (Table 36 

3). These transcripts variously encode for proteins involved in general cell function 37 

(calcium/calmodulin-dependent protein kinase, 60S ribosomal protein L4-A-like), in addition 38 

to those associated with different stages of disrupted cells which occur during the 39 

tumourigenesis process in other organisms, such as cell cycling (iroquois-class homeodomain 40 

protein, microtubule motor associated protein), cell proliferation (amyloid-like protein 2-like, 41 

importin subunit alpha-4-like, ubiquitin carboxyl-terminal hydrolase 7-like), skeletal 42 

organisation (kelch-BTB protein) and cell migration (ras-associated protein-1, fructose-43 

biphosphate aldolase A-like) which will be discussed in turn.  44 
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Several transcripts involved in the control of the cell cycle were diffentially regulated 45 

as follows. The transcriptional response of the iroquois homeobox protein5 (Irx5) gene was 46 

increased in the skin lesion samples. Irx5 is a member of the iroquois homeobox gene family 47 

and is involved in the regulation of proliferation through their interaction with several cell 48 

cycle regulators (Myrthue et al. 2008). Aberrant expression of such homeobox genes 49 

deregulates cell cycle control contributing to carcinogenesis (Abate-Shen, 2002; Myrthue et al. 50 

2008). The amyloid precursor-like protein 2-like (APLP2) gene encodes an amyloid precursor 51 

protein (APP) involved in cell progression (O’Brien and Wong, 2011), and was also up-52 

regulated in the skin lesion samples. Several studies have reported a similar up-regulation of 53 

APP as seen in this study in various cancers associated with a variety of organisms including 54 

melanomas (Siemens et al. 2006; Bothelo et al. 2010; Russell et al. 2015). In contrast, the 55 

microtubule motor associated protein (NudC) and the cyclin G1 genes were both down-56 

regulated in the skin lesion samples. Microtubules play a central role in coordinating several 57 

cellular functions of the cell cycle, during which overexpression of NudC has been found to 58 

inhibit the proliferation of prostate cancer cells in a potential tumour suppressive manner (Lin 59 

et al. 2004). Cyclin G1 is a transcriptional target of p53 and has also been shown induced by 60 

DNA damage in a p53 dependent manner (Kimura and Nojima 2002). 61 

Another potential cellular proliferation cue includes the importin subunit alpha-4-like 62 

gene (also known as karyopherin, KPNA) that was identified as up-regulated in coral trout skin 63 

lesion samples relative to normal skin samples in this study. The importin alpha/beta 64 

heterodimer mediates the transport of proteins into the nucleus, modulating signal transduction 65 

processes (Kolher et al. 1997) and controlling the migration and viability of cancerous cells in 66 

certain human cancers (Wang et al. 2010). KPNA2 is considered to play a major role in the 67 

signal transduction pathways that regulate epidermal cell proliferation and differentiation 68 

(Umegaki et al. 2007). Epidermal keratinocytes regulate their proliferation and differentiation 69 
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by transducing signals from outside the cell membrane to the nucleus through nuclear pores, 70 

thereby regulating the expression of epidermal proliferation and differentiation of specific 71 

genes (Umegaki et al. 2007).  72 

The ubiquitin carboxyl-terminal hydrolase 7-like (UCHL) gene is down-regulated in 73 

skin lesion tissues. Ubiquination plays a key role in the post-translational modification of 74 

proteins and regulates a number of cellular processes such as proliferation, apoptosis and 75 

neoplastic transformation. UCHL1 is an enzyme that protects ubiquinated proteins from 76 

degradation and recycles ubiquitin moieties (Wulfanger et al. 2013). Wulfanger et al. (2013) 77 

found that down-regulation of UCHL1 was evident in melanoma cells and that it correlated 78 

with promoter DNA hypermethylation (Wulfanger et al.  2013). Other key genes, such as egfrb 79 

and xmrk involved in melanoma progression have been found deregulated by epigenetic 80 

mechanisms (Montero et al. 2006; Altschmied et al. 2007; Regneri et al. 2015).  81 

Up-regulation of the kelch-BTB protein gene, involved in cytoskeletal organisation, was 82 

observed in the skin lesion samples. Changes in actin skeleton organization, adhesiveness and 83 

motility are important for tumour development and progression. Selected kelch-BTB proteins 84 

have been found to play important roles in invasion (Ohta et al. 2010; Brunner et al. 2013) and 85 

metastasis of cancer cells by regulating the actin cytoskeleton and Rho family proteins (Ohta et 86 

al. 2010) and are also considered as predictive markers of melanoma (Brunner et al. 2013).  87 

Up-regulation of a gene potentially involved in cell invasion, Ras-associated protein-1 88 

(Rap1), was also observed in the skin lesion samples. Rap1, a close member of Ras in the small 89 

GTPase family, regulates two important cellular processes: Ras/BRAF/ERK activation and 90 

integrin-mediated cell adhesion/migration (Stork 2003; Bos et al. 2003). Rap1 is involved in 91 

the activation of MAPK pathway and integrin activation in human melanoma and may play a 92 

role in melanoma tumourigenesis and metastasis (Gao et al. 2006). Finally, the fructose-93 

biphosphate aldolase A-like (ALDOA) gene was identified as down-regulated in skin lesion 94 
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samples. ALDOA is involved in glycolysis and its decrease has been found in several human 95 

malignant cancers (Kinoshita and Miyata, 2002; Kuramitsu and Nakamura, 2006; Du et al. 96 

2014). 97 

In conclusion, we have identified differentially regulated transcripts associated with the 98 

development of skin pigmented lesions in coral trout. The results contribute to a better 99 

understanding of the molecular aetiology of the disease, developing on the study by Sweet et 100 

al. (2012). These findings reported in this study are also of potential significance for both 101 

fisheries and marine park management in general.   102 
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Supplemental Information  221 

Table S1. Raw dataset for qPCR experiments 222 

NORMAL EF1  SNO  KBTBD8 

Trout ID 
Number Ct Duplicate Mean  Ct Duplicate Mean dCT RQ  Ct Duplicate Mean dCT RQ 

MC7 20.75 20.88 20.815  27.35 27.22 27.285 6.47 0.0112807  29.62 29.73 29.675 8.86 0.002152 

MC5 22.54 22.29 22.415  26.74 27.48 27.11 4.695 0.03860683            

MC2 21.21 21.12 21.165  27.93 28.61 28.27 7.105 0.0072641  29.98 29.93 29.955 8.79 0.002259 

MC6 23.07 23.26 23.165  27.75 27.01 27.38 4.215 0.05384663  31.11 30.67 30.89 7.725 0.004727 

MC4 22.04 22.27 22.155  28.67 29.34 29.005 6.85 0.00866851  30.72 30.53 30.625 8.47 0.00282 

MC8 26.73 26.84 26.785  31.3 31.84 31.57 4.785 0.036272  34.28 34.53 34.405 7.62 0.005083 

MC3 22.25 22.6 22.425  28 28.23 28.115 5.69 0.01937043            

MC1 23.75 23.63 23.69  30.09 30.06 30.075 6.385 0.0119653  31.08 31.32 31.2 7.51 0.005486 

        Average 0.02340931     Average 0.003755 

        SE 0.0061167     SE 0.000616 

                

LESION EF1  SNO  KBTBD8 

Trout ID 
Number Ct Duplicate Mean  Ct Duplicate Mean dCT RQ  Ct Duplicate Mean dCT RQ 

MCCTA3 24.66 24.66 24.66  30.22 29.99 30.105 5.445 0.02295576  31.47 31.83 31.65 6.99 0.007867 

MS4 21.5 21.33 21.415  28 28.01 28.005 6.59 0.01038036  29.19 28.61 28.9 7.485 0.005582 

MS3 22.22 22.28 22.25  28.17 28.36 28.265 6.015 0.01546339  30.4 30.49 30.445 8.195 0.003412 

MCCTA5 22.16 22.16 22.16  26.59 27.15 26.87 4.71 0.03820751  29.63 29.93 29.78 7.62 0.005083 

MS5 21.75 21.85 21.8  26.48 26.9 26.69 4.89 0.03372588  29.42 29.2 29.31 7.51 0.005486 

MCCTA4 21.36 21.46 21.41  27.82 28.06 27.94 6.53 0.01082117  29.45 30.17 29.81 8.4 0.00296 

MCCTA1 23.56 23.73 23.645  28.03 27.42 27.725 4.08 0.0591286  30.12 30 30.06 6.415 0.011719 

MCCTA2 23.27 23.26 23.265  28.12 28.3 28.21 4.945 0.03246435  29.83 29.62 29.725 6.46 0.011359 

        Average 0.02789338     Average 0.006684 

        SE 0.00584622     SE 0.001183 
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NORMAL CKM  APLP2 

Trout ID 
Number Ct Duplicate Mean dCT RQ  Ct Duplicate Mean dCT RQ 

MC7 17.65 17.46 17.555 -3.26 9.57983  28.85 28.44 28.645 7.83 0.004395 

MC5 21.36 22.3 21.83 -0.585 1.500039            

MC2            28.47 29.03 28.75 7.585 0.005208 

MC6 23.4 22.89 23.145 -0.02 1.013959  29.6 29.11 29.355 6.19 0.013697 

MC4 20.1 19.37 19.735 -2.42 5.35171  29.4 29.26 29.33 7.175 0.00692 

MC8 22.01 21.6 21.805 -4.98 31.55945  33.35 33.25 33.3 6.515 0.010934 

MC3 21.67   21.67 -0.755 1.687632            

MC1 22.41 22.06 22.235 -1.455 2.741566  33.29 31.26 32.275 8.585 0.002604 

    Average 7.633455     Average 0.007293 

    SE 4.146621     SE 0.001724 

            

LESION CKM  APLP2 

Trout ID 
Number Ct Duplicate Mean dCT RQ  Ct Duplicate Mean dCT RQ 

MCCTA3 21.15 21.31 21.23 -3.43 10.77787  30.54 31.38 30.96 6.3 0.012691 

MS4 21.73 21.47 21.6 0.185 0.879649  28.17 28.41 28.29 6.875 0.00852 

MS3 24.41 23.89 24.15 1.9 0.267943  28.86 28.94 28.9 6.65 0.009958 

MCCTA5 25.4 25.3 25.35 3.19 0.109576  28.12 28.09 28.105 5.945 0.016232 

MS5 21.85 22.08 21.965 0.165 0.891929  27.65 27.92 27.785 5.985 0.015788 

MCCTA4            27.9 28.33 28.115 6.705 0.009585 

MCCTA1 20.39 20.44 20.415 -3.23 9.38268  29 28.96 28.98 5.335 0.024775 

MCCTA2 21.19 21.61 21.4 -1.865 3.642679  28.76 28.95 28.855 5.59 0.020761 

    Average 3.707475     Average 0.014789 

    SE 1.710623     SE 0.002038 
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