B. Henroth, S. Baden, M. Thorndyke, and S. Dupont, , p.376, 2011.

, Asterias rubens (L.) following long-term ocean acidification, Aquat. Toxicol, vol.103, pp.222-224

S. Honda, M. Kashiwagi, K. Miyamoto, Y. Takei, and S. Hirose, Multiplicity, structures, and 378 endocrine and exocrine natures of eel fucose-binding lectins, J. Biol. Chem, vol.275, pp.33151-379, 2000.

S. L. Hooper, K. H. Hobbs, and J. B. Thuma, Invertebrate muscles: thin and thick filament struc-381 ture; molecular basis of contraction and its regulation, catch and asynchronous muscle, 2008.

. Neurobiol, , vol.86, pp.72-127

T. H. Hutchinson, A. N. Jha, and . D. Dixon, The polychaete Platynereis dumerilii (Audouin 384 and Milne-Edwards): a new species for assessing the hazardous potential of chemicals in the 385 marine environment, Ecotox. Environ. Safe, vol.31, pp.271-281, 1995.

, Summary for Policymakers, Climate Change 2013: The Physical Science Basis, pp.387-406, 2013.

P. Kaniewksa, P. R. Campbell, D. I. Kline, M. Rodriguez-lanetty, D. J. Miller et al., , p.401

O. Guldberg, Major cellular and physiological impacts of ocean acidification on a reef 402 building coral, PloS One, vol.7, issue.4, p.34659, 2012.

S. I. Kawabata, Immunocompetent molecules and their response network in horseshoe crabs, Invertebrate Immunity, vol.404, pp.122-136, 2010.

C. K. Lai, N. Gupta, X. Wen, L. Rangell, B. Chih et al., Functional characterization of putative cilia genes by high-content analysis, Mol. Biol, 2011.

, Cell, vol.22, pp.1104-1119

D. Lüthi, M. Le-floch, B. Bereiter, T. Blunier, J. Barnola et al., , p.409

J. Jouzel, H. Fischer, K. Kawamura, and T. F. Stocker, High-resolution carbon dioxide 410 concentration record 650,000-800,000 years before present, Nature, vol.453, pp.379-382, 2008.

S. Martin, S. Richier, M. Pedrotti, S. Dupont, C. Castejon et al., , p.412

F. Oberhänsli, J. Teyssié, R. Jeffree, and J. Gattuso, Early development and 413 molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO 2 -414 driven acidification, J. Exp. Biol, vol.214, pp.1357-1368, 2011.

F. Melzner, M. A. Gutowska, M. Langenbuch, S. Dupont, M. Lucassen et al., , p.416

M. Bleich and H. Pörtner, Physiological basis for high CO 2 tolerance in marine 417 ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences Discus-418 sions 6, pp.2313-2331, 2009.

A. Moya, L. Huisman, E. E. Ball, D. C. Hayward, L. C. Grasso et al., , p.420

J. Forêt, S. Miller, and D. J. , Whole transcriptome analysis of the coral Acropora 421 millepora reveals complex responses to CO 2 -driven acidification during the initiation of 422 calcification, Mol. Ecol, vol.21, pp.2440-2454, 2012.

M. J. O'donnell, A. E. Todgham, M. A. Sewell, L. M. Hammond, K. Ruggiero et al., , p.424

M. L. Zippay and G. E. Hofmann, Ocean acidification alters skeletogenesis and gene ex-425 pression in larval sea urchins, Mar. Ecol. Prog. Ser, vol.398, pp.157-171, 2010.

L. M. Parker, P. M. Ross, D. Raftos, E. Thompson, and W. A. O'connor, The proteomic re-427 sponse of larvae of the Sydney rock oyster, Saccostrea glomerata to elevated pCO 2, 2011.

, Zool, vol.35, pp.1011-1023

M. H. Pespeni, E. Sanford, B. Gaylord, T. M. Hill, J. D. Hosfelt et al., , p.430

E. A. Russell, A. D. Young, M. K. Palumbi, and S. R. , Evolutionary change during experi-431 mental ocean acidification, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.6937-6942, 2013.

G. Plattner, F. Joos, T. F. Stocker, and O. Marchal, Feedback mechanisms and sensitivities 433 of ocean carbon uptake under global warming, Tellus B, vol.53, pp.564-592, 2001.

H. O. Pörtner, C. Bock, and A. Reipschlager, Modulation of the cost of pHi regulation during 435 metabolic depression: a (31) P-NMR study in invertebrate (Sipunculus nudus) isolated 436 muscle, J. Exp. Biol, vol.203, pp.2417-2428, 2000.

R. D. Rosa, A. Santini, J. Fievet, P. Bulet, D. Destoumieux-garzón et al., Big 438 defensins, a diverse family of antimicrobial peptides that follows different patterns of expres-439 sion in hemocytes of the oyster Crassostrea gigas, PLoS One, vol.6, p.25594, 2011.

C. L. Sabine, R. A. Feely, N. Gruber, R. M. Key, K. Lee et al., , p.441

C. S. Wallace, D. W. Tilbrook, B. Millero, F. J. Peng, T. Kozyr et al., , p.442

A. F. , The oceanic sink for anthropogenic CO 2, Science, vol.305, pp.367-371, 2004.

B. A. Seibel and P. J. Walsh, Biological impacts of deep-sea carbon dioxide injection inferred 444 from indices of physiological performance, J. Exp. Biol, vol.206, pp.641-650, 2003.

V. J. Smith, A. P. Desbois, and E. A. Dyrynda, Conventional and unconventional antimicrobials 446 from fish, marine invertebrates and micro-algae, Marine Drugs, vol.8, pp.1213-1262, 2010.

M. Stumpp, S. Dupont, M. C. Thorndyke, and F. Melzner, CO 2 induced seawater acidification 448 impacts sea urchin larval development II: Gene expression patterns in pluteus larvae, 2011.

, Biochem. Physiol, vol.160, pp.320-330

A. Szyk, Z. Wu, K. Tucker, D. Yang, W. Lu et al., Crystal structures of human 451 alpha-defensins HNP4, HD5, HD6, Protein Sci, vol.15, pp.2749-2760, 2006.

K. Tessmar-raible and D. Arendt, Emerging systems: between vertebrates and arthropods, the 453 Lophotrochozoa, Curr. Opin. Genet. Dev, vol.13, pp.331-340, 2003.

E. C. Theil, Ferritin: structure, gene regulation, and cellular function in animals, plants and 455 microorganisms, Ann. Rev. Biochem, vol.56, pp.289-315, 1987.

A. E. Todgham and G. E. Hofmann, Transcriptomic response of sea urchin larvae 457, 2009.

, Strongylocentrotus purpuratus to CO 2 -driven seawater acidification, J. Exp. Biol, vol.212, pp.2579-458

L. Tomanek, M. J. Zuzow, A. V. Ivanina, E. Beniash, and I. M. Sokolova, Proteomic response to 460 elevated PCO 2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress, 2011.

, Exp. Biol, vol.214, pp.1836-1844

Y. C. Tseng, M. Y. Hu, M. Stumpp, L. Y. Lin, F. Melzner et al., CO 2 -driven sea-463 water acidification differentially affects development and molecular plasticity along life his-464 tory of fish (Oryzias latipes), Comp. Biochem. Physiol. A Mol. Integr. Physiol, vol.165, pp.119-130, 2013.

J. Vidal-dupiol, D. Zoccola, E. Tambutté, C. Grunau, C. Cosseau et al., , p.466

N. M. Dheilly, D. Allemand, and S. Tambutté, Genes related to ion-transport and energy 467 production are upregulated in response to CO 2 -driven pH decrease in corals: New insights 468 from transcriptome analysis, PLoS ONE, vol.8, 2013.

C. Wittmann and H. Pörtner, Sensitivities of extant animal taxa to ocean acidification. Na-470 ture, Climate Change, vol.3, pp.995-1001, 2013.

E. Won, R. Kim, J. Rhee, G. S. Park, J. Lee et al., , 2011.

. Response-of-glutathione-s-transferase, GST) genes to cadmium exposure in the marine pollu-473 tion indicator worm, Perinereis nuntia, Comp. Biochem. Physiol. C. Toxicol. Pharmacol, vol.154, pp.82-92

K. K. Wong, A. C. Lane, P. T. Leung, and V. Thiyagarajan, Response of larval barnacle 476 proteome to CO 2 -driven seawater acidification, Comp. Biochem. Physiol, vol.6, p.22, 2011.

S. Zheng, X. Qiu, B. Chen, X. Yu, K. Lin et al., Toxicity 478 evaluation of benzo[a]pyrene on the polychaete Perinereis nuntia using subtractive cDNA 479 libraries, Aquat. Toxicol, vol.105, pp.279-291, 2011.