
HAL Id: hal-02155101
https://hal.science/hal-02155101

Submitted on 13 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear-Light Shading with Linearly Transformed Cosines
Eric Heitz, Stephen Hill

To cite this version:
Eric Heitz, Stephen Hill. Linear-Light Shading with Linearly Transformed Cosines. GPU Zen Ad-
vanced Rendering Techniques, 2017. �hal-02155101�

https://hal.science/hal-02155101
https://hal.archives-ouvertes.fr


i
i

i
i

i
i

i
i

Linear-Light Shading with
Linearly Transformed Cosines

Eric Heitz and Stephen Hill

1.1 Introduction

We recently introduced a new real-time area-light shading technique dedi-
cated to lights with polygonal shapes [Heitz et al. 16]. In this chapter, we
extend this area-lighting framework to support linear (line-shaped) lights
in addition to polygons. Linear lights are cheaper to shade than poly-
gons and they provide a good approximation for thin emitting cylinders
(fluorescent tubes, lightsabers, etc.), as shown in Figure 1.1.

Figure 1.1. We use linear lights to approximate thin cylindrical light shapes.

Our area-lighting framework is based on a spherical distribution called
Linearly Transformed Cosines (LTCs) introduced in our previous arti-
cle [Heitz et al. 16]. While not required, we encourage anyone interested
in the mathematical details to consult it (or the associated slides) before
reading this chapter.

1



i
i

i
i

i
i

i
i

2 1. Linear-Light Shading with Linearly Transformed Cosines

The Linear-Light Shading Model Linear lights share a limitation
with point lights in that they cannot be found in the real world, since
no real emitter is infinitely thin. However, in Section 1.2 we show that, in
many scenarios, linear lights are a good approximation for cylindrical lights
with a small but non-zero radius. We describe how to approximate these
lights with linear lights that have similar power and shading, and discuss
the validity of this approximation.

Note that in this chapter we use the classic definition of linear lights1,
where they are modeled as cylinders with a diffuse emission profile and
an infinitely small radius [Nishita et al. 85,Bao and Peng 93]. Since these
linear lights only model the lengths of the cylinders, we discuss the addition
of their emitting end caps in Section 1.5.

Finally, in Section 1.6, we briefly discuss an alternative definition of a
linear light that models a rectangle with an infinitely small width instead of
a cylinder with an infinitely small radius. The shading of these rectangle-
like linear lights remains essentially the same as the cylinder-like linear
lights: it is just modulated by the orientation of the rectangle’s normal.

The Material Model The key to real-time shading is the ability to in-
tegrate the product of the material (i.e., the BRDF) and the light. In the
case of linear lights, we need to compute a line integral over the spherical
distribution given by the BRDF. In the literature, the only spherical dis-
tributions with analytic line integrals are the diffuse distribution (we recall
its derivation Section 1.3) and the Phong distribution for glossy materi-
als [Nishita et al. 85, Bao and Peng 93]. However, the Phong distribution
is an inaccurate approximation for recent physically based shading models.
Furthermore, the complexity of the line integral over a Phong distribution
grows linearly with the exponent of the distribution. Hence, integrating
almost specular materials over a linear light can be prohibitively costly for
real-time shading.

These limitations were the same for polygonal lights, and we overcame
them thanks to LTCs [Heitz et al. 16]. LTC distributions yield good ap-
proximations for physically based materials based on the GGX microfacet
distribution [Walter et al. 07] that are considered state of the art today in
the video game industry [Hill et al. 15] and can be analytically integrated
over arbitrary polygons in constant time due to their polygon-integral in-
variance property. In Section 1.3, we recall the definition of LTCs and show

1An alternative definition of linear lights can be found in the literature [Poulin and
Amanatides 91,Picott 92]. With this definition, the linear light is modeled as an infinite
series of point lights instead of as a cylinder with an infinitely small radius. Hence, this
model lacks the Jacobian that accounts for the light emission profile and its inclina-
tion, which yields incorrect shading behavior. Because of this, it cannot be used as an
approximation for actual geometric shapes such as a cylinder.



i
i

i
i

i
i

i
i

1.1. Introduction 3

that they have a similar line-integral invariance property. Again, thanks
to this property, we can integrate them analytically over linear lights in
constant time. Figure 1.2 shows the result obtained by shading materials
based on the GGX distribution with linear lights.

Figure 1.2. We shade linear lights with physically based materials that use the
GGX microfacet BRDF.

Associated Demo This book chapter is distributed with a WebGL demo
that implements all the code snippets from the chapter (Figure 1.3). Note
that the code provided in the chapter and the demo prioritizes readability
over performance and is not meant to be shipped as-is to production.

Figure 1.3. Our WebGL demo.
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4 1. Linear-Light Shading with Linearly Transformed Cosines

1.2 The Linear-Light Shading Model

In this section, we show that linear lights yield a good approximation to
cylinder lights in many configurations. In order to validate the domain of
validity of this approximation, we recall how the integrals of the BRDF over
cylinders and lines are defined, and we implement numerical integration
shaders to compute them. Thus, the goal of this section is to provide
shader code for validating the approximation; the actual code one would
use in practice is covered in the subsequent sections.

1.2.1 The Local Illumination Integral

Shading with area lights requires computing the illumination integral over
the spherical domain ΩL covered by the light:

I =

∫
ΩL

ρ(ωv,ωl) cos θl dωl, (1.1)

where ωv is the view direction, ωl is the light direction, and ρ the BRDF.

1.2.2 The Spherical Distribution

We use D(ωl) = ρ(ωv,ωl) cos θl to denote the cosine-weighted BRDF, and
we show how to compute the integral of Equation (1.1) for cylindrical lights
or lights composed of line segments.

Figure 1.4. The spherical distribution D to be integrated.

float D(vec3 w)
{

// .. brdf*cos
}

Listing 1.1. The distribution, D. This is typically a cosine-weighted BRDF, but
the result of this section holds for any arbitrary spherical function D.
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1.2. The Linear-Light Shading Model 5

1.2.3 The Cylinder-Light Integral

Configuration A cylinder is defined by two end points p1 and p2 and
a radius R, as shown in Figure 1.5. We use L = ‖p2 − p1‖ to denote the
length of the cylinder, ωt = p2−p1

‖p2−p1‖
the tangent direction of the cylinder,

and (ω⊥t ,ω
>
t ) two orthonormal directions such that (ωt,ω

⊥
t ,ω

>
t ) forms an

orthonormal basis.

p

ωn

ωp

ωt

ω⊥t

ω>t
p1

p2

L
2R

Figure 1.5. The cylinder-light integral.

Integral We rewrite Equation (1.1) in the space of the light instead of
the sphere. With a cylinder parameterization (φ, l) for the cylinder surface
the integral is

Icyl =

∫ L

0

∫ 2π

0

D (ωp)
|−ωp · ωn|
‖p‖2

Rdφdl. (1.2)

With this parametrization, a point (φ, l) on the cylinder surface has a
normal

ωn(φ, l) = cosφω⊥t + sinφω>t , (1.3)

3D coordinates

p(φ, l) = p1 + lωt +Rωn(φ), (1.4)

and the normalized direction towards this point is

ωp(φ, l) =
p

‖p‖
. (1.5)
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6 1. Linear-Light Shading with Linearly Transformed Cosines

Implementation We provide the shader code for integrating the distri-
bution over a cylinder in Listing 1.2.

float I_cylinder_numerical(vec3 p1 , vec3 p2, float R)
{

// init orthonormal basis
float L = length(p2 - p1);
vec3 wt = normalize(p2 - p1);
vec3 wt1 , wt2;
buildOrthonormalBasis(wt, wt1 , wt2);

// integral discretization
float I = 0.0;
const int nSamplesphi = 20;
const int nSamplesl = 100;
for (int i = 0; i < nSamplesphi; ++i)
for (int j = 0; j < nSamplesl; ++j)
{

// normal
float phi = 2.0 * PI * float(i)/float(nSamplesphi);
vec3 wn = cos(phi)*wt1 + sin(phi)*wt2;

// position
float l = L * float(j)/float(nSamplesl - 1);
vec3 p = p1 + l*wt + R*wn;

// normalized direction
vec3 wp = normalize(p);

// integrate
I += D(wp) * max(0.0, dot(-wp, wn)) / dot(p, p);

}

I *= 2.0 * PI * R * L / float(nSamplesphi*nSamplesl);
return I;

}

Listing 1.2. Numerical integration for the cylinder.

The helper function buildOrthonormalBasis(in vec3 n, out vec3

b1, out vec3 b2) takes a normalized direction as input and computes
two orthonormal directions. We use the code snippet from [Frisvad 12].

// code from [Frisvad2012]
void buildOrthonormalBasis(
in vec3 n, out vec3 b1 , out vec3 b2)
{

if (n.z < -0.9999999)
{

b1 = vec3( 0.0, -1.0, 0.0);
b2 = vec3(-1.0, 0.0, 0.0);
return;

}
float a = 1.0 / (1.0 + n.z);
float b = -n.x*n.y*a;
b1 = vec3 (1.0 - n.x*n.x*a, b, -n.x);
b2 = vec3(b, 1.0 - n.y*n.y*a, -n.y);

}

Listing 1.3. Code for Building an Orthonormal Basis from a 3D Unit Vector.
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1.2. The Linear-Light Shading Model 7

1.2.4 The Linear-Light Integral

Configuration If the radius of the cylinder is zero (R = 0), we obtain a
line segment defined by its end points p1 and p2, as shown in Figure 1.6.
Here, L = ‖p2 − p1‖ is the length of the line segment and ωt = p2−p1

‖p2−p1‖
is

the tangent direction of the line.

p1

p2

ωt

p

ωp

L

Figure 1.6. The linear-light integral.

Integral We rewrite Equation (1.1) in the space of the light instead of the
sphere. With a 1D parameterization of variable l for the line, the integral
is

Iline =

∫ L

0

D (ωp)
2 ‖ωp × ωt‖
‖p‖2

dl. (1.6)

We set the origin of the parameterization to p1, and it increases in the
direction ωt, such that at abscissa l on the line, the 3D coordinates of the
point are

p(l) = p1 + lωt, (1.7)

and the normalized direction towards this point is

ωp(φ, l) =
p

‖p‖
. (1.8)
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8 1. Linear-Light Shading with Linearly Transformed Cosines

Implementation We provide the shader code for integrating the distri-
bution over a line segment in Listing 1.4.

float I_line_numerical(vec3 p1 , vec3 p2)
{

float L = length(p2 - p1);
vec3 wt = normalize(p2 - p1);

// integral discretization
float I = 0.0;
const int nSamples = 100;
for (int i = 0; i < nSamples; ++i)
{

// position
vec3 p = p1 + L * float(i)/float(nSamples - 1) * wt;

// normalized direction
vec3 wp = normalize(p);

// integrate
I += 2.0 * D(wp) * length(cross(wp, wt)) / dot(p, p);

}

I *= L / float(nSamples);
return I;

}

Listing 1.4. Numerical integration for the line.

1.2.5 Approximating the Cylinder-Light Integral by the Linear-
Light Integral

As illustrated in Figure 1.7, for any continuous distribution D and a cylin-
der of radius R, the integral over the cylinder of Equation (1.2) converges
towards the line segment integral of Equation (1.6) as R goes to zero:

lim
R→0

Icyl(R)

R
= Iline. (1.9)

lim
R→0

1

R

cylinder
of radius R

=

line

Figure 1.7. The linear-light integral is the limit of the cylinder-light integral
when its radius tends towards zero.
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1.2. The Linear-Light Shading Model 9

Approximation If the radius R is small enough, we can use the line
integral as an accurate approximation for the cylinder integral:

Icyl(R) ≈ RIline. (1.10)

In cases where the radius is too large, the approximation can be inaccurate
and produce overly high values (for instance if D is a specular material and
if the linear light overlaps with the specular peak). In order to avoid this,
we use the property that Icyl cannot be greater than the integral of D over
the sphere:

Icyl ≤
∫

Ω

D(ω) dω. (1.11)

This property is intuitive: Icyl represents the integral of D over the spher-
ical domain covered by the cylinder, so it can only be smaller than the
integral of D over the entire sphere. Hence, we can prevent the approxima-
tion from overshooting by clamping it to

∫
Ω
D(ω) dω. In practice, we use

distributions D that are normalized, so we clamp the approximation to 1.

Implementation We provide the shader code for approximating the re-
sult of I cylinder (from Listing 1.2) in Listing 1.5.

float I_cylinder_approx(vec3 p1, float p2 , float R)
{

return min(1.0, R * I_line(p1 , p2));
}

Listing 1.5. Approximation of the cylinder-light integral by the linear-light
integral.

Results of the Approximation In Figure 1.8, we compare the results
obtained by the cylinder-light integral and the linear-light integral approx-
imation with a GGX BRDF. We can see that the approximation is most
accurate with:

• cylinders of small radius,

• cylinders far from the shading point, or

• low-frequency (large roughness parameter α) materials.

In summary, the approximation works well when the width of the solid
angle covered by the cylinder is small compared to the variation of the
distribution. However, the approximation typically cannot be used with
specular materials and very large/close cylindrical light sources.
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10 1. Linear-Light Shading with Linearly Transformed Cosines

cylinder line

GGX α = 0.10

cylinder line

GGX α = 0.20

cylinder line

GGX α = 0.50

Figure 1.8. Results of the approximation with a GGX BRDF.
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1.3. Line-Integral of a Diffuse Material 11

1.3 Line-Integral of a Diffuse Material

In this section, we show how to integrate a line against a diffuse BRDF, i.e.,
with D(ω) = 1

π max(0,ω · z). In this case, the integral of Equation (1.6)
is also called the irradiance Iline = E[L] of the line L.

L

Figure 1.9. The diffuse-line integral (or the irradiance of the line).

Clamping the Line Below the Horizon The first step is to ensure
that the parts of the light contributing to the diffuse integral are limited
to the upper hemisphere (z ≥ 0). To achieve this, we start by clamping
the line to the upper part of the hemisphere. If one of the vertices is below
the horizon—i.e., its z component is less than zero—we replace it with the
intersection of the line with the plane z = 0, as illustrated in Figure 1.10.

p1

p2

p′1

z = 0

Figure 1.10. Clamping the linear light below the horizon.
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12 1. Linear-Light Shading with Linearly Transformed Cosines

Parameterization of the Line In order to compute the diffuse-line
integral, we need a 1D parameterization for the linear light. Our parame-
terization is shown in Figure 1.11 and explained below.

p2 l2

p1
l1

po 0

ωt

d

Figure 1.11. Line-integral parameterization.

The abscissas of the end points of the linear light are

l1 = p1 · ωt, (1.12)

l2 = p2 · ωt. (1.13)

The 0 abscissa is the orthonormal projection of the shading point onto the
line, denoted po (it is not a problem if po is outside segment [p1,p2]). The
distance between the line and the shading point is the norm of this point:

po = p1 − l1 ωt, (1.14)

d = ‖po‖. (1.15)

To simplify the line integral, we parameterize the points on the line relative
to po, with an abscissa l

p(l) = po + lωt. (1.16)

Integration of the Line We rewrite Equation (1.6) using the new pa-
rameterization. The terms in the integrand become

‖p(l)‖ =
√
d2 + l2, (1.17)

‖ωp(l)× ωt‖ =
d√

d2 + l2
, (1.18)

D (ωp(l)) =
1

π

(po + lωt)√
d2 + l2

· z, (1.19)
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1.3. Line-Integral of a Diffuse Material 13

and the integral becomes

Iline =
2 d

π

∫ l2

l1

(po + lωt) · z
(d2 + l2)2

dl, (1.20)

which has the analytic closed form:

Iline =
1

π

{[
Fpo

(l2)− Fpo
(l1)
]
po + [Fωt

(l2)− Fωt
(l1)] ωt

}
· z, (1.21)

with

Fpo
(l) =

l

d(d2 + l2)
+

1

d2
atan

(
l

d

)
, (1.22)

Fωt(l) =
l2

d(d2 + l2)
. (1.23)

Implementation We provide the shader code for clamping, parameteriz-
ing and integrating the linear light against the diffuse BRDF in Listing 1.6.

float Fpo(float d, float l)
{

return l/(d*(d*d + l*l)) + atan(l/d)/(d*d);
}

float Fwt(float d, float l)
{

return l*l/(d*(d*d + l*l));
}

float I_diffuse_line(vec3 p1, vec3 p2)
{

// tangent
vec3 wt = normalize(p2 - p1);

// clamping
if (p1.z <= 0.0 && p2.z <= 0.0) return 0.0;
if (p1.z < 0.0) p1 = (+p1*p2.z - p2*p1.z) / (+p2.z - p1.z);
if (p2.z < 0.0) p2 = (-p1*p2.z + p2*p1.z) / (-p2.z + p1.z);

// parameterization
float l1 = dot(p1, wt);
float l2 = dot(p2, wt);

// shading point orthonormal projection on the line
vec3 po = p1 - l1*wt;

// distance to line
float d = length(po);

// integral
float I = (Fpo(d, l2) - Fpo(d, l1)) * po.z +

(Fwt(d, l2) - Fwt(d, l1)) * wt.z;
return I / PI;

}

Listing 1.6. Analytic line-diffuse integration.
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14 1. Linear-Light Shading with Linearly Transformed Cosines

1.4 Line-Integral of a Glossy Material with LTCs

1.4.1 Linearly Transformed Cosines (LTCs)

Linearly Transformed Cosines are the distributions obtained by applying a
linear transformation, represented by a 3 × 3 matrix M , to the direction
vectors associated with a clamped cosine distribution denoted Do. Fig. 1.12
shows how the choice of M affects the properties of the distribution. The
matrix M provides control over roughness (b), anisotropy (c) and skewness
(d) of the transformed distribution. The effect of the linear transformation
can be seen on the lines and the red cube.

a) original (D = Do) b) roughness

M =

1 0 0
0 1 0
0 0 1

 M =

0.3 0 0
0 0.3 0
0 0 1


c) elliptic anisotropy d) skewness

M =

0.8 0 0
0 0.2 0
0 0 1

 M =

1 0 0
0 1 0
1 0 1


Figure 1.12. The parameterization of Linearly Transformed Cosines (LTCs).
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1.4. Line-Integral of a Glossy Material with LTCs 15

Closed-Form Expression The magnitude of an LTC is the magnitude
of the original distribution Do in the original direction ωo multiplied by
the change of solid angle measure due to the distortion of the spherical
transformation. It has the closed-form expression:

D(ω) = Do

(
M−1 ω

‖M−1 ω‖

)
|M−1|
‖M−1ω‖3

. (1.24)

Note that this closed form is never used at runtime in the shader. It is
only used to fit physically based materials with LTCs in an offline precom-
putation. In our shader, we approximate a GGX BRDF with LTCs whose
parameters are stored in a look-up table that we access at runtime. The
look-up table is the same as in [Heitz et al. 16].

1.4.2 LTC-Polygon Integral Invariance

LTCs are invariant to linear transformations, i.e., if a linear transformation
is applied to both the polygon and the distribution, the value of the integral
remains the same:∫

P

D (ωp)
|−ωp · ωn|
‖p‖2

dp =

∫
Po

Do (ωp)
|−ωp · ωn|
‖p‖2

dp

= E[Po]. (1.25)

Thanks to this invariance, an LTC can be integrated over a polygon by
multiplying the (vertices of the) polygon by the inverse linear transforma-
tion Po = M−1 P and computing the irradiance E[Po] of this new polygon,
as shown in Figure 1.13.

P

D

=

Po =

M−1 P

Do

Figure 1.13. Invariance of the polygonal integration. The configuration on the
right is the left configuration multiplied by matrix M−1.
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16 1. Linear-Light Shading with Linearly Transformed Cosines

1.4.3 LTC-Line Integral Invariance

The invariance for linear lights is similar to the invariance for polygons
given by Equation (1.25). If a linear transformation is applied to both the
line segment and the distribution, then the value of the integral remains
the same:∫

L

D (ωp)
2 ‖ωp × ωt‖
‖p‖2

dp =
1

‖MT ω⊥‖

∫
Lo

Do (ωp)
2 ‖ωp × ωt‖
‖p‖2

dp

=
1

‖MT ω⊥‖
E[Lo] (1.26)

except for the additional width factor 1
‖MT ω⊥‖ . Thanks to this invariance,

an LTC can be integrated over a line segment by multiplying the (vertices
of the) line segment by the inverse linear transformation Lo = M−1 L,
computing the irradiance E[Lo] of this new line segment using the method
presented in Section 1.3, and multiplying the result by the width factor.

p1

p2

ω⊥

D

=

M−1 p1

M−1 p2

M−1 ω⊥

ω⊥o

Do

Figure 1.14. Invariance of the linear integration. The configuration on the right
is the left configuration multiplied by matrix M−1.



i
i

i
i

i
i

i
i

1.4. Line-Integral of a Glossy Material with LTCs 17

Proof of the Line-Integral Invariance We can see in Figure 1.14 that
the infinitely small width of a linear light is defined by vector ω⊥ = p1×p2

‖p1×p2‖
.

After the linear transformation, this vector can be scaled and/or no longer
orthonormal. The actual orthonormal vector—illustrated in red in the
figure—is defined by

ω⊥o =
(M−1(p1 − p2))×M−1p1

‖(M−1(p1 − p2))×M−1p1‖

=
MT [(p1 − p2)× p1]

‖MT [(p1 − p2)× p1]‖

=
MTω⊥

‖MTω⊥‖
, (1.27)

and is different from the transformed orthonormal vector M−1 ω⊥ . The
transformation of this vector (its length and orientation) affects the evalu-
ation of the linear light proportional to the width factor 1

‖MT ω⊥‖ . Indeed,

the effective width after the transformation is the dot product between the
transformed orthonormal vector and the actual orthonormal vector:

ω⊥o · (M−1ω⊥) =
1

‖MTω⊥‖
(MTω⊥) · (M−1ω⊥)

=
1

‖MTω⊥‖
(M−T MTω⊥) · ω⊥

=
1

‖MTω⊥‖
, (1.28)

which is the expression of the width factor in Equation (1.26).

Implementation We provide the analytic LTC-line integral shader code
in Listing 1.7. Note that, in practice, recovering the matrix M by inverting
M−1 can be done in an optimized way, because the matrix is sparse (see
demo and previous publication).

float I_ltc_line(vec3 p1, vec3 p2)
{

// transform to diffuse configuration
vec3 p1o = Minv * p1;
vec3 p2o = Minv * p2;
float I_diffuse = I_diffuse_line(p1o , p2o);

// width factor
vec3 ortho = normalize(cross(p1 , p2));
float w = 1.0 / length(inverse(transpose(Minv)) * ortho);

return w * I_diffuse;
}

Listing 1.7. Analytic line-LTC integration.
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18 1. Linear-Light Shading with Linearly Transformed Cosines

1.5 Adding the End Caps

1.5.1 End Caps

So far, we have been using a line segment to approximate a cylindrical
emitter. However, our line is only an approximation of the length of the
cylinder, so it doesn’t account for emission from the end caps of the cylin-
der. The shading with and without them is shown in Figure 1.15. We can
see that a black spot shows up when the ends are not emitting.

cylinder without caps line without caps

GGX α = 1.00

cylinder with caps line with caps

GGX α = 1.00

Figure 1.15. Test of the approximation with a GGX BRDF.
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1.5. Adding the End Caps 19

1.5.2 Integrating the End Caps

In order to remain consistent with the line-segment approximation of the
cylinder’s length, we approximate the two caps with infinitely small one-
sided disks located at p1 and p2 and with normals −ωt and ωt, respectively.

Numerical Integration The contribution of the disk located at p1 is

Idisk1 =

∫ R

0

∫ 2π

0

D (ωp)
|ωp · ωt|
‖p‖2

r dφ dr, (1.29)

where we use a polar parameterization (φ, r) for the disk surface. With
this parametrization, a point (φ, r) on the disk surface has 3D coordinates
p and normalized direction ωp

p(φ, r) = p1 + r cosφω⊥t + r sinφω>t , (1.30)

ωp(φ, r) =
p

‖p‖
. (1.31)

Implementation In Listing 1.8, we provide the numerical integration
shader code for Equation (1.29).

float I_disks_numerical(vec3 p1, vec3 p2, float R)
{

// init orthonormal basis
float L = length(p2 - p1);
vec3 wt = normalize(p2 - p1);
vec3 wt1 , wt2;
buildOrthonormalBasis(wt, wt1 , wt2);

// integration
float Idisks = 0.0;
const int nSamplesphi = 20;
const int nSamplesr = 200;
for (int i = 0; i < nSamplesphi; ++i)
for (int j = 0; j < nSamplesr; ++j)
{

float phi = 2.0 * PI * float(i)/float(nSamplesphi);
float r = R * float(j)/float(nSamplesr - 1);
vec3 p, wp;

p = p1 + r * (cos(phi)*wt1 + sin(phi)*wt2);
wp = normalize(p);
Idisks += r * D(wp) * max(0.0, dot(wp, +wt)) / dot(p, p);

p = p2 + r * (cos(phi)*wt1 + sin(phi)*wt2);
wp = normalize(p);
Idisks += r * D(wp) * max(0.0, dot(wp, -wt)) / dot(p, p);

}

Idisks *= 2.0 * PI * R / float(nSamplesr*nSamplesphi);
return Idisks;

}

Listing 1.8. Evaluating the end caps.
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1.5.3 Approximating the End Caps with Point Lights

As the radius of the cylinder tends towards zero, the end caps converge
towards disk-like point lights. The integral of Equation (1.29) converges
towards

lim
R→0

Idisk1

π R2
= D(ωp1

)
max(0,ωp1

· ωt)
‖p1‖2

. (1.32)

Hence, if the radius is small enough, the integral can be approximated by

Idisk1 ≈ π R2D(ωp1
)

max(0,ωp1
· ωt)

‖p1‖2
. (1.33)

Similarly, we approximate the integral of the second end by

Idisk2 ≈ π R2D
(
ωp2

) max(0,−ωt · ωp2
)

‖p2‖2
. (1.34)

Implementation In Listing 1.9, we provide the analytic approximation
of Equations (1.33) and (1.34).

float I_ltc_disks(vec3 p1 , vec3 p2, float R)
{

float A = PI * R * R;
vec3 wt = normalize(p2 - p1);
vec3 wp1 = normalize(p1);
vec3 wp2 = normalize(p2);
float Idisks = A * (
D(wp1) * max(0.0, dot(+wt, wp1)) / dot(p1 , p1) +
D(wp2) * max(0.0, dot(-wt, wp2)) / dot(p2 , p2));
return Idisks;

}

Listing 1.9. Evaluating the end disks.

For this we need the evaluation of D for an LTC, which is provided in
Equation (1.24) and implemented in Listing 1.10.

mat3 Minv;
float D(vec3 w)
{

vec3 wo = Minv * w;
float lo = length(wo);
float res = 1.0/PI * max(0.0, wo.z/lo) * abs(determinant(Minv)) / ←↩

(lo*lo*lo);
return res;

}

Listing 1.10. LTC Evaluation.
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Summing the Contributions In order to account for the contribution
of the caps, we simply add Idisk1 + Idisk2 to Iline of Equation (1.6), and we
clamp the sum to 1 as explained in Section 1.2.5.

1.5.4 Discussion

In practice, we found out that the caps approximation is less robust and
useful than expected. Figure 1.16 shows that

• The approximation can result in visually disturbing artifacts: the
reflection of the cylinder on the left exhibits a strange bulb at one
end due to the cap approximation.

• Adding the caps is not always worth the cost, nor the risk of having
artifacts. The two reflections in the middle (with and without caps)
have similar reflection. In Figure 1.15, we can see that the absence
of caps leaves black holes that are less visible with the line integral
than with the cylinder integral anyway.

Hence, we recommend shading without the caps by default and adding
them only for specific needs.

line with caps line without caps

GGX α = 0.10

Figure 1.16. The caps approximation is not always worth it and can result in
visually disturbing artifacts.
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1.6 Rectangle-Like Linear Lights

Linear lights can also be used to model thin rectangular lights. In this case,
the linear light parameters remain the same, with the addition of ωn, the
normal of the rectangle (Figure 1.17).

cylinder
of diameter 2R

p1

p2 rectangle
of width 2R

ωn

p1

p2

Figure 1.17. A linear light can also be used as an approximation for thin rect-
angular lights.

The line integral for the rectangle is the line integral for the cylinder of
Equation (1.6) adjusted by the orientation of the line with respect to the
shading point

IlineRectangle = |ω⊥ · ωn| IlineCylinder, (1.35)

where ω⊥ = p1×p2

‖p1×p2‖
is the orthonormal vector introduced in Figure 1.14.

Implementation We provide the analytic LTC-line integral shader code
for rectangular lines in Listing 1.11.

float I_ltc_line_rectangle(vec3 p1 , vec3 p2, vec3 wn)
{

vec3 wortho = normalize(cross(p1, p2));
float I = abs(dot(wortho , wn)) * I_ltc_line(p1, p2);
return I;

}

Listing 1.11. Analytic line-LTC integration for a rectangular line.

Test of the Approximation In Figure 1.18, we compare the results ob-
tained by the rectangle-light integral and the linear-light integral approx-
imation with a GGX BRDF. The approximation has the same properties
as the cylinder light.
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rectangle line

GGX α = 0.10

rectangle line

GGX α = 0.20

rectangle line

GGX α = 0.50

Figure 1.18. Test of the rectangle-light approximation with a GGX BRDF.
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1.7 Performance

To assess the performance of our linear-light technique, we used the same
Sponza scene (including viewpoint) as the original article. Although this is
not a real production game environment, it is a suitable proxy in terms of
pixel-shader workload and divergence, on account of the range of materials
and surface orientations.

In our timings, using an NVIDIA Quadro M6000 GPU and a screen
resolution of 1920 × 1080 pixels2, the primary lighting pass took 0.42ms
for a linear light without end caps, compared to 0.58ms for a quadrilateral
light. This demonstrates, as expected, that linear lights are cheaper to
evaluate than their polygonal counterparts, since only a single line integral
is involved.

1.8 Conclusion

We have presented an extension to our existing area-lighting framework to
support linear light sources, which can be used to model common real-world
lights such as fluorescent bulbs. As we have shown, this approximation
works well in many cases (with the exception of wide cylindrical lights or
highly specular materials) and is cheaper than a full polygonal area light
solution.
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