Université de Tours : UMR 7013 (60 rue du Plat d'Étain, 37020 Tours cedex 1 - France)
UO - Université d'Orléans : UMR 7013 (Château de la Source - Avenue du Parc Floral - BP 6749 - 45067 Orléans cedex 2 - France)
Abstract : We consider random walks perturbed at zero which behave like (possibly different) random walks with i.i.d. increments on each half lines and restarts at 0 whenever they cross that point. We show that the perturbed random walk, after being rescaled in a proper way, converges to a skew Brownian motion whose parameter is defined by renewal functions of the simple random walks and the transition probabilities from 0.
https://hal.archives-ouvertes.fr/hal-02155058
Contributor : Marc Peigné <>
Submitted on : Thursday, February 4, 2021 - 11:45:09 AM Last modification on : Tuesday, February 9, 2021 - 3:18:05 AM