M. I. Afzal, S. Delaunay, C. Paris, F. Borges, A. Revol-junelles et al., Identification of metabolic pathways involved in the biosynthesis of flavor compound 3-methylbutanal from leucine catabolism by Carnobacterium maltaromaticum LMA 28, Int J Food Microbiol, vol.157, pp.332-339, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00777662

M. I. Afzal, K. Boulahya, C. Paris, S. Delaunay, and C. Cailliez-grimal, Effect of oxygen on the biosynthesis of flavor compound 3-methylbutanal from leucine catabolism during batch culture in Carnobacterium maltaromaticum LMA 28, J Dairy Sci, vol.96, pp.352-359, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00822895

M. E. Arena, F. M. Saguir, M. De-nadra, and M. C. , Arginine, citrulline and ornithine metabolism by lactic acid bacteria from wine, Int J Food Microbiol, vol.52, pp.155-161, 1999.

E. Borch and G. Molin, The aerobic growth and product formation of Lactobacillus, Leuconostoc, Brochothrix, and Carnobacterium in batch cultures, Appl Microbiol Biotechnol, vol.30, pp.81-88, 1989.

A. Brillet-viel, M. Pilet, P. Courcoux, H. Prévost, and F. Leroi, Optimization of growth and bacteriocin activity of the food bioprotective Carnobacterium divergens V41 in an animal origin protein free medium, p.168, 2016.

A. Budin-verneuil, E. Maguin, Y. Auffray, S. D. Ehrlich, and V. Pichereau, An essential role for arginine catabolism in the acid tolerance of Lactococcus lactis MG1363, Lait, vol.84, pp.61-68, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00895518

C. Cailliez-grimal, H. C. Edima, A. Revol-junelles, and J. Millière, Short communication: Carnobacterium maltaromaticum: The only Carnobacterium species in French ripened soft cheeses as revealed by polymerase chain reaction detection, J Dairy Sci, vol.90, pp.1133-1138, 2007.

G. Corrieu, H. E. Spinnler, D. Picq, and Y. Jomier, Automated system to follow up and control the acidification activity of lactic acid starters, 1988.

P. Dalgaard, Quality and quality changes in fresh fish, 1995.

M. De-angelis and M. Gobbetti, Environmental stress responses in Lactobacillus: A review, vol.4, pp.106-122, 2004.

G. L. De-antoni, P. Pérez, A. Abraham, and M. C. Añón, Trehalose, a cryoprotectant for Lactobacillus bulgaricus, Cryobiology, vol.26, pp.149-153, 1989.

J. Deutscher, C. Francke, and P. W. Postma, How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria, Microbiol Mol Biol Rev, vol.70, pp.939-1031, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00164056

F. B. Dos-reis, V. M. De-souza, M. R. Thomaz, L. P. Fernandes, W. P. De-oliveira et al., Use of Carnobacterium maltaromaticum cultures and hydroalcoholic extract of Lippia sidoides Cham. against Listeria monocytogenes in fish model systems, Int J Food Microbiol, vol.146, pp.228-234, 2011.

F. Dumont, P. Marechal, and P. Gervais, Cell Size and Water Permeability as Determining Factors for Cell Viability after Freezing at Different Cooling Rates, Appl Environ Microbiol, vol.70, pp.268-272, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01668041

H. C. Edima, C. Cailliez-grimal, A. Revol-junelles, L. Tonti, M. Linder et al., A selective enumeration medium for Carnobacterium maltaromaticum, J Microbiol Methods, vol.68, pp.516-521, 2006.

H. C. Edima, C. Cailliez-grimal, A. Revol-junelles, E. Rondags, and J. Millière, Short communication: impact of pH and temperature on the acidifying activity of Carnobacterium maltaromaticum, J Dairy Sci, vol.91, pp.3806-3813, 2008.

M. Ellouze, M. Pichaud, C. Bonaiti, L. Coroller, O. Couvert et al., , 2008.

, Modelling pH evolution and lactic acid production in the growth medium of a lactic acid bacterium: Application to set a biological TTI, Int J Food Microbiol, vol.128, pp.101-107

F. Fonseca, C. Béal, and G. Corrieu, Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage, J of Dairy Res, vol.67, pp.83-90, 2000.

M. Garnier, S. Matamoros, D. Chevret, M. Pilet, F. Leroi et al., Adaptation to cold and proteomic responses of the psychrotrophic biopreservative Lactococcus piscium strain CNCM I-4031, Appl Environ Microbiol, vol.76, pp.8011-8018, 2010.

P. Graumann, T. M. Wendrich, M. H. Weber, K. Schröder, and M. A. Marahiel, A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures, Mol Microbiol, vol.25, pp.741-756, 1997.

G. Hansen, C. L. Johansen, G. Marten, J. Wilmes, L. Jespersen et al., Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations, Appl Microbiol Biotechnol, vol.100, pp.5965-5976, 2016.

A. Hochman, Programmed cell death in prokaryotes, Crit Rev Microbiol, vol.23, pp.207-214, 1997.

E. Hüfner and C. Hertel, Improvement of raw sausage fermentation by stressconditioning of the starter organism Lactobacillus sakei, Curr Microbiol, vol.57, pp.490-496, 2008.

W. N. Konings, J. S. Lolkema, H. Bolhuis, H. W. Van-veen, B. Poolman et al., The role of transport processes in survival of lactic acid bacteria, energy transduction and multidrug resistance, Antonie Van Leeuwenhoek, vol.71, pp.117-128, 1997.

S. J. Lee, J. , and S. W. , Time-temperature indicator, method for manufacturing the timetemperature indicator, quality guarantee system using the time-temperature indicator, and quality guarantee method using the quality guarantee system, pp.9476083-9476085, 2016.

J. J. Leisner, J. Tidemand, and L. M. Larsen, Catabolism of arginine by Carnobacterium spp. isolated from vacuum-packed sugar-salted fish, Curr Microbiol, vol.29, pp.95-99, 1994.

J. J. Leisner, B. G. Laursen, H. Prévost, D. Drider, and P. Dalgaard, Carnobacterium: positive and negative effects in the environment and in foods, FEMS Microbiol Rev, vol.31, pp.592-613, 2007.

G. L. Lorca and G. F. Valdez, A low-pH-inducible, stationary-phase acid tolerance response in Lactobacillus acidophilus CRL 639, Curr Microbiol, vol.42, pp.21-25, 2001.

A. Marceau, M. Zagorec, S. Chaillou, T. Mera, and M. Champomier-verges, Evidence for involvement of at least six proteins in adaptation of Lactobacillus sakei to cold temperatures and addition of NaCl, Appl Environ Microbiol, vol.70, pp.7260-7268, 2004.

R. E. Marquis, G. R. Bender, D. R. Murray, and A. Wong, Arginine deiminase system and bacterial adaptation to acid environments, Appl Environ Microbiol, vol.53, pp.198-200, 1987.

J. Membre, B. Leporq, M. Vialette, E. Mettler, L. Perrier et al., Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food, Int J Food Microbiol, vol.100, pp.179-186, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00294414

J. Panoff, S. Legrand, B. Thammavongs, and P. Boutibonnes, The cold shock response in Lactococcus lactis subsp. lactis, Curr Microbiol, vol.29, pp.213-216, 1994.

A. Pinon, M. Zwietering, L. Perrier, J. Membre, B. Leporq et al., Development and validation of experimental protocols for use of cardinal models for prediction of microorganism growth in food products, Appl Environ Microbiol, vol.70, pp.1081-1087, 2003.

A. Rahman, M. Gleinser, M. Lanhers, C. U. Riedel, B. Foligné et al., Adaptation of the lactic acid bacterium Carnobacterium maltaromaticum LMA 28 to the mammalian gastrointestinal tract: From survival in mice to interaction with human cells, Int Dairy J, vol.34, pp.93-99, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01273466

A. Rahman, S. M. El-kheir, A. Back, C. Mangavel, A. Revol-junelles et al., , 2016.

, Repeat-based bequence typing of Carnobacterium maltaromaticum, Int J Food Microbiol, vol.226, pp.1-4

A. Rault, M. Bouix, and C. Beal, Fermentation pH influences the physiological state dynamics of Lactobacillus bulgaricus CFL1 during pH-controlled culture, Appl Environ Microbiol, vol.75, pp.4374-4381, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01560803

U. Schillinger and W. H. Holzapfel, The genus Carnobacterium. In The Genera of Lactic Acid Bacteria, pp.307-326, 1995.

M. R. Stuart, L. S. Chou, and B. C. Weimer, Influence of carbohydrate starvation and arginine on culturability and amino acid utilization of Lactococcus lactis subsp. lactis, Appl Environ Microbiol, vol.65, p.9, 1999.

P. S. Taoukis and T. P. Labuza, Applicability of time-temperature indicators as shelf life monitors of food products, J Food Sci, vol.54, pp.783-788, 1989.

M. Van-de-guchte, P. Serror, C. Chervaux, T. Smokvina, S. D. Ehrlich et al., Stress responses in lactic acid bacteria, Lactic Acid Bacteria: Genetics, Metabolism, pp.187-216, 2002.

X. Varlet-grancher, Time temperature indicator (tti) system, p.20050722847, 2006.

H. Velly, F. Fonseca, S. Passot, A. Delacroix-buchet, and M. Bouix, Cell growth and resistance of Lactococcus lactis subsp. lactis TOMSC161 following freezing, drying and freezedried storage are differentially affected by fermentation conditions, J Appl Microbiol, vol.117, pp.729-740, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01194098

V. K. Walker, G. R. Palmer, and G. Voordouw, Freeze-thaw tolerance and clues to the winter survival of a soil community, Appl Environ Microbiol, vol.72, pp.1784-1792, 2006.

J. A. Wouters, F. M. Rombouts, W. M. Vos, . De, O. P. Kuipers et al., Cold shock proteins and low-temperature response of Streptococcus thermophilus CNRZ302, Appl Environ Microbiol, vol.65, pp.4436-4442, 1999.

J. A. Wouters, H. H. Kamphuis, J. Hugenholtz, O. P. Kuipers, W. M. De-vos et al., Changes in glycolytic activity of Lactococcus lactis induced by low temperature, Appl Environ Microbiol, vol.66, pp.3686-3691, 2000.

P. Zhang, M. Badoni, M. Gänzle, Y. , and X. , Growth of Carnobacterium spp. isolated from chilled vacuum-packaged meat under relevant acidic conditions, Int J Food Microbiol, vol.286, pp.120-127, 2018.