N

N
N

HAL

open science

On the elementary affine A-calculus with and without

type fixpoints
Lé Thanh Dung Nguyén

» To cite this version:

Lé Thanh Diing Nguyén. On the elementary affine A-calculus with and without type fixpoints. Elec-
tronic Proceedings in Theoretical Computer Science, 2019, Proceedings Third Joint Workshop on
Developments in Implicit Computational complExity and Foundational & Practical Aspects of Re-
source Analysis (DICE-FOPARA 2019), 298, pp.15-29. 10.4204/EPTCS.298.2 . hal-02153709

HAL Id: hal-02153709
https://hal.science/hal-02153709

Submitted on 12 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02153709
https://hal.archives-ouvertes.fr

On the elementary affine A-calculus
with and without type fixpoints

NGUYEN Lé Thanh Ding*
LIPN, Université Paris 13, Sorbonne Paris Cité, France

nltd@nguyentito.eu

The elementary affine A-calculus was introduced as a polyvalent setting for implicit computational
complexity, allowing for characterizations of polynomial time and hyperexponential time predicates.
But these results rely on type fixpoints (a.k.a. recursive types), and it was unknown whether this fea-
ture of the type system was really necessary. We give a positive answer by showing that without type
fixpoints, we get a characterization of regular languages instead of polynomial time. The proof uses
the semantic evaluation method. We also propose an aesthetic improvement on the characterization
of the function classes FP and k-FEXPTIME in the presence of recursive types.

1 Introduction

The elementary affine A-calculus Elementary Linear Logic (ELL), introduced by Girard [9], is a
logic that can be seen as a typed functional programming language through the proof-as-programs cor-
respondence. Its typing rules ensure that a function can be expressed if and only if it is elementary
recursive (as is expounded in detail in [7]]), hence the name. (This is an instance of the “type-theoretic”
or “Curry—Howard” approach to implicit computational complexity.) This was refined by Baillot [1]] into
a characterization of each level of the k.-EXPTIME hierarchy, in an affine variant of ELL.

A later improvement by Baillot, De Benedetti and Ronchi [2] consisted in turning this logic into
an actual type system for a functional calculus with good properties (e.g. subject reduction), called the
elementary affine A-calculus. In this paper, we shall call their system HEAA — the reason for the u will
soon become clear. The main result about it is:

Theorem 1.1 ([2]). The programs of type !Str —o **2Bool in UEAA decide exactly the languages in
the class k-EXPTIME. In particular !Str — !!Bool corresponds to polynomial time (P) predicates.

Here are some indications for the reader unfamiliar with linear or affine type systems:

e a program of type A — B uses its input of type A at most once to produce its output of type B;

e !A means roughly “as many A’s as you want”, so a function which uses its argument multiple times
can be given a type of the form !A —o B;

e in usual linear or affine logic, one can convert a !A into a A; however, in the elementary affine
A-calculus, there is a restriction which makes the exponential depth (number of ‘!’ modalities)
meaningful, one cannot perform such a depth-changing operation — this is why the depth k of the
output *Bool (i.e. !(...(!Bool)) with k *!") controls the complexity;

e the type of booleans is defined as Bool = V. o0 —o ¢&¢ —o @, and it has two inhabitants;

e Str =Va.Str[a], with Str[a] = !(a — a) — (o — o) —o (ot —), is the type of Church
encodings of binary strings: the string wy ...w, € {0,1}* is represented as the function which, for
any type A, takes as input fp : A — A and f; : A — A, and returns f,,, 0...0 f,, .

*Partially supported by the ANR project ELICA (ANR-14-CE25-0005).

© Nguyén L. T. D.
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
DICE-FOPARA 2019

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 On the elementary affine A -calculus with and without type fixpoints

Type fixpoints and Scott encodings We wish to draw attention to a particular feature of this language:
the presence of type ﬁxpoinmﬂ a.k.a. recursive types. An example is the type of Scott binary strings:

Strs:=Vo.(Strg — o) — (Strg—o) o ot — o

In the elementary affine A-calculus as defined in [2], this recursive equation can be turned into a valid
type definition, by using a fixed point operator ¢ on types (this explains our name HEAQ):

Strg:=up.vo.(f o) = (f—oa) oa—oa

The idea is that strings are represented by their “pattern-matching” function (destructor): if u is a Scott
binary string, then u fy f; x morally means “if u represents the empty word, return x; else, return f,
applied to v where ¢ € {0, 1} is the first letter and v represents the suffix”. Formally, we associate to each
string w € {0,1}* a uEAA-term S(w) of type Strg:

S(S) = lfo.lfl.lx.x S(O‘W’) = lfo.lf].)bx.fo S(W’) S(l -W/) = lfo.)tfl.lx.fl S(W/)

This encoding of strings has been used to give a characterization of function classes in HEAA:

Theorem 1.2 ([2]]). The programs of type 'Str — ¥*2Strg in UEAA compute exactly the functions in
the class k-FEXPTIME. In particular |Str —o !1Strg corresponds to FP.

Our contributions There are two natural questions concerning the necessity of type fixpoints:

o In the interface: it is possible to characterize this hierarchy of function classes using a function
type involving only Church encodings?

e In the implementation: the extensional completeness proof for the predicate classes (Theorem[I.1])
makes use of the type Stry (to represent configurations of Turing machines), even though this type
does not appear in the statement; could one avoid recursive types in the proof? This question has
been raised by Baillot in the conclusion of [[1]].

In this paper, we answer both questions. The first one has a positive answer:

Theorem 1.3. The programs of type 'Str — ¥F1Str in uUEAA compute exactly the functions in the
class k-FEXPTIME. In particular !Str —o Str corresponds to FP.

An advantage of this characterization is that it reflects the fact that composing a k-FEXPTIME func-
tion f with a [-FEXPTIME function g gives a (k + [)-FEXPTIME function: since any uEAA-term of
type A —o B lifts to a term of type YA —o 1¥B (this is called “functorial promotion”, cf. Proposition ,
we can compose the terms f : 1Str —o ¥t1Str and g : kt1str —o 1HD+kStr to obtain a term of type
IStr —o |k+D+1gtr In particular FP is closed under composition. A characterization of FP in uEAA by
a function type whose input and output types coincide was proposed in [2]], but it is less natural: a string
is represented as a pair of its length (Church-encoded) and its contents (Scott-encoded).

As for the second question, we should first mention that Girard’s original characterization of elemen-
tary recursive functions in ELL does not involve type fixpoints. This can be replayed in the elementary
affine A-calculus without type fixpoints, which we shall denote by EAA.

'A remark for the readers acquainted with typed A-calculi: there is no “positivity” constraint imposed, yet those recur-
sive types are harmless for the normalization property, as the untyped version of the elementary affine A-calculus is already
normalizing. The analogous property for ELL was already remarked in [9].

Nguyén L. T. D. 3

Theorem 1.4 ([1]). The class of elementary recursive functions is the union, over k € N, of the classes
of functions computed by programs of type !Str —o ¥Str in EAA.

(The detailed proof given in [1] is for Elementary Affine Logic; it can be directly transposed to EAA.)
However, the characterization of P by !Str —o !!Bool fails in EAA, as we show:

Theorem 1.5. The programs of type !Str —o !!Bool in EAA decide exactly the regular languages. This
is also the case for the EAA-terms of type Str —o !Bool.

This result is surprising for a few reasons: the class of languages obtained is unexpectedly small, and
it hints at connections between EAA and formal language theory (the conclusion will discuss this further).
The proof techniques for the above theorem are quite different from those used in [2]]: instead of bounding
the syntactic normalization process, we take inspiration from the tradition of implicit complexity in the
simply typed A-calculus (STA), in particular from:

Theorem 1.6 (Hillebrand & Kanellakis [14]]). In the simply typed A-calculus, the languages decided by
terms of type Strgt), [A] — Boolgyy — A is a simple type that may be chosen depending on the language
— are exactly the regular languages.

Here Strgry[A] = (A - A) - (A — A) — (A — A) and Boolgry = 0 — 0 — 0, where o is a base
type. This is proved using the semantic evaluation method (see [19] and references therein). To make
this method work in our case, we need a new result in denotational semantics:

Lemma 1.7. The second-order affine A-calculus AA2 — i.e. the subsystem of EAA without the exponen-
tial modality ‘\" — admits a non-trivial finite semantics.

By “non-trivial” we mean distinguishing the two inhabitants of Bool = V. — o —o . The term
“second-order” refers to the (impredicative) polymorphism supported by both tEAA and EAA — indeed,
the types Bool, Str and Strg all contain second-order quantifiers (V). The lemma means morally that
one cannot represent infinite data types in HEAA without using the exponential modality — whereas in
UEAA, the exponential-free type Strg encodes the infinite set {0, 1}*.

Thus, motivated by this question in implicit complexity, we set out to establish the above lemma, and
came up with two approaches:

e a “category-theoretic” solution consists in showing the finiteness of a pre-existing model based on
coherence spaces and normal functors; this is the subject of another paper [15];

e a “syntactic” solution, developed in a joint work with P. Pistone, T. Seiller and L. Tortora de Falco,
relies on a careful combinatorial study of second-order proof nets; it will be written up in an
upcoming paper.

The further development of these semantic tools has led to more results on EAA and/or on Elementary
Linear Logic without type fixpoints, which are beyond the scope of the present paper. This includes an
already published joint work with P. Pradic [16]] on logarithmic space.

Plan of the paper We recall from [2] the definitions of EAA and uEAA in Section 2} and then quickly
prove Theorem in Section (3| The bulk of the paper is Section 4] dedicated to proving Theorem
The conclusion (Section [5)) discusses the above-mentioned new perspectives on EAA opened up by our
results and by refinements of Lemmaf|l.7/

Acknowledgments This work owes a great deal to Thomas Seiller’s supervision. Thanks also to
Patrick Baillot, Alexis Ghyselen, Damiano Mazza (an extremely fruitful discussion with Thomas and
him triggered this work) and Pierre Pradic.

4 On the elementary affine A -calculus with and without type fixpoints

2 The elementary affine A-calculus
The syntax of elementary affine A-terms and the reduction rules are given by
tousn=x|Ax.t | Alx.t|tul| 'l Ax.t)u —pgt{x:=u} (Alx.t)(lu) — t{x:=u}

where x is taken in a countable set of variables, and 7{x := u} refers to the substitution of all free occur-
rences of x in ¢ by u. The reduction rules —>5 and — are actually the contextual closure of the rules
given above, for the obvious notion of context (see [2] for details).

We shall also write 1et !x <— u in ¢ for (A!x.7)u (this is just some “syntactic sugar”). The notion of
depth of a subterm in a term, defined as the number of exponential modalities !(—) (“exponentials” for
short) surrounding the subterm, will play an important role.

As an example, let us formally define the Church-encoded binary strings:

forw=wi...w, € {0,1}*, w=Afo. A fi. ! (Ax. fiu, (.. (fiw, X)-..))

The above is essentially Simpson’s linear A-calculus with thunks [18]. (Other examples of linear
A-calculi with explicit exponentials are given in [12].) We shall now turn this untyped calculus into EAA
by endowing it with its type system — an adaptation of Coppola et al.’s Elementary Type Assignment
System [8]. The grammar of types for EAA is

Az=o|S Si=0—o1|Va.S o,t:=A|lo

The two first classes of types are called respectively linear and strictly linear. (We follow the terminology
of [2]; “linear” does not mean exponential-free, it merely means that the head connective is not an
exponential.) The reason for restricting quantification to strictly linear types is a technical subtlety related
to subject reduction (see [8, §7.2]).

The typing judgements involve a context split into three parts: they are of the form ' | A |®F¢: ©.
The idea is that the partial assignements I', A and ® of variables to types correspond respectively to
linear, non-linear and “temporary” variables; accordingly, I maps variables to linear types (denoted A
above), A maps variables to types of the form !c, while ® maps variables to arbitrary types. The domains
of ', A and O are required to be pairwise disjoint. The derivation rules for EAA are:

variable rules

Fx:A|A|OFx:A 'A|®,x:0kx:0

[x:A|A|@F1:7T 'Ax:!lo|®Ft:7
F'|A|®OFAxt:A—7 'A|®OFAlx.t:loc—7
[|A|®Ft:0—o1 T'|A|OFu:0

abstraction rules

. i)
application rul rer ’ A ‘ OFtu:t
I'A|®F¢:S I'A|®OFt:Va.S
quantifier rule 4] 2

'A|®OFr:Va.S F'A|OF7:S{a:=A}

g|o|OFt:0

functorial promotion rule
! P ! T[10,A[@F: 10

2I'wI” means DU with the assumption that the domains of I" and I” are disjoint.
3In the introduction rule (left), & must not appear as a free variable in I, A and ©.

Nguyén L. T. D. 5

In these rules, following the conventions established above, A stands for a linear type, S stands for a
strictly linear type and ¢ and 7 stand for arbitrary types. In particular, in the quantifier elimination rule,
o can only be instantiated by a linear type. So, for instance, one cannot give the type ! — ! to Ax.x
through a quantifier introduction followed by a quantifier elimination; indeed, as one would expect, the
only normal term of this type is A !x. !x. (Despite this, the polymorphism is still impredicative.)

Coming back to the example of Church binary strings, one can show by induction that

forw=w;...w, €{0,1}", x:a|D|fo:o—oa,fi:a—oat fi, (...(fn,x)...): «

and deduce from this that - w : Str (recall that Str =Va. (@ — @) — (@ — @) — !(a — @)).
The system HEAA is obtained by extending the grammar of types with S ::= ... | pa.S, and adding
new derivation rules for the type fixpoint operator pi:

L'A|®OF7:S{o:=ua.S}
T|A[OF7:pa.S

T|A|®OFf:pa.s

fold
e T[A[®F7:S{a = pa.s}

u-unfold

Let us recall two basic properties satisfied both by EAA and uEAA, all proved in [2].
Proposition 2.1 (Stratification and linearity [2, Lemma 27]). Let t be a typable term.

e for any subterm of the form A\x.u of t, all the occurrences of x must be at depth 1 in u;

e for any subterm Ax.u of t, there is at most one occurrence of x in u, whose depth must be 0 in u.
As a consequence, the reduction rules are depth-preserving.

Proposition 2.2 (k-fold functorial promotion [2, Proposition 28]). Let t: 0] — ... —0 0, —0 T is a
closed elementary affine A-term and k > 1. There is a term 1) . ko, —o ... %G, — %1 such that
1O (Fuy) ... (%u,) and ¥ (tuy ... u,) have the same normal form for all closed terms u; : ; (i € {1,...,n}).

3 The k-FEXPTIME hierarchy in tEAA (proof of Theorem 1.3)

First, the soundness part of Theorem [I.3|follows immediately from Theorem [[.2
Proposition 3.1. All functions represented by WEAM-terms of type |Str —o "*18tr are in k-FEXPTIME.

Proof. There exists a coercion !Str —o !>Strg (by completeness part of Theorem applied to the
identity function in FP) which lifts by functorial promotion (Proposition to +1str —o 25t rg.
So any function represented by a term of type !Str —o ¥*1Str is also represented by a term of type
IStr —o ¥28trg. Thus the soundness part of Theorem|[1.2]applies. O

For the extensional completeness, we also take Theorem [I.2] as our starting point. The idea is to
convert !Strg into Str with the help of an auxiliary integer which provides an upper bound on the length
of the string. (Similar ideas appear in [3]].)

We shall use the type of Church natural numbers and the usual second-order encoding of pairs:

Nat =Va.!(a —o o) — !l(a — o) oCRT=Va.(0—oT—o0Q)—oa

The aforementioned upper bound will be an inhabitant of the type Nat. An integer n € N is represented
in Nat by the iterator f — f" (formally, 7 = A1 f.!(Ax. f(...(fx)...)) with n times f).
To help readability we extend the syntax with the abbreviation

6 On the elementary affine A -calculus with and without type fixpoints

e uRv:=Af.fuvsothatu®v:o®tifu:candv:t

given in [2], and introduce some additional syntactic sugar:
o letx®y<«uint:=u(Ax.Ay.t)foru:o®@7, and A(x®y).t := Az.let xQy <z int
e caseu|Ox—al|ly—b|le—c:=u(Ax.a)(Ay.b)cforu: Strg

The affine projections m; = A (x; ®x2).x; (i € {1,2}) are also defined in [2]].

Remark 3.2. Our definition of A(x®y).¢ is much simpler that the one given in [2], but the drawback
is that it only works when the type of ¢ is linear, i.e. its head connective is not an exponential. Indeed,
u: 0 ® T can be instantiated to u : (0 — T —o A) —o A by the quantifier elimination rule only when A is
linear. This condition will hold in our use cases below.

Now that we are equipped with all these data types, we can make progress on our proof.

Lemma 3.3. There exists a WEAA-term cast : Nat —o !Strg —o Str which converts a Scott encoding
into a Church encoding, provided that the integer argument is greater or equal to the length of the string.

Proof. Our implementation of cast instantiates the input Nat on (ot — o) ® Strg where « is the eigen-
variable of the V in the output Str (recall that S(&) refers to the Scott encoding of the empty word):

cast =An. Aw. A1 fp. Al f1.let g« n!(A(h®u).t) in !(m (g ((Ax.x) @w)))

withr =let fQv <+ (caseu|Ov— fo@v|1lv fiv|e— (Az.2) ®@S(¢€)) in (Ax.h(fx))®@v

To explain this functional program, let us reformulate it as an imperative algorithm: ¢ can be considered
as the body of a for loop which alters two mutable variables 4 : (ot — &) and u : Strg. At each iteration,
if u is non-empty, its first letter is popped (viewing u as a mutable stack) and / is post-composed with
either fj or f1 depending on this letter.

After n iterations starting from 4 = (Ax.x) and u = w, if w is the Scott encoding of wj ...w,,, the
result obtained is (fi, ©...0 fiy) @ (S(WN+1...wim)) Where N = min(n,m). In particular, if n > m, the
first component will be f;,, o... o f,, — which corresponds to the definition of the Church encoding. [

To obtain the desired upper bound, we recall a lemma from [2]]. It is used in the proof of Theorem|[1.2]
in order to simulate Turing machines.

Lemma 3.4 ([2). Let # be a k-FEXPTIME Turing machine. There is a EAA-termt 4 : 1Str —o *T1Nat
computing an upper bound on the running time of .# on the given input string.

We now have all the ingredients for the extensional completeness proof.
Theorem 3.5. All k-FEXPTIME functions can be represented by WEAA-terms of type Str —o ¥ 18tr.
Proof. Consider any function computed by a k-FEXPTIME Turing machine .#. By the completeness

part of Theorem |1.2| we can choose a UEAA-term f : !Str —o ¥*+2Strg computing this function. We
also choose a term ¢, satisfying the conditions of the above lemma. Then the term

Atw.cast ™ (g tw) (f w) : 15t — I 'stT

— where cast®*1) is the (k4 1)-fold functorial promotion of cast — computes the same function as ..
Indeed, the assumption of Lemma [3.3]is satisfied, since for a Turing machine, the length of the output is
bounded by the running time. O

Nguyén L. T. D. 7

4 Regular languages in EAA (proof of Theorem [1.5)

In this section, we wish to show that, in EAA (without fixpoints):
e all terms ¢ : !Str —o !!Bool decide regular languages;
e moreover, all regular languages can be decided by terms 7 : Str —o !Bool.

By functorial promotion, the class of languages characterized by Str —o !Bool is included in the class
corresponding to !Str —o !!Bool, so this will entail that both are exactly the class of regular languages.
The situation is the opposite of the previous section: the second item (extensional completeness) is easy,
while the first (soundness) is hard.

Regular languages admit many well-known equivalent definitions, e.g. regular expressions and finite
automata (with many variants: non-determinism, bidirectionality, etc.). The classic characterization
which will prove useful for us is:

Theorem 4.1. A language is regular if and only if it can be expressed as ¢~ '(S), where ¢ : {0,1}* — M
is a monoid morphism, M is a finite monoid and S C M.

4.1 Extensional completeness
Proposition 4.2. All regular languages can be decided by EAA-terms of type Str —o !Bool.

Proof. Let ¢ : {0,1}* — M be a morphism to a finite monoid M. Without loss of generality, we may
assume that the underlying set of M is {1,...,k}, and the identity element of the monoid is 1. We
represent the monoid elements in EAA as inhabitants of the type M = Va. ¢ — ... — @; the element i
is mapped to the term m; = Axi. ... Axg.x;. We define:

® O = Am.mmgc).y .. M) - M—oMforc € {0,1}

o forSC M, ys=Am.mb ... by :M—o Bool where b; = true (resp. false)if i € S (resp. i ¢ S).
Then the language ¢! (S) is decided by the term Aw.let !d < w!8!8; in !(xs(dmy)). O

Next, to prepare the ground for our proof of soundness in EAA, we review our direct inspiration in
the simply typed A-calculus: the proof of one direction of Theorem The goal is to show that any
simply typed A-term 7 : Strgyy [A] — Boolgry, where A is an arbitrary simple type, decides a language

Zsta (t) which is regular. This was done using automata in [14]], but we find it simpler to work with
monoid morphisms (though this is, in the end, merely a different presentation of the same proof).

4.2 A short soundness proof for Hillebrand and Kanellakis’s theorem (sketch)

We shall omit the subscripts in the types Strgyy [A] and Boolgr, in this subsection.
Let us fix a simple type A. The fundamental idea is that, given any denotational semantics [—]:

e the denotation [w] € [Str[A]] of the encoding of w € {0, 1}* is enough to determine [t w] € [Bool]
— this is simply the compositionality of the semantics;

e provided the semantics is non-trivial, i.e. [true] # [false], this subsequently determines ¢ w.
Formally, let us define @4 : {0,1}* — [Str[A]] by @a(w) = [W]; then if [—] is non-trivial,
Zsa (1) = 95 ({o € [str[A]] | [1] (@) = [true]})

To show that Zst) (¢) is regular, we shall apply Theorem to this equation. We must make sure that:

8 On the elementary affine A -calculus with and without type fixpoints

e [Str[A]] can be endowed with a monoid structure, in such a way that ¢ is a monoid morphism —
this is caused by the use of Church encodings;

e [Str[A]] is finite — thanks to the existence of a finite semantics for the simply typed A-calculus.

Our choice of semantics, to satisfy both conditions, is the usual interpretation of types by mere sets
(called the “full type frame” in [14]): [A — B] = [B] A1 with [o] = {0, 1} for the base type. Any choice
for Jo] with at least two elements makes the semantics non-trivial. Furthermore, since [o] is finite, the
denotations of all types are also finite.

Finally, in order to define a monoid structure on [Str[A]], observe that

) [A—A]

[strla]) = (4 —A]")" = End([a])™ (D"

where End([A]) is the monoid of maps from [A] to itself, endowed with function composition. Thus,
the right-hand side can be seen as a product of monoids. Proving that ¢ is a morphism can then be done
componentwise; the condition to be checked can be expressed as:

Y(fo, f1) € End([A])?, (w— [W] (fo,f1)) is a morphism {0, 1}* — End([A])

By definition, w = A fo. A f1. Ax. fiy, (... (fw, X)...) (Where w =wy...w;) so

V(fo, f1) € End([A])?, [W] (fo /1) = fw, ©---0 fu,

therefore @ is none other than the product, over all (fy,f1) € End([A])?, of the monoid morphisms
{0,1}* — End([A]) defined by ¢ — f. for ¢ € {0,1}.

Remark 4.3. This reasoning can be made to work with any finite semantics of STA, not just sets.
An interesting choice is the “linearized Scott model’ﬂ as remarked by Terui [19], in that semantics,
the points in the denotation of a Church-encoded word correspond to nondeterministic finite automata
accepting that word. This idea is also at the heart of Grellois and Mellies’s semantic approach to higher-
order model checking [11} [10].

4.3 Soundness for regular languages in EAA

Our goal is now to emulate the above proof to show that the EAA-terms of type !Str —o !!Bool decide
regular languages. (The result for Str —o !Bool then follows by functorial promotion.) While the core
of the semantic evaluation argument is similar, we need to do some syntactic analysis first before coming
to this point.

4.3.1 Some lemmas and a truncation operation

Our proof relies on some general properties of EAA. The two following ones were established in [2]].

Proposition 4.4 (Reading property for booleans [2, Lemma 31(i)]). The only closed inhabitants of the
type !'Bool are !!true and !!false. (true = Ax.Ay.x and false = Ax.Ay.y)

Proposition 4.5 (!-inversion [2, Lemma 29(1)]). If @ |A| @ &1 : !0, then t = !t for some term t'.

4This model is obtained from a semantics of linear logic as its exponential co-Kleisli category, i.e. via the translation
A — B := A —o B. The resulting category embeds fully and faithfully into the usual category of Scott domains and continuous
functions, hence the name. See [[19] for a short self-contained definition.

Nguyén L. T. D. 9

We will also make use of a truncation operation on EAA-terms. (To our knowledge, it has not
appeared previously in the literature.) Its purpose is to erase all exponentials. This will be how the
stratification property of EAA (cf. Proposition comes into play.

Definition 4.6. The truncation at depth 0 || — ||o is defined inductively on terms as:
'ello = (Ax.x) [[(Ax.1)llo = Ax.[leflo [|Ax-tllo = Ax-[lello [leullo = llello[lullo lxllo = x
and on types as (using the abbreviatiorﬂ 1=Va.a — a):
ltollo=1 llo—tllo=llcllo—<lzllo [lallo=a [va olo="a |l

Proposition 4.7. If a typing judgment T | A| & &t : ¢ is derivable in EAA, then, writing ||T||o for
X1 1Tlfoy - -y xn t [Tallo F T =212 T1y. ooy X0 Ty, the judgment ||Ul|o | @ | @ ||t]o : ||o]lo is derivable.
In particular, if t : © is a closed term, then ||t||o : || ||o

Proof. By a mostly straightforward induction on the type derivation. Even so, let us treat a case involving
a small subtlety: when the derivation ends with a quantifier elimination. In that case, the induction
hypothesis gives us the typing judgment ||I|lo | @ | @ F ||t]jo : V. ||S||o, and from this we must derive
ITlo | @ | @ F1:||S{a := o}|lo. What the same instantiation rule can give us from our premise is
ITllo| @ | @tt:|Slo{c:=]|lc]lo} Oneis therefore led to hope that ||S||o{ct :=||c]lo} = ||S{a := c}||o-
Indeed, this can be checked by distinguishing, for each occurrence of o in ¢, two possible cases: either
it is at depth 0 and remains in ||S||o, or at depth > 1 and is erased in ||S||o. O

Remark 4.8. The above proof is the reason why we do not generalize here our truncation operation to
a “truncation at depth k£ for k > 1, which would erase all exponentials of depth > k. Indeed, a typical
example for which the above reasoning would fail is the truncation at depth 1 of V. ! — « instantiated
with & := !7. So these higher depths truncations would need additional conditions to be well-behaved.

Proposition 4.9. For all k € N and all EAA-terms t,t', ift — t', then ||t||o —* ||t'||o (this also applies
to untyped terms which satisfy the stratification property, i.e. the conclusions of Proposition[2.1).

Proof. 1f the redex contracted in f to obtain ¢’ is at depth > 1, then one can prove that ||¢]|o = ||¢']|o-
Otherwise, by induction on the context of the redex, one can restrict to the case where ¢ = uv and the
application of u to v is the contracted redex. We proceed by case analysis:

o Ifu=Ax.u/, thent = u'{x:=v}. We use the fact that x appears only at depth zero in «’ (Proposi-
tion 2.1 to show that ||/ {x := v}|jo = ||u/[|o{x := |v||o}. The latter is a reduct of |[ul|o ||v|lo = |70

o Ifu=Ax.u, thenv="1 and ¢’ = u'{x:=V'}. Moreover, x appears only at depth 1 in ' (again
by Proposition [2.1)). Therefore, ||u||o does not contain x as a free variable; thus, [|'[jo = [|u||o is a
reduct of ||7]jo = (Ax. ||t/]|0) [|v]|o- O

A final general observation (unrelated to truncation) before delving into the soundness proof itself:

Proposition 4.10. Lett be a term a free variable x. Suppose thatt =t'{x; :=x}...{x, := x}, where each
x; appears only once in t' (so n is the number of occurrences of x int), and U | A| @,x: At t: T, where A
is linear (i.e. not of the form \c). ThenT,x; : A,....x, :A|A|OF1: 1. Wewritet' =t{x:=x1,...,x,}
for this situation. (Such a t’ always exists givent.)

Proof. By induction on typing derivations, replacing each rule of the form ... |...|....x:AF-x:0obya
rule of the form ..., x;:A,...|...|...Fx;:Aforsomei € {1,...,n}. O

SThis is justified as Vot o —o « is the unit to the tensor product used in Section

10 On the elementary affine A -calculus with and without type fixpoints

4.3.2 Syntactic analysis

We can now start looking at the languages decided by EAA-terms.

Lemma 4.11. For any EAA-termt : !Str —o !!Bool, there exists u : Str[o)| —o ... —o Str[0,| —o !Bool
(for some n € N) such that, for all s : Str, t!s and !(us. .. s) have the same normal form.

Proof. First, one may take ¢ to be in normal form. In that case, the only possible redex in 7 !s is the
application at the root. Moreover, ¢!s must be reducible since it is neither !!true nor !!false, cf.
Proposition Therefore, t = (A!x.1’) (the case t = (Ax.t’) can be excluded because then ¢ would be
of type A — T where A is linear, in particular A # !Str).

The next step is to prove that ¢ = Alx. !/ for some EAA-term 7. According to the typing rules, the
judgment @ | @ | @ F1: !Str —o !!Bool can only be proven by first establishing & | x: !Str | @ 1’ :
!'Bool. According to the !-inversion property (Proposition[4.5)), since the first and third part of the typing
context are empty and the head connective of the type is ‘!’, # must be of the form !7”.

Finally, since @ | @ | x: Str ¢ : !!Bool must hold (it is the only premise which can lead to the
above judgement on t'), we can apply Proposition to ¢ (indeed, the type Str is linear). Then, the
term u = Axy. ... Axpy.t"{x:=x1,..., %, } (Where x occurs m times in 7”") enjoys the property claimed in
the lemma statement. O

Let us focus on the case n = 1 for a moment, and do the same kind of analysis again.

Lemma 4.12. Let u : Str[o] —o !Bool be an EAA-term, and let T= ¢ —o ©.

There exist EAA-terms fo: T, fi:Tand g: T —o ... —o T —o |Bool (with m times T, for some m € N)
such that for all s : Str, if s fo!fi —* \h, then us and !(gh ... h) have the same normal form.

Proof. We assume that u is in normal form. Since the head connective of Str[c] is not ‘I, u = Ax.v
and x : Str[c| | @ | g F v: !Bool. We may assume that v contains x as a free variable; otherwise, u is a
constant function and the conclusion we want holds trivially (take m = 0).

Let us examine in general the shape of v : !0 in normal form (where 6 is not necessarily Bool) such
that x appears free in v and x : Str[c] | @ | @ F v:!0. By [2, Lemma 29(ii)], v must be an application:
V= pgqi ...q; where p is not an application and k > 1. Observe that p cannot be of the form Ay. p/, since
pq1 would then be a redex. There are two possible cases:

e p=ux,and then 6 = 0 — 0 = 7, k = 2 and the closed EAA-terms ¢, ¢ : !T must be of the form
gi = !¢} by !-inversion (Proposition

e p=(Aly.p'), in which case x must appear free in ¢;. Indeed, suppose for the sake of contradiction
that g; is closed; then @ | @ | @ F ¢, : 6 = !p for some p, therefore !-inversion gives us g = !r
for some r, so pg; would be a redex.

In the second case, we may furthermore take k = 1 w.l.o.g.: if kK > 2, then for all s : Str[c], the term
((Ay.p'q2 ... qx) q1){x := s} has the same normal form as v{x := s} (this is analogous to Regnier’s
o-equivalence by redex permutations [17]). And since & |y:!p | @+ p'qs ... i : 16, the normal form
of p'qa ... g is of the form !p” (this is again an application of !-inversion).

To recapitulate, either v=x!fy!f; orv= (Aly.!p)v =1let ly + V' in !p where x appears free in v/,
but not in p. In the latter case, we have x : Str[o]| | @ | @ V' :160’. So, by induction on the size of terms,

v=1let ly; < (...(let ly, < x!fo!fi in!p;)...) in !p;

Nguyén L. T. D. 11

As a consequence, for all s : Str, if s!fy ! fi —™* h (recall that fy, f : T are closed) then

us= Ax.v)s —vi{x:=s} —"(pi{y:=(C..p{yi:=h}...)})

(Morally, we are still trying to permute redexes; the reader may check that there is an analogy between
the above operation and Carraro and Guerrieri’s V ((Ax. L) N) ~» (Ax.V L) N rule [5]] for the call-by-value
A-calculus.)

Letr=pi{y1:=(...pi{y1 :=2}...)}, where z is a fresh variable, so that the right-hand side can be
written as !(r{z := h}). Since h: 7 is a closed subterm of !(r{z:= h}) : !Bool (we are using subject
reduction here), then it must be true that & | @ | z: T+ r: Bool. Let us now apply Proposition using

the fact that T = 6 —o o is linear: forsomem € N, z; : 7,...,2,: T | @ | S+ r{z:=2z1,...,2m} : Bool.
Finally, we take g = Azy. ... Azp.r{z:=2z1,...,2m}. The lemma statement holds with the fy, fi, m
and g that we have constructed. O

The last purely syntactic step is to use the truncation operation to formulate a variation of the above
lemma. The point is to be able to decide the membership in the language defined by an EAA-term by
computing purely in AA2. This sets the stage for the use of a semantics of AA2.

Lemma 4.13. Let u : Str[o] —o !Bool be an EAA-term, and let T = |0 —o G||o.
There exist AAL2-terms fo: T, fi:Tand g: T —o ... —o T —o !Bool (with m times T, for some m € N)
such that for all w € {0,1}%, if w!fo ! fi —* h, then uw and \(gh ... h) have the same normal form.
(Recall that w : Str is the Church encoding of w in EAA.)

Proof. Thanks to the previous lemma, there exist f;: 6 — 0, f{: 0 —~cand g’ : (0 —0) — ... —
(0 — 0) — !Bool with m times 7, for some m € N, such that the conclusion holds by replacing ©
by 6 — o and fo, f1,g by f}.f],&'- The only issue is that fj, f{,g’ might not be in AA2. The idea is
therefore to take fo = || fjllo. /1 = ||f1lo and g = ||&’||0, and to check that this works.

Let ' : 6 —o o be such that w!fj ! f{ —* Ii". Since w = Alag. Ala;. \(Ax.ay, (... (ay, X)...)),

Ax. fo (.. (fy, x)...) —" K" and by truncation Ax. fiy, (... (fw,x)...) —" [|A]|o

So if A is such that w!fy!fi —* !k, then by confluence [2, Lemma 8], & and ||//||o have the same
normal form. Therefore, gh ... hand g||#'||o ... ||#'||o have the same normal form. But the latter is none
other than ||g' /' ... H||o.

To conclude, observe that:

e the normal form of !(g’ /' ... ') is the same as that of uw by the previous lemma;

e by Proposition[4.4] the normal form of g'#’ ... i is some b € {true,false};

e since ||bllo =b,!||g’H ... W||o has the same normal form as uw.

By the discussion above, this means that !(g# ... h) and uw have the same normal form, as desired. []

4.3.3 Semantic evaluation

We are now ready to conclude our proof of soundness by adapting Hillebrand and Kanellakis’s argument.
Let [—] be any non-trivial finite semantics of AA2 — the notion of finiteness we need is that [A] has
finitely semantic inhabitants for all AA2 types A. (Equivalently, if our semantics is a category with a
terminal object 1, we require Hom(1, [A]) to be finite for all A.) Recall that although such a semantics is
a central ingredient in our proof, we have simply assumed its existence, which is proved elsewhere (see
Lemma |[I.7]and the subsequent discussion).

12 On the elementary affine A -calculus with and without type fixpoints

Definition 4.14. Let A be a AA2 type. We define ®4(w)(%,71) = Y%w, ©-..0 N, for w € {0,1}* and
(%,m) € End([A])2. In other words, @y : {0,1}* — End([A])Er([4D” is the monoid morphism sending
cE {0, 1} to ('}’0,}’1) = Ye.

Here End([A]) refers to the monoid of endomorphisms of [A] in the semantics.

Proposition 4.15. Let w € {0,1}" and w : Str be its encoding. For any AA2 type 6 and AA2-terms
fo, fi : 0 — 0, w!fy!fi normalizes into some \h with h: 6 — o, and ®o(w)([fo] , [f1]) = [g]-

Proof. As in the case of the simply typed A-calculus, this is by definition of the Church encoding. [J

Lemma 4.16. Let u : Str[oj] —o ... —o Str[o,] —o !Bool.
Forall wy,...,w, € {0,1}*, the normal form of uwy ... w, is completely determined by the functions
D6, o(W1)s -+, Py, o (Wn)- As a consequence, the following language is regular:

{we{0,1} |uw...w —" ltrue}

Proof. We start with the case n = 1, in which u : Str[c| — !Bool. Let fy: 7, fi : T and g : T be given
by Lemma [4.13] where T = |0 — ol = ||c|lo — ||c]|o. For all w € {0,1}*, if w fy fi —* !h, then
uw —* b for some b € {true,false} suchthat gh... h —* b. Since fy, f; and g are in AA2, so is h
(provided it is normal), and [gh ... h] = [g] ([A],--.,[k]) by compositionality. Therefore

[6] = [8] (@0 W) (LA, LAD), - - - @y W) ([fo] . [AD))

thanks to the previous proposition. Since our semantics is non-trivial, i.e. [b] = [true] <= b =true,
®| 5|, (w) thus determines the normal form of uw.
The result for arbitrary n > 1 is obtained by induction on n by repeatedly applying the case n = 1.
The consequence is that the language {w € {0,1}* |uw ... w —"* !true} can be written using only
conditions on @4, (w) (i € {1,...,n}), so it is the preimage of some subset of [T\, End([[o;])End(lo])?
by the monoid morphism w = (@6, |, (W), - -, P|g, [, (W))- O

This suffices to conclude the soundness proof. Let 7 : !Str —o !!Bool. Then, by Lemma.11}
{we{0,1}" |t!w —" true} ={we {0,1}" |uw...w —" ltrue}

for some u : Str[o]] — ... — Str[o,] —o !Bool. The regularity of this language then follows from the
above lemma.

4.4 Overcoming the expressivity barrier

Analyzing the our soundness proof for regular languages in EAA reveals that fundamentally, what re-
stricts the computational power is a conjunction of two facts:

1. the input Str is instantiated on some types O1,..., 6, known in advance;
2. these o; are morally finite data types, since they admit finite semantics.

This makes it impossible to iterate over, say, the configurations of a Turing machine, since their size
depends on the input and the type o; cannot “grow” to accomodate data of variable size.

If we stay at depth 2 in EAA, there is no way of avoiding the second fact (one can always truncate the
o; to exponential-free types), so if we want to retrieve a larger complexity class than regular languages
without resorting to type fixpoints, we should try to circumvent the first obstacle. That means that the o;
should vary with the input. Thus, we are led to consider that inputs should provide types:

Nguyén L. T. D. 13

e the encoding of an input x would be a term z, : Inp[A,], for some type Inp with one parameter;
e this #, would then be given as argument to a program of type Vo . Inp|a] —o Bool.

In other words, we are considering existential input types. Indeed, if we were to extend EAA with
existential quantifiers] there would be an isomorphism (Je. Inp|e]) — Bool = Ver. (Inp|ct] —o Bool).

Remark 4.17. In fact there is a third fact which plays a role in bridling the complexity: the shape of
the type Str which codes sequential iterations (but the same could be said of Church encodings of free
algebras — with such inputs one characterizes regular tree languages).

For instance, let us consider as inputs circuits represented by the type

VX.1X —o !(X —o X —oX)—o !(X —0X®X) —o X

where !X corresponds to true constants, !(X — X —o X) corresponds to nand gates, and !(X — X ® X)
corresponds to duplication gates used to represent fan-out. Then instantiating this with X = Bool and
the obvious evaluation maps gives us an encoding of the circuit value problem, which is P-complete.

Although this input type seems morally less legitimate than Church encodings, it is hard to pinpoint
precisely why it should be rejected.

5 Conclusion

This paper started with a positive result: there exists a characterization of FP and k-FEXPTIME in uEAA
whose statement is very simple. However, the characterization of regular languages in EAA, which takes
up the rest of the paper, could be seen as a negative result: it demonstrates the lack of expressivity of EAA
without type fixpoints. (This is the spirit of Section[#.4]) Indeed, the small class of regular languages not
quite a well-behaved complexity class, e.g. it is not closed under ACY reductions.

That said, one can also read Theorem [I.5]as positive evidence of a connection between affine typing
and automata. This connection clearly depends on the use of Church encodings — in other words, on the
representation of strings by their iterators. This opens up two avenues for investigation:

e One can search for other automata-theoretic classes of interest that can be characterized in EAA.

e On the other hand, one can hope to obtain a well-behaved sub-polynomial complexity class by
changing the representation of inputs, following the suggestions of Section 4.4

We are currently working on the first research direction, by attempting to capture classes of trans-
ductions, i.e. of functions computed by automata with output. As of the time of writing, it seems likely
that in EAA, Str —o Str captures the well-known class of regular functions (see the introduction of [4]
for an overview of classical transduction classes, including regular functions), and that the class defined
by !Str —o IStr also admits an automata-theoretic characterization.

As for the second one, it is the topic of a seque][] paper [[16] (joint work with P. Pradic) which studies
an input type inspired by finite model theory, following Hillebrand’s thesis [13]. We obtain what we
believe to be a characterization of deterministic logarithmic space (L), and manage to prove that the
class we capture is between L and Nlﬂ

The reason this extension is not incorporated is that existentials can be encoded: Ja. 7 := V. (Va.. 7 —) —o B.
"This sequel has been published first, although the results in the present paper were mostly obtained before.
8 Actually, a more precise upper bound is L with an oracle for unambiguous non-deterministic logarithmic space.

14 On the elementary affine A -calculus with and without type fixpoints

The importance of semantics A novelty in our approach is that we betray the original spirit of “light
logics” such as Light Linear Logic and Elementary Linear Logic [9]], which consisted in bounding the
complexity of normalization “geometrically”, independently of types. Here:

e geometry still plays an important structuring role, reflected by our use of a “truncation at depth
zero” operation, which may be of independent interest;

e but our fine-grained analysis also requires to take into account the influence of types through
semantics.

Though we are not the first to apply semantics to obtain inexpressivity results in light logics (cf. e.g. [6]),
our recent discovery of a finite semantics of linear polymorphism (cf. the discussion below the statement
of Lemma [I.7) opens up new possibilities. The above-mentioned sequel on logarithmic space is an
illustration of this new way of working in EAA and its variants: the best upper bound that we have is
obtained using the effectiveness of the second-order coherence space model studied in [15].

Open questions Aside from the perspectives already mentioned, there is an obvious question that
remains after Theorem |1.5} what about !Str —o !¥+2Bool (resp. !Str —o tk1str) for k > 1? For now,
what we know about the corresponding complexity class is that:

e it is contained in k-EXPTIME (resp. k-FEXPTIME), since the soundness results for uEAA apply
a fortiori to EAA;

e it contains (k — 1)-EXPTIME (resp. (k — 1)-FEXPTIME), by adapting the proofs given in [1]].

We must confess that we have no idea about what class !Str —o ¥*?Boo1 corresponds to, let alone about
a proof strategy. Our only guesses is that the first containment is strict, and that semantics can prove
useful for this problem.

References

[1] Patrick Baillot (2015): On the expressivity of elementary linear logic: Characterizing Ptime and an exponen-
tial time hierarchy. Information and Computation 241, pp. 3-31, doi;10.1016/;.ic.2014.10.005.

[2] Patrick Baillot, Erika De Benedetti & Simona Ronchi Della Rocca (2018): Characterizing polynomial and
exponential complexity classes in elementary lambda-calculus. Information and Computation 261, pp. 55—
77, doii10.1016/.1c.2018.05.005.

[3] Patrick Baillot & Alexis Ghyselen (2018): Combining Linear Logic and Size Types for Implicit Com-
plexity. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018), pp. 9:1-9:21,
doi:10.4230/LIPIcs.CSL.2018.9.

[4] Mikotaj Bojanczyk (2018): Polyregular Functions. CoRR abs/1810.08760.

[5] Alberto Carraro & Giulio Guerrieri (2014): A Semantical and Operational Account of Call-by-Value Solv-
ability. In: Foundations of Software Science and Computation Structures (FoSSaCS’14), pp. 103-118,
doii10.1007/978-3-642-54830-7_7.

[6] Ugo Dal Lago & Patrick Baillot (2006): On light logics, uniform encodings and polynomial time. Mathemat-
ical Structures in Computer Science 16(4), pp. 713-733, doi:10.1017/5S0960129506005421.

[7] Vincent Danos & Jean-Baptiste Joinet (2003): Linear logic and elementary time. Information and Computa-
tion 183(1), pp. 123-137, doi{10.1016/S0890-5401(03)00010-5|

[8] Simona Ronchi Della Rocca, Ugo Dal Lago & Paolo Coppola (2008): Light Logics and the Call-by-Value
Lambda Calculus. Logical Methods in Computer Science Volume 4, Issue 4, doij10.2168/LMCS-4(4:5)2008.

http://dx.doi.org/10.1016/j.ic.2014.10.005
http://dx.doi.org/10.1016/j.ic.2018.05.005
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.9
http://dx.doi.org/10.1007/978-3-642-54830-7_7
http://dx.doi.org/10.1017/S0960129506005421
http://dx.doi.org/10.1016/S0890-5401(03)00010-5
http://dx.doi.org/10.2168/LMCS-4(4:5)2008

Nguyén L. T. D. 15

(9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

Jean-Yves Girard (1998): Light Linear Logic. Information and Computation 143(2), pp. 175-204,
doi:10.1006/inc0.1998.2700.

Charles Grellois (2016): Semantics of linear logic and higher-order model-checking. Ph.D. thesis, Université
Denis Diderot Paris 7. Available at https://tel.archives-ouvertes.fr/tel-01311150/.

Charles Grellois & Paul-André Mellies (2015): Finitary Semantics of Linear Logic and Higher-Order Model-
Checking. In: Mathematical Foundations of Computer Science 2015 - 40th International Symposium, MFCS
2015, pp. 256-268, doi;10.1007/978-3-662-48057-1_20.

Giulio Guerrieri & Giulio Manzonetto (2019): The Bang Calculus and the Two Girard’s Translations. Elec-
tronic Proceedings in Theoretical Computer Science 292, pp. 15-30, doi:10.4204/EPTCS.292.2.

Gerd G. Hillebrand (1994): Finite Model Theory in the Simply Typed Lambda Calculus. Ph.D. thesis, Brown
University, Providence, RI, USA.

Gerd G. Hillebrand & Paris C. Kanellakis (1996): On the Expressive Power of Simply Typed and Let-
Polymorphic Lambda Calculi. In: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society, pp. 253-263, doi:10.1109/LICS.1996.561337.

Lé Thanh Diing Nguyén (2019): Around finite second-order coherence spaces. CoRR abs/1902.00196.

Lé Thanh Diing Nguyén & Pierre Pradic (2019): From normal functors to logarithmic space queries. In:
46th International Colloquium on Automata, Languages and Programming (ICALP’19), pp. 151:1-151:15,
doi:10.4230/LIPIcs.ICALP.2019.151.

Laurent Regnier (1994): Une équivalence sur les lambda-termes. Theoretical Computer Science 126(2), pp.
281-292, doii10.1016/0304-3975(94)90012-4,

Alex Simpson (2005): Reduction in a Linear Lambda-Calculus with Applications to Operational Seman-
tics. 1In: 16th International Conference on Term Rewriting and Applications (RTA’05), pp. 219-234,
doi:10.1007/978-3-540-32033-3_17.

Kazushige Terui (2012): Semantic Evaluation, Intersection Types and Complexity of Simply Typed Lambda
Calculus. In: 23rd International Conference on Rewriting Techniques and Applications (RTA’12), pp. 323—
338, doi:10.4230/LIPIcs.RTA.2012.323.

http://dx.doi.org/10.1006/inco.1998.2700
https://tel.archives-ouvertes.fr/tel-01311150/
http://dx.doi.org/10.1007/978-3-662-48057-1_20
http://dx.doi.org/10.4204/EPTCS.292.2
http://dx.doi.org/10.1109/LICS.1996.561337
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.151
http://dx.doi.org/10.1016/0304-3975(94)90012-4
http://dx.doi.org/10.1007/978-3-540-32033-3_17
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.323

	Introduction
	The elementary affine -calculus
	The k-FEXPTIME hierarchy in EA (proof of Theorem 1.3)
	Regular languages in EA (proof of Theorem 1.5)
	Extensional completeness
	A short soundness proof for Hillebrand and Kanellakis's theorem (sketch)
	Soundness for regular languages in EA
	Some lemmas and a truncation operation
	Syntactic analysis
	Semantic evaluation

	Overcoming the expressivity barrier

	Conclusion

