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Hypotheses testing and posterior concentration

rates for semi-Markov processes

V.S. Barbu∗, G. Gayraud†, N. Limnios†, I. Votsi‡

Abstract

In this paper, we adopt a nonparametric Bayesian approach and in-

vestigate the asymptotic behavior of the posterior distribution in contin-

uous time and general state space semi-Markov processes. In particular,

we obtain posterior concentration rates for semi-Markov kernels. For

the purposes of this study, we construct robust statistical tests between

Hellinger balls around semi-Markov kernels and present some specifica-

tions to particular cases, including discrete-time semi-Markov processes

and finite state space Markov processes. The objective of this paper is

to provide sufficient conditions on priors and semi-Markov kernels that

enable us to establish posterior concentration rates.

Keywords Bayesian nonparametric statistics, posterior concentration rate,
semi-Markov kernel, testing procedure, Hellinger distance

1 Introduction

Semi-Markov processes (SMPs) are stochastic processes that are widely used to
model real-life phenomena encountered in seismology, biology, reliability, sur-
vival analysis, wind energy, finance and other scientific fields. SMPs ([27],[35],[37])
generalize Markov processes in the sense that they allow the sojourn times in
states to follow any distribution on [0,+∞), instead of the exponential distri-
bution in the Markov case. Since no memoryless distributions could be consid-
ered in a semi-Markov environment, duration effects could be reproduced. The
duration effect firms that the time the semi-Markov system spends in a state
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influences its transition probabilities. Particular cases of SMPs include contin-
uous and discrete-time Markov chains and ordinary, modified and alternating
renewal processes. The foundations of the theory of SMPs were laid by Pyke
([32], [33]). Since then, further significant results were obtained by Çinlar
[13], Korolyuk et al. [23] and many others. We refer the interested reader
to Limnios and Oprişan [28] for an approach to SMPs and their applications
in reliability. For an overview in the theory on semi-Markov chains oriented
toward applications in modeling and estimation see Barbu and Limnios [4].

Although the statistical inference of SMPs has been extensively studied
from a frequentist point of view, the Bayesian literature is rather limited. Ex-
cept from some specific SMP models ([14],[15]), only a few papers have consid-
ered the nonparametric Bayesian theory supporting these models ([9],[31]).
Here we aim to close the aforementioned gap and follow a nonparametric
Bayesian approach. The key quantity in the theory of SMPs is the semi-
Markov kernel (SMK), Q. Our objective is to draw Bayesian inference on the
Radon-Nikodym derivative of the SMK, q. Let us denote by Hn a trajectory
of the SMP of length n and by Π the prior distribution of q, which in all gen-
erality, could depend on n, and thereafter will be denoted by Πn. Given Hn

and Πn, the knowledge on q is updated by the posterior distribution, that is
denoted by ΠHn

n (·) = Πn(·|Hn). We shall stick to the last notation throughout
the paper and further denote by q0 the derivative of the “true” SMK, Q0, which
is the SMK that generated Hn. The main topic of the article is the study of
the asymptotic behaviour of ΠHn

n in a neighbourhood of Q0.
Most of the known results in the asymptotic behaviour of posterior distribu-

tions in infinite-dimensional models address issues of the posterior consistency
and posterior concentration around the true distribution. In a nonparamet-
ric context, when the observations are i.i.d., such results were first derived in
[21] and [36] with a variety of examples. Beyond the i.i.d. setup, the asymp-
totic behaviour of the posterior has been studied in the context of independent
nonidentically distributed observations ([1], [2], [12], [17], [19], [20]).

One of the most natural extensions of the i.i.d. structure is a Markov pro-
cess, where only the immediate past matters. Although, given the present, the
future will not further depend on the past, the dependence propagates and may
reasonably capture the dependence structure of the observations. Ghosal and
van Der Vaart [17] studied the asymptotic behaviour of posterior distributions
to several classes of non-i.i.d. models including Markov chains. For their pur-
poses the authors used previous results on the existence of statistical tests ([6],
[24], [25], [26]) between two Hellinger balls for a given class of models. We refer
the interested reader to [8] for improved results about the existence of such
tests for the relevant estimation problems. Tang and Ghosal [38] extended
Schwartz’s theory of posterior consistency to ergodic Markov processes and
applied it in the context of a Dirichlet mixture model for transition densities.
More recently, Gassiat and Rousseau [16] studied the posterior distribution in
hidden Markov chains where both the observational and the state spaces are
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general. For nonparametric Bayesian estimation of conditional distributions,
Pati et al. [30] provided sufficient conditions on the prior under which the
weak and various types of strong posterior consistency could be obtained.

For reviews on posterior consistency as well as posterior concentration in
infinite dimensions, the interested reader can refer to Wasserman [40], Ghosh
and Ramamoorthi [22] and Ghosal et al. [18].

This paper aims to extend previous results by studying the convergence of
the posterior distribution of q for SMPs. Specifically, we generalize and extend
previous results on discrete-time Markov processes in finite state space [17] to
continuous-time SMPs in general state space.

In order to apply the general theory to the semi-Markov framework, we
demonstrate the existence of the relevant statistical tests. To this purpose, we
extend the hypotheses testing results for Marov chains developed by Birgé [6]
to continuous-time general state space SMPs. Such tests can also be used to
distinguish Markov from semi-Markov models and decide which model could
better describe the data, which is a crucial subject in real-world applications.

Very few researchers considered hypotheses testing problem in a semi-
Markov context. Bath and Deshpande [5] developed a nonparametric test for
testing Markov against semi-Markov processes. Banerjee and Bhattacharyya
[3] considered a two-state SMP and proposed parametric tests for the equality
of the sojourn time distributions, under the assumption that these distribu-
tions are absolutely continuous and belong to the Exponential family. Also in
a parametric context, Malinovskii [29] considered that the probability distri-
bution of an SMP depends on a real-valued parameter ϑ > 0 and studied the
simple hypothesis H0 : ϑ = 0 against H1 : ϑ = hT−1/2, 0 < h ≤ c (the SMP is
observed up to time T ). Chang et al. ([10], [11]) considered hypotheses testing
problems for semi-Markov counting processes, in a survival analysis context.
Tsai [39] proposed a rank test based on semi-Markov processes in order to test
whether a pair of observation (X, Y ) has the same distribution as (Y,X), i.e.,
X, Y exchangeable. To the best of our knowledge, the present research is the
first one that considers general robust hypotheses testing problems for SMPs
in a nonparametric context.

We focus on SMPs since they are much more general and better adapted
to applications than the Markov processes. In real-world systems, the state
space of the under study processes could be {0, 1}N, (e.g., communication
systems), where N is the set of nonnegative integers, or [0,∞) (e.g., fatigue
crack growth modelling). This is the reason why we concentrate on general
SMPs. On the other side, since in physical and biological applications time
is usually considered to be continuous, discrete-time processes are not always
appropriate for describing such phenomena. In such situations continuous-time
processes are often more suitable than the discrete-time ones. Therefore we
focus our discussion on the continuous-time case rather than the discrete-time
case. Nonetheless, note that our results on the robust tests are very general
and could also be applied to the discrete-time case, with the corresponding
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modifications.
The organization of the paper is as follows. In Section 2 the notation

and preliminaries of semi-Markov processes are presented; the objectives of
our paper are also presented. Section 3 describes the hypotheses testing for
the processes under study and some particular cases. Section 4 discusses the
derivation of the posterior concentration rate and the relative hypotheses. Fi-
nally, in Section 5, we give a detailed description of the proofs and some
technical lemmas.

2 The semi-Markov framework and objectives

2.1 Semi-Markov processes

We consider (E, E) a measurable space and an (E, E)−valued semi-Markov
process Z := (Zt)t∈R+ defined on a complete probability space (Ω,F ,P). The
semi-Markov process Z corresponding to the Markov renewal process (MRP)
(J,S) := (Jn, Sn)n∈N, is defined by

Zt := JN(t), t ∈ R
+,

where 0 ≤ S0 ≤ . . . ≤ Sn ≤ . . . are the successive R
+-valued jump times of Z,

(Jn)n≥0 denotes the successive visited states at these jump times (henceforth
called the embedded Markov chain (EMC)) and

N(t) =

{
0, if S1 − S0 > t,
sup{n ∈ N

∗ : Sn ≤ t}, if S1 − S0 ≤ t.

S0 may be viewed as the first non-negative time at which a jump is observed.
In what follows, the EMC and MRP are considered to be homogeneous with
respect to n ∈ N. It is worth noticing that the MRP (J,S) satisfies the
following Markov property, i.e., for any n ∈ N, any t ∈ R

+ and any B ∈ E :

P(Jn+1 ∈ B, Sn+1−Sn ≤ t|J0, . . . , Jn, S0, . . . , Sn)
a.s.
= P(Jn+1 ∈ B, Sn+1−Sn ≤ t|Jn).

In the semi-Markov framework, of central importance is the semi-Markov
kernel (SMK) defined as follows:

Qx(B, t) := P(Jn+1 ∈ B, Sn+1 − Sn ≤ t|Jn = x), x ∈ E, t ∈ R
+, B ∈ E

Since we suppose that the distribution of Z is unknown, we focus our interest
on the semi-Markov kernel. In particular the stochastic behavior of the SMP
Z is determined completely by its SMK and its initial distribution.

Let us denote the n−step transition kernel of the EMC (Jn)n∈N by

P (n)(x,B) := P(Jn ∈ B|J0 = x), x ∈ E, B ∈ E , (1)

and the (one-step) transition kernel by P (x,B) = Qx(B,∞).
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It is worth mentioning that

Qx(B, t) =

∫

B

P (x, dy)P(Sn+1 − Sn ≤ t|Jn = x, Jn+1 = y), ∀t ∈ R
+, ∀B ∈ E .

The following assumptions have to be considered in the sequel.

A1 The embedded Markov chain (Jn)n∈N is ergodic with stationary proba-
bility measure ρ (that is ρP = ρ, with P the transition kernel of J and
ρ(E) = 1).

A2 The mean sojourn times m(x) =
∫∞

0
P(S1 − S0 > t | J0 = x)dt satisfies

∫

E

ρ(dx)m(x) <∞.

A3

P(Sn+1−Sn ≤ t|Jn = x, Jn+1 = y) 6= 1R+(t), ∀n ∈ N, ∀t ∈ R
+, ∀x, y ∈ E.

Note that A2 and A3 ensure that for all non negative t and B ∈ E , P(Zt ∈ B)
is always well-defined and non-zero. However the conditional probability in
AssumptionA3may be defined as any Dirac measure on positive real numbers.

Denote also by B
+ the Borelian σ−algebra on R

+. We suppose that for
any x ∈ E, the SMK starting from x is absolutely continuous with respect
to (w.r.t.) ν, a σ−finite measure (E × R

+, E ⊗ B
+) and denote by qx(·, ·) its

Radon-Nikodym (RN) derivative, i.e., Qx(dy, dt) = qx(y, t)dν(y, t). For n ≥ 1,
let Xn := Sn − Sn−1 be the successive sojourn times of Z and 0 ≤ X0 = S0.
On E ⊗ B

+, we further define the measure ρ̃ as the distribution of (J,X) :=
(Jn, Xn)n∈N, where

ρ̃(A,Γ) =

∫

E

ρ(dx)Qx(A,Γ), ∀A ∈ E , ∀Γ ∈ B
+. (2)

Proposition 1. The measure ρ̃ defined in (2) is the stationary distribution of
(Jn, Xn)n∈N.

Since we are interested in obtaining asymptotic results, without loss of
generality we consider as initial distribution of the process (J,X) its stationary
distribution, ρ̃. To avoid complicated notation, we will also use ρ̃ to denote
the density w.r.t. ν.

In the sequel, the hypotheses A1, A2 and A3 are considered to hold true.
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2.2 Objectives

Recall that we have denoted by Q0 the true semi-Markov kernel and by q0 its
RN derivative w.r.t. ν, cf. Section 2. We suppose that q0 belongs to a certain
set of semi-Markov kernel densities Q defined by

Q = {q = qx(y, t) : x, y ∈ E, t ∈ R
+},

which is equipped with a metric d that will be defined in the sequel. Next
consider ǫ-neighborhoods around q0 in Q w.r.t. d, that is

Bd(q0, ǫ) =
{
q ∈ Q : d(q0, q) ≤ ǫ

}
.

To allow some flexibility, it is quite common to deal with Qn, a subset of Q,
that may depend on n, such that the prior distribution Πn on Q assigns most
of its mass on Qn (see Assumption H4 below). An ǫ-neighborhood around q0
in Qn w.r.t. d will be denoted by Bd,n(q0, ǫ).

As noted by Birgé [6] in the setting of Markov chains, there exists a priori no
“natural” distance d between two semi-Markov kernel densities. Nevertheless,
a natural distance could be defined between two probability distributions Qx;1

and Qx;2 dominated by ν and corresponding to the same initial state J0 = x ∈
E. Indeed, if we further denote by qx;1 and qx;2 their respective RN derivatives,
and following the lines of Birgé [6], d could be defined in two steps. First by
considering the squared Hellinger distance between Qx;1 and Qx;2, i.e.,

h2ν(Qx;1, Qx;2) =
1

2

∫

E×R+

(√
qx;1(y, t)−

√
qx;2(y, t)

)2
dν(y, t), (3)

and second, given a measure on E , say µ, by setting a semi-distance dµ between
q1 and q2,

d2µ(q1, q2) =

∫

E

h2ν(Qx;1, Qx;2)dµ(x). (4)

Given a sample path of the SMP for a given number of jumps n ∈ N
∗,

Hn = {J0, J1, . . . , Jn, S0, S1, . . . , Sn},

we adopt a Bayesian point of view by considering a prior distribution Πn on
Q. We aim to establish how fast the posterior distribution shrinks, in terms
of d, the “true” semi-Markov kernel density, q0. The precise definition of d
will be given after the statement of Assumption H1, where the measure µ is
fixed. More precisely, our objective is to find the minimal positive sequence
ǫn tending to zero as n goes to infinity, such that under some assumptions on
both Q and Πn

ΠHn

n

(
B∁

d(q0, ǫn)
)

L1(P
(n)
0 )−→ 0 as n→ 0,
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where B∁
d denotes the complementary of Bd in Q and P

(n)
0 refers to the “true”

distribution of Hn.
Let us denote by P

(n)
q the distribution of Hn, when the density of the SMK

is q. We further denote by E
(n)
q the expectation and by V

(n)
q the variance

w.r.t. P
(n)
q , respectively. Every quantity (distribution, SMK, expectation,

variance,. . .) with an index 0 refers to the corresponding “true” quantity.

3 Hypotheses testing for semi-Markov processes

3.1 Robust tests

One of the key ingredients needed to obtain posterior concentration rates is the
construction of corresponding robust hypotheses tests. For a variety of models,
depending on the semi-metric d, some tests with exponential power do exist.
For instance, in the case of density or conditional density estimation, Hellinger
or L1 tests have been introduced in [7]. Other examples of tests could be found
in [17] and in [34]. However, to the best of our knowledge, no such tests exist
for semi-Markov processes. Therefore it is of paramount importance to build
test procedures with exponentially small errors in the semi-Markov context.
Thus in the sequel we will be interested in the following testing procedure

H0 : q0 against H1 : q ∈ Bdη∗,n(q1, ξǫ), with dν∗(q0, q1) ≥ ǫ, (5)

for some ξ ∈ (0, 1).
In order to derive posterior concentration rates for SMK densities, one more

assumption is required.

• H1: There exist two measures ν∗ and η∗ on E and two positive integers
k, l such that for any x ∈ E,

1

k

k∑

u=1

P (u)(x, ·) ≥ ν∗(·) and P (l)(x, ·) ≤ η∗(·),

where P (·) is defined in (1). Note that H1 implies the following inequalities
which serve to prove Proposition 2:

∀m ∈ N,
1

k

k∑

u=1

P (u+m)(x, ·) ≥ ν∗(·) and P (l+m)(x, ·) ≤ η∗(·).

Proposition 2. Under Hypothesis H1, for any n ∈ N
∗, there exist universal

positive constants ξ ∈ (0, 1), K and K̃ such that for any ǫ > 0 and any q1 ∈ Qn

such that dν∗(q1, q0) > ǫ, there exists a test ψ1(Hn) satisfying

E
(n)
0 [ψ1(Hn)] ≤ e−Knǫ2 and sup

q∈Qn:dη∗(q1,q)<ǫξ

E
(n)
q [1− ψ1(Hn)] ≤ e−K̃nǫ2. (6)

7



The next corollary generalizes Proposition 2 to any q1 ∈ Qn which is
ǫ−distant from q0 w.r.t. dν∗. It requires an additional assumption (see here-
after H2) to control the complexity of Q̃n ⊆ Qn. This assumption is based
on the minimum number of dν∗-balls of radius ǫ̃ needed to cover Q̃n, which is
denoted by N(ǫ̃, Q̃n, dν∗).

Note that the case where the null hypothesis is composite could also be
considered; the first type error in (6) would be written similarly to the second
type error, with straightforward modifications.

Corollary 1. Under Hypothesis H1, assume that for a sequence ǫn of positive
numbers such that lim

n→+∞
ǫn = 0 and lim

n→+∞
nǫ2n = 0, the following assumption

holds true.

• H2 For ξ in (0, 1),

sup
ǫ>ǫn

logN
(
ǫξ, Bdν∗,n(q0, ǫ), dη∗

)
≤ nǫ2n.

Then, there exists a test ψ(Hn) satisfying

E
(n)
0 [ψ(Hn)] ≤ e−Knǫ2nM

2

and

sup
q∈Qn:dν∗(q0,q)>ǫnM

E
(n)
q [1− ψ(Hn)] ≤ e−K̃nǫ2nM

2

.

3.2 Particular cases

In this paper the results are rather generic in the sense that they refer to
continuous-time and general state space SMPs. In the sequel, we focus on
some particular cases that could be of special interest either from an applicative
point of view, or as a starting point for further research.

First, note that the state space is considered to be finite in most of the ap-
plicative articles. Second, we would like to stress out that in some applications
the state space is intrinsically continuous, due to the fact that the scale of the
measures is continuous.

3.2.1 Discrete-time SMPs

• General state space

Let us first denote by

qx(y, k) = P(Jn+1 = y,Xn+1 = k|Jn = x),

the RN derivative of the SMK. Then for any k ∈ N and any B ∈ E , the
respective cumulative semi-Markov kernel is given by

Qx(B, k) = P(Jn+1 ∈ B,Xn+1 ≤ k|Jn = x).
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It should be noted that in this case ν in (3) is the product measure be-
tween a finite-measure µ on (E, E) used in (4) and the counting measure
on N. Thus in this framework, the squared Hellinger distance becomes

h2µ(Qx;1, Qx;2) =
1

2

∑

k∈N

∫

E

(√
qx;1(y, k)−

√
qx;2(y, k)

)2
dµ(y),

while the semi-distance dµ between q1 and q2 is given in Equation (4).

• Finite state space

For any k ∈ N and any y ∈ E, we define by

qx(y, k) = P(Jn+1 = y,Xn+1 = k|Jn = x), (7)

the semi-Markov kernel and by

Qx(y, k) = P(Jn+1 = y,Xn+1 ≤ k|Jn = x)

the cumulative semi-Markov kernel, respectively.

Since in this framework µ is the counting measure on (E, E), the squared
Hellinger distance becomes

h2(Qx;1, Qx;2) =
1

2

∑

k∈N

∑

y∈E

(√
qx;1(y, k)−

√
qx;2(y, k)

)2
, (8)

and the semi-distance d between q1 and q2 is given by

d2(q1, q2) =
∑

x∈E

h2(Qx;1, Qx;2). (9)

3.2.2 Continuous-time SMPs

• Finite state space

Let us first denote by

Qx(y, t) = P(Jn+1 = y,Xn+1 ≤ t|Jn = x) (10)

the semi-Markov kernel, for any y ∈ E and any t ∈ R
+.

In this context, the squared Hellinger distance becomes

h2ν1(Qx;1, Qx;2) =
1

2

∑

y∈E

∫

R+

(√
qx;1(y, t)−

√
qx;2(y, t)

)2
dν1(t),

where ν1 is the marginal on (R+,B+) of the measure ν defined on E×R
+,

and the semi-distance d between q1 and q2 is defined as in Eq. (9).
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3.3 Specification to the Markov case

Note that the previously obtained results on robust tests for SMPs could
be adapted to the particular case of Markov processes. These tests are of
great interest and could be used for real-life applications. In particular,
they enable us to decide if an observed dataset would be better described
by a Markov (null hypothesis) or a semi-Markov process (alternative
hypothesis). More precisely suppose we are interested in the following
testing problem

H̃0 : Q0 Markov kernel vs

H̃1 : Q1 semi-Markov kernel ǫ distant from Q0 w.r.t. some pseudo-metric.

Note that H̃1 could be extended to any ξǫ−ball around Q1 with ξ ∈]0, 1[.
In this section, we are going to explain how the hypothesis testing prob-
lem H̃0 versus H̃1 can directly be handled from solving the hypothesis
problem H0 versus H1 stated in (5).

First, for the discrete-time and finite state space case, assume that we
have a Markov process with Markov transition matrix p̃ = (p̃xy)x,y∈E,
p̃xx 6= 1 for all states x ∈ E.

Note that a Markov process could be represented as a semi-Markov pro-
cess with semi-Markov kernel given in (7) and expressed as

qx;0(y, k) =

{
p̃xy (p̃xx)

k−1, if x 6= y and k ∈ N
∗,

0, otherwise.

Consequently, we can define the corresponding squared Hellinger dis-
tance as in (8) and construct the corresponding testing procedure.

Second, for the continuous-time and finite state space case, consider a
regular jump Markov process with continuous transition semigroup P̃ =(
P̃ (t)

)
t∈R+

and infinitesimal generator matrix A = (axy)x,y∈E.

In this context, we can represent the Markov process as a semi-Markov
process with semi-Markov kernel given in (10) and expressed as

Qx;0(y, t) =

{ axy
ax

(1− exp(−axt)), if x 6= y and t ∈ R
+,

0, otherwise,

where ax := −axx <∞, x ∈ E.

Note that one can also consider the case where the null hypothesis is
composite or the case where the alternative hypothesis is simple, with
straightforward modifications.
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4 Posterior concentration rates for semi-

Markov kernels

In this part, we present the key assumptions and state our main result.

First note that the likelihood function of the sample path Hn evaluated
at q ∈ Q is given by

Ln(q) = ρ̃(J0, S0)
n∏

ℓ=1

qJℓ−1
(Jℓ, Xℓ).

Let us introduce the tools that play a central role in asymptotic Bayesian
nonparametrics: the Kullback-Liebler (KL) divergence between any two

distributions P
(n)
q1 and P

(n)
q2 and the centered second moment of the inte-

grand of the corresponding KL divergence, which are defined by

K(P(n)
q1
,P(n)

q2
) := E

(n)
0

[
log

ρ̃1(J0, S0)

ρ̃2(J0, S0)

n∏

l=1

qJl−1;1(Jl, Xl)

qJl−1;2(Jl, Xl)

]
,

V0(P
(n)
q1
,P(n)

q2
) := V

(n)
0

[
log

ρ̃1(J0, S0)

ρ̃2(J0, S0)

n∏

l=1

qJl−1;1(Jl, Xl)

qJl−1;2(Jl, Xl)

]
,

where E
(n)
0 and V

(n)
0 denote respectively the expectation and the variance

w.r.t. P
(n)
0 .

Then, consider the subspace ofQ, U(q0, ǫ), which represents the following

Kullback-Liebler ǫ-neighborhood of P
(n)
0 , that is, for positive ǫ,

U(q0, ǫ) =
{
q ∈ Q : K(P

(n)
0 ,P(n)

q ) ≤ nǫ2, V0(P
(n)
0 ,P(n)

q ) ≤ nǫ2
}
.

It is worth mentioning that although ρ̃ is not of primary interest, since
it is unknown it should require a prior. But since any prior on ρ̃ that
is independent of the prior on q would disappear upon marginalization
of the posterior of (ρ̃, q) relatively to ρ̃, in the sequel it will be dropped.
Thus, it suffices to consider only a prior distribution on q.

Let us now state the main result. We recall that Πn denotes a prior
distribution on Q.

Theorem 1. Assume that H1 holds true and suppose that for a sequence
of positive numbers ǫn such that lim

n→+∞
ǫn = 0, lim

n→+∞
nǫ2n = 0, H2 and

H3-H4 defined hereafter, hold true.

11



– H3 ∃ c > 0, Πn

(
U(q0, ǫn)

)
> e−cnǫ2n,

– H4 Qn ⊂ Q is such that Πn

(
Q∁

n

)
≤ e−2n(c+1)ǫ2n .

Then for M large enough,

ΠHn

n

(
B∁

dν∗(q0, ǫnM)
) L1(P

(n)
0 )−→ 0, as n→ ∞. (11)

Some comments on the result of Theorem 1 as well as the hypotheses we
deal with:

– Under H1, Theorem 1 guarantees that, for both a particular set
of semi-Markov kernels Q containing some subset Qn such that
H2 holds true for a sequence of positive numbers ǫn and a prior
distribution Πn on Q satisfying assumptions H3-H4 with ǫn, the
posterior distribution shrinks towards q0 ∈ Q at a rate proportional
to ǫn.

– Assumption H3 is classical in Bayesian Nonparametrics; it states
that the prior distribution puts enough mass around KL neighbor-
hoods of q0.

– As mentioned in Section 3.1, Qn has to be almost the support of Πn:
it is guaranteed by Assumption H4, which in addition quantifies
how Πn covers Qn. If H2 holds true with Bdν∗(q0, ǫ) instead of
Bdν∗,n(q0, ǫ), then Qn coincides with Q and Assumption H4 is no
more needed.

– Although our semi-Markov framework differs from the Markov one,
it is worth noticing that Assumption H1 is similar to the one stated
as Equation (4.1) in Ghosal and van Der Vaart [17]. In particu-
lar, for Markov chains, this assumption is related to the transition
probabilities of the Markov chain, whereas in our context, H1 is
concerned with the SMK density.

Note also that Assumption H1 could be replaced by the following:

– H̃1: There exists a strictly positive constant C and a strictly posi-
tive integer k such that for any x ∈ E,

1

k

k∑

u=1

P (u)(x, ·) ≥ C.

12



5 Proofs

5.1 Proof of Proposition 1

In order to prove Proposition 1, we prove that the right-hand side of
Eq (2) satisfies the two relevant conditions. First, for any A ∈ E , any
Γ ∈ B

+, we have

ρ̃Q(A,Γ) :=

∫

E×R+

ρ̃(dy, ds)Qy(A,Γ)

=

∫

E×E×R+

ρ(dx)Qx(dy, ds)Qy(A,Γ)

=

∫

E

ρ(dy)Qy(A,Γ)

= ρ̃(A,Γ).

Second,

ρ̃(E,R+) =

∫

E

ρ(dx)Qx(E,R
+) = 1.

5.2 Proof of Proposition 2

Our proof is constructive; indeed, we are going to construct a suitable
testing procedure, namely ψ1(Hn), for the hypotheses testing problem
given in (5), i.e.,

H0 : q0 against H1 : q ∈ Bdη∗,n(q1, ξǫ), with dν∗(q0, q1) ≥ ǫ, and some ξ ∈ (0, 1).

To control exponentially both the type I and type II errors of ψ1(Hn),
we first fix some x ∈ E for which we construct the “least favorable” pair
of RN derivatives of semi-Markov kernels associated to the following
auxiliary testing problem

H̃0,x : qx;0(·, ·) against H̃1,x :
{
qx(·, ·) : h2ν(Qx, Qx;1) ≤ 1− cos(λαx)

}
,

(12)

where λ is any value in ]0, 1/4[ and αx belongs to ]0, π/2[ such that

h2ν(Qx;0, Qx;1) = 1− cos(αx). (13)

Based on this least favorable pair of qx’s, we will then derive the con-
struction of ψ1(Hn) for the testing problem (5).

For the sake of simplicity, let us denote by qx and qx;j for j ∈ IN the
probability density functions qx(·, ·) and qx;j(·, ·), respectively.

13



Least favorable pair of qx’s for the testing problem (12)

For our purposes, we adapt the construction of Birgé [6] for Markov
chains to the semi-Markov framework. Whatever is x in E, we attach to
x a particular probability density function qx;2 ∈ H̃1,x defined by

qx;2 =

(
sin((1− λ)αx)

sin(αx)

√
qx;1 +

sin(λαx)

sin(αx)

√
qx;0

)2

.

By construction, the following relations hold:

λ2h2ν(Qx;0, Qx;1) ≤ h2ν(Qx;1, Qx;2) ≤ h2ν(Qx;0, Qx;1); (14)

(1− λ)2h2ν(Qx;0, Qx;1) ≤ h2ν(Qx;0, Qx;2); (15)

h2ν(Qx;1, Qx;2) = 1− cos(λαx); (16)

h2ν(Qx;0, Qx;2) = 1− cos((1− λ)αx).

Construction of the test procedure for the testing problem (5)

Next, we set κ = k + l and N = [n/κ], where l and k are issued from
Assumption H1 and

[
·
]
denotes the integer part. We consider N i.i.d.

random variables Y1, Y2, . . . , YN , which are generated independently from
Hn according to the discrete uniform distribution U{1,...,k}.

We further define the test statistic

T (Hn) =
N∑

i=1

log ΦJτi−1(Jτi, Xτi),

where 



ΦJτi−1(Jτi , Xτi) =

√
qJτi−1;2

(Jτi ,Xτi
)

qJτi−1;0
(Jτi ,Xτi

)
,

τi = κ(i− 1) + l + Yi.

Our test procedure for the hypotheses problem (5) is then defined as
follows

ψ1(Hn) = 1I{T (Hn)>0}. (17)

• Test simple hypothesis vs simple hypothesis

Let us focus on the general SMPs and consider the following statistical
test:

H0 : q0 against H1 : q1 with dν∗(q0, q1) ≥ ǫ.

To construct the testing procedure, the test statistic defined in (17),
should be modified as follows:

T (Hn) =

N∑

i=1

log ΦJτi−1(Jτi, Xτi),

14



where 



ΦJτi−1(Jτi , Xτi) =

√
qJτi−1;1

(Jτi ,Xτi
)

qJτi−1;0
(Jτi ,Xτi

)
,

τi = κ(i− 1) + 1 + Yi
κ = k + 1

Yi
iid∼ U{1,...,k}.

In this case, Hypothesis H1 reduces to H1♯ :

– H1♯: There exist a measure ν∗ on E and a positive integer k such
that for any x ∈ E,

1

k

k∑

u=1

P (u)(x, ·) ≥ ν∗(·).

Then following the steps of the proof of the Proposition 2 and replacing
the Assumption H1 by H1♯ lead us to the desired result. It is worth
mentioning that in this case the inequalities (14), (15), (16) and Lemma
1 are not used.

Note also that in Proposition 2, the upper-bound of both errors is the
same, equal to exp(−Knǫ2).

Type I error probability

By means of the Markov property we obtain that

E0(ψ1(Hn)) ≤ E0

(N−1∏

i=1

ΦJτi−1(Jτi , Xτi)ΦJτN−1(JτN , XτN )
)

= E0

(N−1∏

i=1

ΦJτi−1(Jτi , Xτi)E0(ΦJτN−1(JτN , XτN )|Hκ(N−1))
)

= E0

(N−1∏

i=1

ΦJτi−1(Jτi , Xτi)E0(ΦJτN−1(JτN , XτN )|Jκ(N−1))
)
,(18)

where Hκ(N−1) = (J0, . . . , Jκ(N−1), X0, . . . , Xκ(N−1), ).

• Step 1

Set T1 := E0(ΦJτN−1(JτN , XτN )|Jκ(N−1)). Since τi ∼ U{κ(i−1)+l+1,...,κi}, we
obtain

T1 =
1

k

k∑

u=1

E0

[
ΦJκ(N−1)+l+u−1

(Jκ(N−1)+l+u, Xκ(N−1)+l+u)|Jκ(N−1)

]
.
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Next set Γu := E0

[
ΦJκ(N−1)+l+u−1

(Jκ(N−1)+l+u, Xκ(N−1)+l+u)|Jκ(N−1)

]
and

rewrite Γu as follows,

Γu =

∫

E

∫

E

∫

R+

Φx(y, t)P
(l+u−1)
0 (Jκ(N−1), dx)qx;0(y, t)dν(y, t)

=

∫

E

P
(l+u−1)
0 (Jκ(N−1), dx)

∫

E

∫

R+

Φx(y, t)qx;0(y, t)dν(y, t)

=

∫

E

P
(l+u−1)
0 (Jκ(N−1), dx)

(
1− h2ν(Qx;0, Qx;2)

)
,

where the last equality is due to
∫

E

∫

R+

√
qx;2qx;0dν = 1− h2ν(Qx;0, Qx;2).

Assumption H1 and Eq. (15) lead us to the following upper bound of
T1:

T1 = 1− 1

k

k∑

u=1

∫

E

P
(l+u−1)
0 (Jκ(N−1), dx)h

2
ν(Qx;0, Qx;2)

≤ 1−
∫

E

h2ν(Qx;0, Qx;2)dν
∗(x)

≤ 1− (1− λ)2
∫

E

h2ν(Qx;0, Qx;1)dν
∗(x)

= 1− (1− λ)2d2ν∗(q0, q1)

≤ e−(1−λ)2d2
ν∗

(q0,q1)

≤ e−(1−λ)2ǫ2 .

This latter inequality provides a first upper bound of E0(ψ1(Hn)) via the
relation (18).

• Then, by setting Ti := E0(ΦJτN−i+1−1(JτN−i+1
, XτN−i+1

)|Jκ(N−i)) for i =
2, . . . , N , and by repeating Step 1 for the successive Ti, we finally obtain

E0

(
ψ1(Hn)

)
≤ e−

n
κ
(1−λ)2ǫ2 = e−Knǫ2, with K =

(1− λ)2

κ
.

Type II error probability

To bound from above the type II error probability, we need an additional result
stated as Lemma 1. This lemma provides upper bounds for a quantity which is
similar to the T1-term appearing in the first type error probability. The main
difference here is that this quantity should be bounded from above uniformly
over q in Bdη∗ ,n(q1, ξǫ).

This requires the definition of the subset Gq of E by

Gq := {x ∈ E : hν(Qx, Qx;1) ≤ λhν(Qx;0, Qx;1)},
and the notation of its complementary into E by G∁

q.
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Lemma 1. For any λ ∈]0, 1/4[, there exists ι ∈ [0, 3
4
[, such that for all q ∈

Bdη∗ ,n(q1, ξǫ),

• if x ∈ Gq, then

Eq[Φ
−1
J0
(J1, X1)|J0 = x] ≤ 1− h2ν(Qx;0, Qx;2) ≤ 1− (1− λ)2h2ν(Qx;0, Qx;1);(19)

• if x ∈ G∁
q, then

Eq[Φ
−1
J0
(J1, X1)|J0 = x] < 1 + 8

1− λ

λ
h2ν(Qx, Qx;1)

− (1− 2λ

1− λ
)[1− ι]h2ν(Qx;0, Qx;1). (20)

The proof of Lemma 1 is postponed to Section 5.3.

Consider Φ−1 equal to one over Φ, that is Φ−1 =

√
q0
q2
. Similarly to the cal-

culations of the type I error probability, we obtain that for any q ∈ Bdη∗,n(q1, ξǫ),

Eq

(
1− ψ1(Hn)

)
≤ Eq

( N−1∏

i=1

Φ−1
Jτi−1

(Jτi, Xτi)Eq(Φ
−1
JτN−1

(JτN , XτN )|Jκ(N−1))
)
.

Similarly to T1, we further define W1 by

W1 := Eq(Φ
−1
JτN−1

(JτN , XτN )|Jκ(N−1))

=
1

k

k∑

u=1

Eq

[
Φ−1

Jκ(N−1)+l+u−1
(Jκ(N−1)+l+u, Xκ(N−1)+l+u)|Jκ(N−1)

]
.

• Step 2 Taking into account the partition of E into Gq and G
∁
q, we obtain

W1 =
1

k

k∑

u=1

∫

R+

∫

E

∫

E

Φ−1
x (y, t)P (l+u−1)

q (Jκ(N−1), dx)qx(y, t)dν(y, t)

=
1

k

k∑

u=1

∫

E

P (l+u−1)
q (Jκ(N−1), dx)Eq[Φ

−1
J0
(J1, X1)|J0 = x]

=
1

k

k∑

u=1

∫

Gq

P (l+u−1)
q (Jκ(N−1), dx)Eq[Φ

−1
J0
(J1, X1)|J0 = x]

+
1

k

k∑

u=1

∫

G∁
q

P (l+u−1)
q (Jκ(N−1), dx)Eq[Φ

−1
J0
(J1, X1)|J0 = x].

17



Combining with (1− λ)2 >
1− 3λ

1− λ
, Assumption H1 and Lemma 1 lead

to,

W1 ≤ 1− 1− 3λ

1− λ
[1− ι]

1

k

k∑

u=1

∫

E

P (l+u−1)
q (Jκ(N−1), dx)h

2
ν(Qx;0, Qx;1)

+ 8
1− λ

λ

1

k

k∑

u=1

∫

G∁
q

P (l+u−1)
q (Jκ(N−1), dx)h

2
ν(Qx, Qx;1)

≤ 1− 1− 3λ

1− λ
[1− ι]

∫

E

h2ν(Qx;0, Qx;1)dν
∗(x) + 8

1− λ

λ

∫

E

h2ν(Qx, Qx;1)dη
∗(x)

= 1− 1− 3λ

1− λ
[1− ι]d2ν∗(q0, q1) + 8

1− λ

λ
d2η∗(q, q1)

≤ exp

(
−
{
1− 3λ

1− λ
[1− ι]− 8

1− λ

λ
ξ2
}
ǫ2
)

= exp
(
−K(λ)ǫ2

)
,

where K(λ) is positive since there exists ξ > 0 such that
1− 3λ

1− λ
[1− ι] >

8
(1− λ)

λ
ξ2.

• To complete the proof, we considerWi := Eq(Φ
−1
JτN−i+1−1

(JτN−i+1
, XτN−i+1

)|Jκ(N−i))

for i = 2, . . . , N . We then repeat Step 2 for the successive Wi, and fi-
nally deduce that for any q ∈ Bdη∗,n(q1, ξǫ),

E
(n)
q

(
1− ψ1(Hn)

)
≤ exp

(
− nK̃(λ)ǫ2

)
,

with K̃(λ) = K(λ)/κ.

5.3 Proof of Lemma 1

We define the Hellinger affinity between two distributions P1 and P2, absolutely
continuous w.r.t. ν ,with derivatives p1 and p2 respectively, by

̺ν(P1, P2) :=

∫

R+

∫

E

√
p1p2dν = 1− h2ν(P1, P2).

In the sequel, let q be an arbitrary element of Bdη∗ ,n(q1, ξǫ).
When x belongs to Gq, the proof of (19) results directly from Theorem 2

in Birgé [8].

When x belongs to G∁
q, i.e., x ∈ E such that hν(Qx, Qx;1) > λhν(Qx;0, Qx;1),

let us prove the statement (20).
We follow the lines of Birgé [6] and consider a real number A such that

A ≥ 2

1− λ
. We then decompose the term Eq[Φ

−1
J0
(J1, X1)|J0 = x] into four

18



terms:

Eq[Φ
−1
J0
(J1, X1)|J0 = x] ≤ Eq1 [Φ

−1
J0
(J1, X1)|J0 = x] +

3∑

i=1

∫

Ax;i

(Φ−1
x − 1)(qx − qx;1)dν

:= T0 +
3∑

i=1

Ti,

where

Ax;1 =

{
(y, t) ∈ E × R

+ :

√
qx(y, t)

qx;1(y, t)
> A− 1, Φ−1

x (y, t) > 1

}

Ax;2 =

{
(y, t) ∈ E × R

+ : 1 ≤
√

qx(y, t)

qx;1(y, t)
≤ A− 1, Φ−1

x (y, t) > 1

}

Ax;3 =

{
(y, t) ∈ E × R

+ :

√
qx(y, t)

qx;1(y, t)
< 1, Φ−1

x (y, t) < 1

}
.

For the sake of simplicity, set rx =
qx
qx;1

and start with T0. Due to the

definition of Φ−1
x (·, ·), to Equation (13) and to the concavity of the function

y → sin(αx)y

sin(αxλ)y + sin(αx(1− λ))
, we deduce that

T0 ≤ sin(αx)ρν(Qx;0, Qx;1)

sin(αxλ)ρν(Qx;0, Qx;1) + sin(αx(1− λ))

=
sin(αx) cos(αx)

sin(αxλ) cos(αx) + sin(αx(1− λ))

=
cos(αx)

cos(αxλ)

≤ 1−
(
1− 2λ

1− λ

)
h2ν(Qx;0, Qx;1), (21)

where the last inequality results from both the convexity of the tan function
on ]0, π/2[ and λ < 1/4.

Let us now turn to T1. First note that

Φ−1
x =

sin(αx)
√

qx;0
qx;1

sin(αxλ)
√

qx;0
qx;1

+ sin(αx(1− λ))

≤ sin(αx)

sin(αxλ)
<

1

λ
, (22)

where (22) results from the following inequality

∀ α ∈]0, π/2[, ∀λ ∈]0, 1[, sin(λα)

λ sin(α)
> 1. (23)
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On Ax;1, since rx − 1 <
A

A− 2
(
√
rx − 1)2, then from (22) we obtain,

T1 ≤ A

A− 2

1− λ

λ

∫

Ax;1

(
√
qx −

√
qx;1)

2dν

≤ A

A− 2

1− λ

λ
2h2ν(Qx, Qx;1)−

A

A− 2

1− λ

λ

∫

Ax

(
√
qx −

√
qx;1)

2dν,(24)

where Ax is a subset of A∁
x;1.

Second we study the last two terms T2 and T3. On Ax;2 and Ax;3, we first
apply the Cauchy-Schwarz inequality, i.e., ∀i ∈ {2, 3},
(∫

Ax;i

(Φ−1
x − 1)(rx − 1)qx;1dν

)2

≤
∫

Ax;i

(Φ−1
x − 1)2qx;1dν

∫

Ax;i

(rx − 1)2qx;1dν.

Second we note that∫

Ax;i

(Φ−1
x (·, ·)− 1)2qx;1dν =

∫

Ax;i

(
√
qx;0 −

√
qx;2)

2 qx;1
qx;2

dν

≤ β

∫

Ax;i

(
√
qx;0 −

√
qx;2)

2dν, (25)

where β, the upper bound of
qx;1
qx;2

, is given by β =





1 on Ax;2 since
qx;1
qx;0

< 1,

1

(1− λ)2
on Ax;3 due to (23).

We further note that
∫

Ax;i

(rx − 1)2qx;1(·, ·)dν ≤
{
A2
∫
Ax;2

(
√
qx −√

qx;1)
2dν

22
∫
Ax;3

(
√
qx −√

qx;1)
2dν

.

The latter combined with (25) and since A > 2/(1− λ), entails

T2 + T3 ≤ A
(∫

Ax;2
(
√
qx −√

qx;1)
2dν

∫
Ax;2

(
√
qx;0 −√

qx;2)
2dν
)1/2

+
2

1− λ

(∫

Ax;3

(
√
qx −

√
qx;1)

2dν

∫

Ax;3

(
√
qx;0 −

√
qx;2)

2dν

)1/2

≤ A
(∫

Ax
(
√
qx −√

qx;1)
2dν

∫
Ax;2∪Ax;3

(
√
qx;0 −√

qx;2)
2dν
)1/2

. (26)

From (21), (24) and (26), it follows that

E[Φ−1
J0
(J1, X1)|J0 = x] ≤ 1−

(
1− 2λ

1− λ

)
h2ν(Qx;0, Qx;1) + 2

A

A− 2

1− λ

λ
h2ν(Qx, Qx;1)

− A

A− 2

1− λ

λ

∫

Ax

(
√
qx −

√
qx;1)

2dν

+A

(∫

Ax

(
√
qx −

√
qx;1)

2dν

∫

Ax;2∪Ax;3

(
√
qx;0 −

√
qx;2)

2dν

)1/2

.
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At a next step we consider the following function of zx

zx → − A

A− 2

1− λ

λ
zx + z1/2x A

(∫

Ax;2∪Ax;3

(
√
qx;0 −

√
qx;2)

2dν

)1/2

,

whose maximum is reached at

zx;max =
1

4
(A− 2)2

(
λ

1− λ

)2 ∫

Ax;2∪Ax;3

(
√
qx;0 −

√
qx;2)

2dν.

Hence we obtain a new upper bound of E1[Φ
−1
J0
(J1, X1)|J0 = x], that is

Eq[Φ
−1
J0
(J1, X1)|J0 = x] ≤ 1−

(
1− 2λ

1− λ

)
h2ν(Qx;0, Qx;1) + 2

A

A− 2

1− λ

λ
h2ν(Qx, Qx;1)

+
A(A− 2)

2

λ

1− λ
h2ν(Qx;0, Qx;2)

≤ 1 + 2
A

A− 2

1− λ

λ
h2ν(Qx, Qx;1)− (1− 2λ

1− λ
)h2ν(Qx;0, Qx;1)

+A(A− 2)
λ

1− λ
h2ν(Qx;0, Qx;1) sin

2
(
(1− λ)

π

4

)
,

≤ 1 + 2
A

A− 2

1− λ

λ
h2ν(Qx, Qx;1)

−
(
1− 2λ

1− λ

)[
1− A(A− 2)λ

(1− 3λ)
sin2

(
(1− λ)

π

4

)]
h2ν(Qx;0, Qx;1),

where the penultimate inequality results from the increase of the function

x ∈]0, π/2[→ sin(λx/2)

λ sin(x/2)
for any λ ∈]0, 1].

Finally, by setting A = 8/3 that satisfies A ≥ 2/(1 − λ) and using both

inequalities sin2
(
(1− λ)

π

4

)
< (1− λ)2

(π
4

)2
∀λ ∈]0, 1/4[ and λ(1− λ)2

1− 3λ
<

9

16
∀λ ∈]0, 1/4[, Lemma 1 is proved with ι = π2

16
< 3/4. �

5.4 Proof of Corollary 1

The proof of Corollary 1 is similar to the proof of Lemma 9 in [17]. However,
we sketch it in order to define the statistical test procedure ψ(Hn). First,
consider the partition:

{q ∈ Qn : dν∗(q0, q) > ǫnM} =
⋃

j≥1

{
q ∈ Qn : jǫnM < dν∗(q0, q) ≤ (j + 1)ǫnM

}

=:
⋃

j≥1

Hj.

For ξ ∈]0, 1[, and any j ≥ 1, we consider H̃j , a jǫnξM-net on Hj for the
distance dη∗ satisfying three conditions:
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• ∀q ∈ H̃j, dν∗(q0, q) ≥ jǫnM ;

• ∀q ∈ Hj, ∃qj ∈ H̃j such that dη∗(q, qj) ≤ jǫnξM ;

• logN
(
ǫnMξ, H̃j, dη∗

)
≤ nǫ2n (due to H2).

For j ≥ 1 and any qj,i ∈ H̃j , we then apply Proposition 2 with ǫ = jMǫn
and q1 = qj,i; this implies the existence of a statistical procedure ψj,i(Hn) that
satisfies (6).

We then define our test procedure

ψ(Hn) := max
j≥1

max
qj,i∈H̃j

ψj,i(Hn). (27)

We further combine Assumption H2 and Proposition 2 to obtain for M
large enough

E
(n)
0 [ψ(Hn)] ≤

∞∑

j=1

∑

qj,i∈H̃j

E
(n)
0 [ψj,i(Hn)]

≤ enǫ
2
n

e−Knǫ2nM
2

1− e−Knǫ2nM
2 ≤ e−Knǫ2nM/22 ,

and

sup
q∈

⋃
j≥1 Hj

E
(n)
q [1− ψ(Hn)] ≤ sup

j>1
e−K̃nj2ǫ2nM

2 ≤ e−K̃nǫ2nM
2

.

5.5 Proof of Theorem 1

Let M be a positive constant. We first decompose the right-hand side of (11)
in two parts

ΠHn

n

(
B∁

dν∗
(q0, ǫnM)

)
=ΠHn

n

(
B∁

dν∗
(q0, ǫnM) ∩ Qn

)
+ΠHn

n

(
B∁

dν∗
(q0, ǫnM) ∩ Q∁

n

)

=: A1 + A2. (28)

In the sequel, each term in the right-hand side of (28) is separately bounded
from above: for A1, we apply Corollory 1, whereas to upper bound A2 we use
H3 and H4.

First, let us focus on A1. Recall that Ln(q), the likelihood function of the
sample path Hn evaluated at q ∈ Q, is given by

Ln(q) = ρ̃(J0, S0)

n∏

l=1

qJl−1
(Jl, Xl).
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Then, A1 could be written as follows:

A1 =

∫
B∁

ν∗(q0,ǫnM)∩Qn
Ln(q)dΠn(q)∫

Q
Ln(q)dΠn(q)

=

∫
B∁

ν∗(q0,ǫnM)∩Qn

Ln(q)
Ln(q0)

dΠn(q)
∫
Q

Ln(q)
Ln(q0)

dΠn(q)

:=
Nn

Dn
.

Moreover consider Dn as the following event:

Dn =

{
Dn ≤ e−nǫ2n

2
Πn (U(q0, ǫn))

}
.

By means of the test procedure defined in (27), ψ(Hn), E
(n)
0 (A1) could be

written as follows

E
(n)
0 (A1) = E

(n)
0

(Nn

Dn

)

≤ E
(n)
0 [ψ(Hn)] + E

(n)
0

[
(1− ψ(Hn))

Nn

Dn

{
1IDn

+ 1ID∁
n

}]

≤ E
(n)
0 [ψ(Hn)] + E

(n)
0

[
(1− ψ(Hn))

Nn

Dn

1ID∁
n

]
+ P

(n)
0

(
Dn

)

:= T1 + T2 + T3. (29)

To bound from above E
(n)
0 (A1), it is sufficient to upper bound every term

in the right-hand side of (29).

• Term T1. We apply Corollary 1 and obtain that there exists K > 0
such that

T1 = E
(n)
0 [ψ(Hn)] ≤ e−Knǫ2nM

2

. (30)

• Term T2. We apply once again Corollary 1, which combined with H3
entails that there exists K̃ > 0 such that

T2 ≤
∫

B∁
dν∗

(q0,ǫnM)∩Qn

E
(n)
q [1− ψ(Hn)]dΠn(q)

2

e−nǫ2nΠn

(
U(q0, ǫn)

)

≤ sup
q∈B∁

dν∗
(q0,ǫnM)∩Qn

E
(n)
q [1− ψ(Hn)]

2

e−nǫ2nΠn

(
U(q0, ǫn)

)

≤ e−K̃nǫ2nM
2 2

e−nǫ2nΠn

(
U(q0, ǫn)

)

≤ 2e−(K̃M2−1−c)nǫ2n ≤ 2e−κnǫ2n, (31)

where κ := K̃M2 − 1 − c is positive under the condition that M is
sufficiently large.
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• Term T3. Consider the following subspace of Q

Vn :=
{
q ∈ Q : log

Ln(q)

Ln(q0)
+K(P

(n)
0 ,P(n)

q ) ≥ nǫ2n
2

}
,

and observe that

Dn ≥
∫

U(q0,ǫn)∩Vn

exp
(
log

Ln(q)

Ln(q0)
+K(P

(n)
0 ,P(n)

q )−K(P
(n)
0 ,P(n)

q )
)
dΠn(q)

≥ exp
(−nǫ2n

2

)
Πn

(
U(q0, ǫn) ∩ Vn

)
.

It then follows from Fubini’s theorem and Markov’s inequality that

T3 ≤ P
(n)
0

(
e

−nǫ2n
2 Πn

(
U(q0, ǫn) ∩ Vn

)
≤ e−nǫ2n

2
Πn

(
U(q0, ǫn)

))

= P
(n)
0

(
Πn

(
U(q0, ǫn) ∩ V∁

n

)
≥
(
1− 1

2
e

−nǫ2n
2

)
Πn

(
U(q0, ǫn)

))

≤ 2
(
2− e

−nǫ2n
2

)
Πn

(
U(q0, ǫn)

)E
(n)
0

(
Πn

(
V∁
n ∩ U(q0, ǫn)

))

≤ 2
(
2− e

−nǫ2n
2

)
Πn

(
U(q0, ǫn)

) ×
∫

U(q0,ǫn)

P
(n)
0

(
| log Ln(q0)

Ln(q)
−K(P

(n)
0 ,P(n)

q )| > nǫ2n
2

)
dΠn(q)

≤ 2
(
2− e

−nǫ2n
2

)
Πn

(
U(q0, ǫn)

)
∫

U(q0,ǫn)

V0(P
(n)
0 ,P(n)

q )dΠn(q)
4

n2ǫ4n

≤ 8

nǫ2n
(
2− e

−nǫ2n
2

) . (32)

Third, let us turn to A2 which is rewritten as follows

A2 =

∫
B∁

dν∗
(q0,ǫnM)∩Q∁

n

Ln(q)
Ln(q0)

dΠn(q)
∫
Q

Ln(q)
Ln(q0)

dΠn(q)
:=

Ñn

Dn
.

Then, using Equation (32) and from Assumptions H3 and H4, we obtain

E
(n)
0 (A2) = E

(n)
0

(Ñn

Dn

{
1I
Dn≤

e−nǫ2n
2

Πn

(
U(q0,ǫn)

) + 1I
Dn>

e−nǫ2n
2

Πn

(
U(q0,ǫn)

)
})

≤ P
(n)
0

(
Dn

)
+ E

(n)
0

(
Ñn

) 2

e−nǫ2nΠn

(
U(q0, ǫn)

)

≤ P
(n)
0

(
Dn

)
+Πn

(
Q∁

n

) 2

e−nǫ2nΠn

(
U(q0, ǫn)

)

≤ 8

nǫ2n
(
2− e

−nǫ2n
2

) + 2e−(c+1)nǫ2n . (33)
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Finally, Inequalities (30)–(33) lead to the desired result (11).
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[27] Lévy, P. (1954). Processus semi-markoviens. Proc. Int. Cong. Math. (Am-
sterdam, 416–426.
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