U. S. Schubert and C. Eschbaumer, Macromolecules Containing Bipyridine and Terpyridine Metal Complexes: Towards Metallosupramolecular Polymers, Angew. Chem. Int. Ed, vol.41, pp.2892-2926, 2002.

D. M. Peloquin and T. A. Schmedake, Recent advances in hexacoordinate silicon with pyridinecontaining ligands: Chemistry and emerging applications, Coord. Chem. Rev, vol.323, pp.107-119, 2016.

P. A. Gray, K. D. Krause, N. Burford, and B. O. Patrick, Cationic 2,2'-bipyridine complexes of germanium(II) and tin(II), vol.46, pp.8363-8366, 2017.

A. Barbieri, G. Accorsi, and N. Armaroli, Luminescent complexes beyond the platinum group: the d 10 avenue, Chem. Commun, pp.2185-2193, 2008.

R. D. Costa, E. Orti, H. J. Bolink, F. Monti, G. Accorsi et al., Luminescent Ionic TransitionMetal Complexes for Light-Emitting Electrochemical Cells, Angew. Chem. Int. Ed, vol.51, pp.8178-8211, 2012.

L. Bozec, H. Guerchais, and V. , Photochromic bipyridyl metal complexes: Photoregulation of the nonlinear optical and/or luminescent properties, C. R. Chimie, vol.16, pp.1172-1182, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00947160

P. H. Budzelaar, B. De-bruin, A. W. Gal, K. Wieghardt, and J. H. Van-lenthe, Metal-to-Ligand Electron Transfer in Diiminopyridine Complexes of Mn-Zn. A Theoretical Study, Inorg. Chem, vol.40, pp.4649-4655, 2001.

S. Ghosh, A. Rahaman, K. B. Holt, E. Nordlander, M. G. Richmond et al., Hydrogenase biomimetics with redox-active ligands: Electrocatalytic proton reduction by, Polyhedron, vol.116, pp.127-135, 2016.

S. I. Kalläne and M. Van-gastel, Raman Spectroscopy as a Method to Investigate Catalytic Intermediates: CO 2 Reducing [Re(Cl)(bpy-R)(CO) 3 ] Catalyst, J. Phys. Chem. A, vol.120, pp.7465-7474, 2016.

A. J. Cohen, P. Mori-sanchez, and W. Yang, Insights into current limitations of density functional theory, Science, vol.321, pp.792-794, 2008.

M. J. Peach and D. J. Tozer, Overcoming Low Orbital Overlap and Triplet Instability Problems in TDDFT, J. Phys. Chem. A, vol.116, pp.9783-9789, 2012.

A. D. Laurent, D. Jacquemin, . Td-dft, and . Benchmarks, A Review. Int. J. Quantum Chem, vol.113, pp.2019-2039, 2013.

S. A. Mewes, F. Plasser, and A. Dreuw, Exciton analysis in time-dependent density functional theory: How functionals shape excited-state characters, J. Chem. Phys, p.171101, 2015.

A. I. Gilson, G. Van-der-rest, J. Chamot-rooke, W. Kurlancheek, M. Head-gordon et al., Ground Electronic State of Peptide Cation Radicals: A Delocalized Unpaired Electron?, J. Phys. Chem. Lett, vol.2, pp.1426-1431, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00594789

V. Riffet, D. Jacquemin, E. Cauët, G. Frison, V. Riffet et al., Benchmarking DFT and TD-DFT Functionals for the Ground and Excited States of Hydrogen-Rich Peptide Radicals, J. Chem. Theory Comput, vol.10, pp.28-38, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01016685

D. C. Ashley and M. H. Baik, The Electronic Structure of [Mn(V)=O]: What is the Connection between Oxyl Radical Character, Physical Oxidation State, and Reactivity? ACS Catal, vol.6, pp.7202-7216, 2016.

J. Conradie, A. Ghosh, K. Boguslawski, C. R. Jacob, and M. Reiher, Can DFT Accurately Predict Spin Densities? Analysis of Discrepancies in Iron Nitrosyl Complexes, J. Chem. Theory Comput, vol.111, pp.2740-2752, 2007.

G. V. Baryshnikov, B. F. Minaev, A. A. Slepets, and V. A. Minaeva, A study of the role played by the Hartree-Fock orbital exchange in the formation of the energy of the first singlet charge-transfer excited state by the example of JK-62 and JK-201 sensitizing dye molecules, Opt. Spectrosc, vol.116, pp.431-437, 2014.

E. I. Ioannidis and H. J. Kulik, Ligand-field-dependent behavior of meta-GGA exchange in transitionmetal complex spin-state ordering, J. Phys. Chem. A, vol.121, pp.874-884, 2017.

B. Minaev, A. Baryshnikova, and W. H. Sun, Spin-dependent effects in ethylene polymerization with bis(imino)pyridine iron(II) complexes, J. Organomet. Chem, vol.811, pp.48-65, 2016.

C. C. Scarborough, S. Sproules, C. J. Doonan, K. S. Hagen, T. Weyhermüller et al., Scrutinizing Low-Spin Cr(II) Complexes, Noninnocent Behavior of Nitrosoarene-Pyridine Hybrid Ligands: Ruthenium Complexes Bearing a, vol.51, pp.214-217, 2012.

M. Wang, J. England, T. Weyhermüller, S. L. Kokatam, C. J. Pollock et al., New Complexes of Chromium(III) Containing Organic ?-Radical Ligands: An Experimental and Density Functional Theory Study, Inorg. Chem, vol.52, pp.4472-4487, 2013.

M. J. Bezdek, S. Guo, and P. J. Chirik, Terpyridine Molybdenum Dinitrogen Chemistry: Synthesis of Dinitrogen Complexes That Vary by Five Oxidation States, Inorg. Chem, vol.55, pp.3117-3127, 2016.

S. Sinha, S. Das, R. Sikari, S. Parua, P. Brandao et al., Redox Noninnocent Azo-Aromatic Pincers and Their Iron Complexes. Isolation, Characterization, and Catalytic Alcohol Oxidation, Inorg. Chem, vol.56, pp.14084-14100, 2017.

S. P. Rath, D. Sengupta, P. Ghosh, R. Bhattacharjee, M. Chakraborty et al., Effects of Ancillary Ligands on Redox and Chemical Properties of Ruthenium Coordinated Azoaromatic Pincer, Inorg. Chem, vol.57, pp.11995-12009, 2018.

A. S. Gowda, J. L. Petersen, and C. Milsmann, Redox Chemistry of Bis(pyrrolyl)pyridine Chromium and Molybdenum Complexes: An Experimental and Density Functional Theoretical Study

;. Chem, J. F. Lefebvre, J. Schindler, P. Traber, Y. Zhang et al., An artificial photosynthetic system for photoaccumulation of two electrons on a fused dipyridophenazine (dppz)-pyridoquinolinone ligand, Chem. Sci, vol.57, pp.143-151, 1919.

K. Pierloot and S. Vancoillie, T 2g ) and low

. 2+, P. Milko, and M. A. Iron, On the innocence of bipyridine ligands: how well do DFT functionals fare for these challenging spin systems?, J. Chem. Theory Comput, vol.125, pp.220-235, 2006.

T. Zell, P. Milko, K. L. Fillman, Y. Diskin-posner, T. Bendikov et al., Iron dicarbonyl complexes featuring bipyridine-based PNN pincer ligands with short interpyridine C-C bond lengths: innocent or non-innocent ligand?, J. Phys. Chem. A, vol.20, pp.5932-5939, 2014.

C. Stroh, E. Belorizky, P. Turek, H. Bolvin, R. Ziessel et al., Aminomethyl-bipyridine bearing two flexible nitronyl-nitroxide arms: a new podand for complexation of transition metals in a facial or meridional conformation, Eur. J. Inorg. Chem, vol.42, issue.74, pp.1256-1267, 2003.

A. M. Mcdaniel, H. W. Tseng, N. H. Damrauer, and M. P. Shores, Synthesis and Solution Phase Characterization of Strongly Photooxidizing Heteroleptic Cr(III) Tris-Dipyridyl Complexes, Inorg. Chem, vol.49, pp.7981-7991, 2010.

M. Katari, E. Nicol, V. Steinmetz, G. Van-der-rest, D. Carmichael et al., Improved Infrared Spectra Prediction by DFT from a New Experimental Database, Chem. Eur. J, vol.23, pp.8414-8423, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01673625

C. Fontanesi, R. Benassi, R. Giovanardi, M. Marcaccio, F. Paolucci et al., Computational electrochemistry. Ab initio calculation of solvent effect in the multiple electroreduction of polypyridinic compounds, J. Mol. Struct, vol.612, pp.277-286, 2002.

L. Chiang, K. Herasymchuk, F. Thomas, and T. Storr, Influence of Electron-Withdrawing Substituents on the Electronic Structure of Oxidized Ni and Cu Salen Complexes, Inorg. Chem, vol.54, pp.5970-5980, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01651087

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2013.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, vol.38, pp.3098-3100, 1988.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, J. Chem. Phys, vol.37, pp.5648-5652, 1988.

T. Yanai, D. Tew, and N. Handy, A new hybrid exchange-correlation functional using the Coulombattenuating method (CAM-B3LYP), Chem. Phys. Lett, vol.393, pp.51-57, 2004.

H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, A long-range correction scheme for generalizedgradient-approximation exchange functionals, J. Chem. Phys, vol.115, pp.3540-3544, 2001.

Y. Zhao and D. G. Truhlar, A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions, J. Chem. Phys, p.125, 2006.

Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc, vol.120, pp.215-241, 2008.

Y. Zhao and D. G. Truhlar, Comparative DFT study of van der Waals complexes: Rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers, J. Phys. Chem, vol.110, pp.5121-5129, 2006.

J. D. Chai and M. Head-gordon, Long-range corrected hybrid density functionals with damped atomatom dispersion corrections, Phys. Chem. Chem. Phys, vol.10, pp.6615-6620, 2008.

J. D. Chai and M. Head-gordon, Systematic optimization of long-range corrected hybrid density functionals, J. Chem. Phys, p.84106, 2008.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys, vol.110, pp.6158-6169, 1999.

J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids, Phys. Rev. Lett, p.146401, 2003.

V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes, J. Chem. Phys, vol.119, p.12129, 2003.

R. Peverati and D. G. Truhlar, Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation, J. Phys. Chem. Lett, vol.2, pp.2810-2817, 2011.

F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys, vol.7, pp.3297-3305, 2005.

G. D. Purvis and R. J. Bartlett, A full coupled-cluster singles and doubles model: The inclusion of disconnected triples, J. Chem. Phys, vol.76, pp.1910-1918, 1982.

O. Christiansen, H. Koch, and P. Jørgensen, The second-order approximate coupled cluster singles and doubles model CC2, Chem. Phys. Lett, vol.243, p.3, 1995.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb et al., , 2016.

. Turbomole-v7, TURBOMOLE GmbH, since, 1989.

R. M. Parrish, L. A. Burns, D. G. Smith, A. C. Simmonett, I. Deprince et al., Psi4 1.1: An OpenSource Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability, J. Chem. Theory Comput, vol.13, pp.3185-3197, 2017.

S. Budzak, G. Scalmani, D. Jacquemin, E. Brémond, M. Savarese et al., Accurate Excited-State Geometries: A CASPT2 and Coupled-Cluster Reference Database for Small Molecules, J. Chem. Theory Comput, vol.13, pp.3715-3727, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02141029

T. Helgaker, J. Gauss, P. Jorgensen, and J. Olsen, The prediction of molecular equilibrium structures by the standard electronic wave functions, J. Chem. Phys, vol.106, pp.6430-6440, 1997.

, ·-could not be obtained at the CCSD(Full)/6-311G(d,p) level due to excessive memory requirement

A. E. Reed, R. B. Weinstock, and F. Weinhold, Natural localized molecular orbitals, J. Chem. Phys, vol.83, pp.1736-1740, 1985.

F. Neese, Software update: the ORCA program system, WIREs Comput. Mol. Sci, 1327.

S. Grimme, A. Hansen, C. A. Bauer, A. Hansen, and S. Grimme, The fractional occupation number weighted density as a versatile analysis tool for molecules with a complicated electronic structure, Angew. Chem. Int. Ed, vol.54, pp.6150-6164, 2015.

M. Witwicki, A. Iam, M. Wolf, C. Wilfer, D. Schaniel et al., Density functional theory and ab initio studies on hyperfine coupling constants of phosphinyl radicals, Klüfers, P. {FeNO} 7 -type halogenido nitrosyl ferrates: syntheses, bonding, and photoindiced linkage isomerism, vol.118, pp.1304-1325, 2018.

G. Chung and D. Lee, Molecular Structures of 2,2-Bipyridine and Its Anion Radical: Multiconfiguration-SCF Calculations, Bull. Korean, Chem. Soc, vol.29, pp.2419-2422, 2008.

D. G. Artiukhin, C. J. Stein, M. Reiher, and J. Neugebauer, Quantum Chemical Spin Densities for Radical Cations of Photosynthetic Pigment Models, Photochem. Photobiol, vol.93, pp.815-833, 2017.