N. Ahmed, A. Linke, and C. Merdon, Towards pressure-robust mixed methods for the incompressible Navier-Stokes equations, Comput. Methods Appl. Math, vol.18, pp.353-372, 2018.

D. Arnold, Finite Element Exterior Calculus, SIAM, pp.978-979, 2018.

L. Beirão-da-veiga, F. Dassi, and G. Vacca, The Stokes complex for Virtual Elements in three dimensions, 2019.

L. Beirão-da-veiga, C. Lovadina, and G. Vacca, Divergence free Virtual Elements for the Stokes problem on polygonal meshes, ESAIM: Math. Model. Numer. Anal. (M2AN), vol.51, pp.509-535, 2017.

L. Beirão-da-veiga, C. Lovadina, and G. Vacca, Virtual Elements for the Navier-Stokes Problem on Polygonal Meshes, In: SIAM J. Numer. Anal, vol.56, pp.1210-1242, 2018.

D. Boffi, F. Brezzi, and M. Fortin, Mixed finite element methods and applications, Springer Series in Computational Mathematics, vol.44, p.685, 2013.

L. Botti, D. A. Di-pietro, and J. Droniou, A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device, Journal of Computational Physics, vol.376, p.10, 2019.

S. C. Brenner and R. Scott, The mathematical theory of finite element methods. Third, Texts in Applied Mathematics, vol.15, 2008.

A. Çe?melio?lu, B. Cockburn, N. C. Nguyen, and J. Peraire, Analysis of HDG methods for Oseen equations, J. Sci. Comput, vol.55, pp.392-431, 2013.

L. Chen and F. Wang, A Divergence Free Weak Virtual Element Method for the Stokes Problem on Polytopal Meshes, Journal of Scientific Computing, vol.78, pp.864-886, 2019.

P. G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics. Reprint of the 1978 original, vol.40

P. A. Philadelphia, Society for Industrial and Applied Mathematics, issue.SIAM, pp.0-89871, 2002.

B. Cockburn, N. C. Nguyen, and J. Peraire, A comparison of HDG methods for Stokes flow, J. Sci. Comput, vol.45, pp.215-237, 2010.

M. Crouzeix and P. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Modél. Math. Anal. Num, vol.7, issue.3, pp.33-75, 1973.

D. A. Di-pietro and J. Droniou, The Hybrid High-Order Method for Polytopal Meshes -Design, Analysis and Applications. Submitted, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02151813

D. A. Di-pietro and R. Tittarelli, Numerical Methods for PDEs. State of the Art Techniques, pp.978-981, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01818426

D. A. Di-pietro, A. Ern, A. Linke, and F. Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem, Computer Methods in Applied Mechanics and Engineering, vol.306, pp.175-195, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01244387

D. A. Di-pietro and J. Droniou, A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes, In: Math. Comp, vol.86, pp.2159-2191, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01183484

D. A. Di-pietro and S. Krell, A Hybrid High-Order Method for the Steady Incompressible Navier-Stokes Problem, Journal of Scientific Computing, vol.74, pp.1677-1705, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01349519

T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces, In: Math. Comput, vol.34, pp.441-463, 1980.

E. Erturk, T. C. Corke, and C. Gökçöl, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds, Int. J. Numer. Meth. Fluids, vol.48, pp.747-774, 2005.

G. N. Gatica, A Simple Introduction to the Mixed Finite Element Method: Theory and Applications, SpringerBriefs in Mathematics, 2014.

U. Ghia, K. Ghia, and C. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys, vol.48, pp.387-411, 1982.

G. Giorgiani, S. Fernández-méndez, and A. Huerta, Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations, vol.98, pp.196-208, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01717504

B. Guennebaud and G. Jacob, Eigen v3, 2010.

V. John, Finite Element Methods for Incompressible Flow Problems, 2016.

C. Kelley and D. Keyes, Convergence analysis of pseudo-transient continuation, SIAM Journal on Numerical Analysis, vol.35, pp.508-523, 1998.

L. I. Kovasznay, Laminar flow behind a two-dimensional grid, Proceedings of the Cambridge Philosophical Society, vol.44, pp.58-62, 1948.

A. Linke and C. Merdon, On velocity errors due to irrotational forces in the Navier-Stokes momentum balance, Journal of Computational Physics, vol.313, pp.654-661, 2016.

A. Linke and C. Merdon, Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg, vol.311, pp.304-326, 2016.
DOI : 10.1016/j.cma.2016.08.018

A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Engrg, vol.268, pp.782-800, 2014.

W. A. Mulder and B. Van-leer, Experiments with implicit upwind methods for the Euler equations, J. Comput. Phys, vol.59, pp.232-246, 1985.
DOI : 10.1016/0021-9991(85)90144-5

J. C. Nédélec, Mixed Finite Elements in R 3, Numer. Math, vol.35, pp.315-341, 1980.

W. Qiu and K. Shi, A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes, IMA J. Numer. Anal, vol.36, pp.1943-1967, 2016.

P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, vol.606, pp.292-315, 1977.

O. Schenk, K. Gärtner, W. Fichtner, and A. Stricker, Pardiso: A high-performance serial and parallel sparse linear solver in semiconductor device simulation, Future Gener. Comput. Syst. 18, vol.1, pp.76-81, 2001.
DOI : 10.1016/s0167-739x(00)00076-5

M. P. Ueckermann and P. F. Lermusiaux, Hybridizable discontinuous Galerkin projection methods for NavierStokes and Boussinesq equations, J. Comput. Phys, vol.306, pp.390-421, 2016.
DOI : 10.1016/j.jcp.2015.11.028

URL : https://manuscript.elsevier.com/S0021999115007688/pdf/S0021999115007688.pdf