, E-mail: norbert.rolland@cea.fr. ? Present address: INRA-UR1268 BIA, Plate-forme BIBS, rue de la Gé raudiè re, p.44316

D. Leister, O. Trentmann, and I. Haferkamp, Current progress in tonoplast proteomics reveals insights into the function of the large central vacuole, Front. Plant Sci, vol.4, p.34, 1000.

S. B. Gould, R. F. Waller, and G. I. Mcfadden, Plastid evolution, Ann. Rev. Plant Biol, vol.59, pp.491-517, 2008.

K. Cline, D. , and C. , Plastid protein import and sorting: different paths to the same compartments, Current Opinion Plant Biol, vol.11, pp.585-592, 2008.

P. Jarvis and E. Lopez-juez, Biogenesis and homeostasis of chloroplasts and other plastids, Nature Rev. Mol. Cell Biol, vol.14, pp.787-802, 2013.

H. M. Li and C. C. Chiu, Protein transport into chloroplasts, Ann. Rev. Plant Biol, vol.61, pp.157-180, 2010.

W. Sakamoto, S. Y. Miyagishima, J. , and P. , Chloroplast biogenesis: control of plastid development, protein import, division and inheritance, Arabidopsis Book, vol.6, p.110, 2008.

M. A. Block, R. Douce, J. Joyard, R. , and N. , Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol, Photosynthesis Res, vol.92, pp.225-244, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00168282

N. Rolland, G. Curien, G. Finazzi, M. Kuntz, E. Marechal et al., The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes, Ann. Rev. Gen, vol.46, pp.233-264, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00744117

J. Joyard, M. Block, B. Pineau, C. Albrieux, and R. Douce, Envelope membranes from mature spinach chloroplasts contain a NADPH: protochlorophyllide reductase on the cytosolic side of the outer membrane, J. Biol. Chem, vol.265, pp.21820-21827, 1990.

G. K. Agrawal, J. Bourguignon, N. Rolland, G. Ephritikhine, M. Ferro et al., Plant organelle proteomics: collaborating for optimal cell function, Mass Spectrometry Rev, vol.30, pp.772-853, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00586636

M. Ferro, S. Brugiere, D. Salvi, D. Seigneurin-berny, M. Court et al., AT_ CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins, Mol. Cell. Proteomics, vol.9, pp.1063-1084, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00470319

K. S. Lilley and P. Dupree, Plant organelle proteomics, Curr. Opin. Plant Biol, vol.10, pp.594-599, 2007.

S. Simm, D. G. Papasotiriou, M. Ibrahim, M. S. Leisegang, B. Muller et al., Defining the core proteome of the chloroplast envelope membranes, Front. Plant Sci, vol.4, p.11, 2013.

G. W. Mann, P. C. Calley, H. J. Joshi, and J. L. Heazlewood, MASCP gator: an overview of the Arabidopsis proteomic aggregation portal, Front. Plant Sci, vol.4, p.411, 2013.

J. L. Heazlewood, R. E. Verboom, J. Tonti-filippini, I. Small, and A. H. Millar, SUBA: the Arabidopsis Subcellular Database, Nucleic Acids Res, vol.35, pp.213-218, 2007.

I. Bouchnak, L. Moyet, D. Salvi, M. Kuntz, R. et al., Preparation of Chloroplast Sub-compartments from Arabidopsis for the Analysis of Protein Localization by Immunoblotting or, Proteomics. J. Visualized Exp, vol.19, p.58581, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02046463

Y. Yamaryo, E. Dubots, C. Albrieux, B. Baldan, and M. A. Block, Phosphate availability affects the tonoplast localization of PLDzeta2, an Arabidopsis thaliana phospholipase D, FEBS Lett, vol.582, pp.685-690, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00274758

N. Chua, Electrophoretic analysis of chloroplast proteins, Methods Enzymol, vol.40, pp.434-446, 1980.

D. Seigneurin-berny, A. Gravot, P. Auroy, C. Mazard, A. Kraut et al., HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions, J. Biol. Chem, vol.281, pp.2882-2892, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00764319

M. Betz and K. J. Dietz, Immunological characterization of two dominant tonoplast polypeptides, Plant Physiol, vol.97, pp.1294-1301, 1991.

D. Fermin, V. Basrur, A. K. Yocum, and A. I. Nesvizhskii, Abacus: a computational tool for extracting and pre-processing spectral count data for label-free quantitative proteomic analysis, Proteomics, vol.11, pp.1340-1345, 2011.

J. A. Vizcaino, A. Csordas, N. Del-toro, J. A. Dianes, J. Griss et al., update of the PRIDE database and its related tools, Nucleic Acids Res, vol.44, p.11033, 2016.

C. Ramus, A. Hovasse, M. Marcellin, A. M. Hesse, E. Mouton-barbosa et al., Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset, J. Proteomics, vol.132, pp.51-62, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02083890

W. Chiu, Y. Niwa, W. Zeng, T. Hirano, H. Kobayashi et al., Engineered GFP as a vital reporter in plants, Curr. Biol, vol.6, pp.325-330, 1996.

S. J. Clough and A. F. Bent, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

M. Ferro, D. Salvi, S. Brugiere, S. Miras, S. Kowalski et al., Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana, Mol. Cell. Proteomics, vol.2, pp.325-345, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02671525

O. Emanuelsson, H. Nielsen, and G. Heijne, ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites, Protein Sci, vol.8, pp.978-984, 1999.

O. Emanuelsson, H. Nielsen, S. Brunak, and G. Heijne, Predicting subcellular localization of proteins based on their N-terminal amino acid sequence, J. Mol. Biol, vol.300, pp.1005-1016, 2000.

S. K. Tanz, I. Castleden, I. D. Small, and A. H. Millar, Fluorescent protein tagging as a tool to define the subcellular distribution of proteins in plants, Front. Plant Sci, vol.4, p.214, 2013.

H. J. Joshi, M. Hirsch-hoffmann, K. Baerenfaller, W. Gruissem, S. Baginsky et al., MASCP Gator: an aggregation portal for the visualization of Arabidopsis proteomics data, Plant Physiol, vol.155, pp.259-270, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00556644

K. Pohlmeyer, J. Soll, R. Grimm, K. Hill, and R. Wagner, A high-conductance solute channel in the chloroplastic outer envelope from Pea, Plant Cell, vol.10, pp.1207-1216, 1998.

A. Hiltbrunner, K. Grunig, M. Alvarez-huerta, S. Infanger, J. Bauer et al., AtToc90, a new GTP-binding component of the Arabidopsis chloroplast protein import machinery, Plant Mol. Biol, vol.54, pp.427-440, 2004.

S. Kubis, R. Patel, J. Combe, J. Bedard, S. Kovacheva et al., Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors, Plant Cell, vol.16, pp.2059-2077, 2004.

Q. Ling, W. Huang, A. Baldwin, J. , and P. , Chloroplast biogenesis is regulated by direct action of the ubiquitin-proteasome system, Science, vol.338, pp.655-659, 2012.

A. R. Kasmati, M. Topel, R. Patel, G. Murtaza, J. et al., Molecular and genetic analyses of Tic20 homologues in Arabidopsis thaliana chloroplasts, Plant J, vol.66, pp.877-889, 2011.

Y. Hirabayashi, S. Kikuchi, M. Oishi, and M. Nakai, In vivo studies on the roles of two closely related Arabidopsis Tic20 proteins, AtTic20-I and AtTic20-IV, Plant Cell Physiol, vol.52, pp.469-478, 2011.

X. Lu, D. Zhang, S. Li, Y. Su, Q. Liang et al., FtsHi4 is essential for embryogenesis due to its influence on chloroplast development in Arabidopsis, PloS One, vol.9, p.99741, 2014.

E. Nielsen, M. Akita, J. Davila-aponte, and K. Keegstra, Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone, EMBO J, vol.16, pp.935-946, 1997.

J. C. Moreno, N. Tiller, M. Diez, D. Karcher, M. Tillich et al., Generation and characterization of a collection of knock-down lines for the chloroplast Clp protease complex in tobacco, J. Exp. Botany, vol.68, pp.2199-2218, 2017.

T. Tzvetkova-chevolleau, C. Hutin, L. D. Noel, R. Goforth, J. P. Carde et al., Canonical signal recognition particle components can be bypassed for posttranslational protein targeting in chloroplasts, Plant Cell, vol.19, pp.1635-1648, 2007.

T. P. Dunkley, S. Hester, I. P. Shadforth, J. Runions, T. Weimar et al., Mapping the Arabidopsis organelle proteome, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.6518-6523, 2006.

N. Fourrier, J. Bedard, E. Lopez-juez, A. Barbrook, J. Bowyer et al., A role for SENSITIVE TO FREEZING2 in protecting chloroplasts against freeze-induced damage in Arabidopsis, Plant J, vol.55, pp.734-745, 2008.

H. Maeda, T. L. Sage, G. Isaac, R. Welti, and D. Dellapenna, Tocopherols modulate extraplastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature, Plant Cell, vol.20, pp.452-470, 2008.

G. Friso, L. Giacomelli, A. J. Ytterberg, J. B. Peltier, A. Rudella et al., In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database, Plant Cell, vol.16, pp.478-499, 2004.

B. Ren, Q. Chen, S. Hong, W. Zhao, J. Feng et al., The Arabidopsis eukaryotic translation initiation factor eIF5A-2 regulates root protoxylem development by modulating cytokinin signaling, Plant Cell, vol.25, pp.3841-3857, 2013.

Y. B. Teng, X. X. Ma, Y. X. He, Y. L. Jiang, J. Du et al., Crystal structure of Arabidopsis translation initiation factor eIF-5A2, Proteins, vol.77, pp.736-740, 2009.

F. K. Breuers, A. Brautigam, S. Geimer, U. Y. Welzel, G. Stefano et al., dynamic remodeling of the plastid envelope membranes -a tool for chloroplast envelope in vivo localizations, Front. Plant Sci, vol.3, p.7, 2012.

S. C. Maughan, M. Pasternak, N. Cairns, G. Kiddle, T. Brach et al., Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.2331-2336, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02666686

T. Furumoto, T. Yamaguchi, Y. Ohshima-ichie, M. Nakamura, Y. Tsuchida-iwata et al., A plastidial sodium-dependent pyruvate transporter, Nature, vol.476, pp.472-475, 2011.

N. Li, I. L. Gugel, P. Giavalisco, V. Zeisler, L. Schreiber et al., FAX1, a novel membrane protein mediating plastid fatty acid export, PLoS Biol, vol.13, p.1002053, 2015.

B. Agne, D. Kohler, and S. Baginsky, Protein import-independent functions of Tic56, a component of the 1-MDa translocase at the inner chloroplast envelope membrane, Plant Signaling Behavior, vol.12, p.1284726, 2017.

B. Bolter and J. Soll, Ycf1/Tic214 is not essential for the accumulation of plastid proteins, Mol. Plant, vol.10, pp.219-221, 2017.

S. Kikuchi, J. Bedard, M. Hirano, Y. Hirabayashi, M. Oishi et al., Uncovering the protein translocon at the chloroplast inner envelope membrane, Science, vol.339, pp.571-574, 2013.

M. Nakai, The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts, Biochim. Biophys. Acta, vol.1847, pp.957-967, 2015.

Y. L. Chen, L. J. Chen, C. C. Chu, P. K. Huang, J. R. Wen et al., Tic236 links the outer and inner membrane translocons of the chloroplast, Nature, vol.564, pp.125-129, 2018.

K. Vom-dorp, G. Holzl, C. Plohmann, M. Eisenhut, M. Abraham et al., Remobilization of phytol from chlorophyll degradation is essential for tocopherol synthesis and growth of Arabidopsis, Plant Cell, vol.27, pp.2846-2859, 2015.

G. Curien, C. Giustini, J. L. Montillet, Y. M. Mas, D. Cobessi et al., The chloroplast membrane associated ceQORH putative quinone oxidoreductase reduces long-chain, stress-related oxidized lipids, Phytochemistry, vol.122, pp.45-55, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01256723

Y. M. Mas, G. Curien, C. Giustini, N. Rolland, J. L. Ferrer et al., Crystal structure of the chloroplastic oxoene reductase ceQORH from Arabidopsis thaliana, Front. Plant Sci, vol.8, p.329, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01494299

Y. Li and J. R. Martin, Identification of putative substrates of SEC2, a chloroplast inner envelope translocase, Plant Physiol, vol.173, pp.2121-2137, 2017.

Y. Li, R. Singhal, I. W. Taylor, P. H. Mcminn, X. Y. Chua et al., The Sec2 translocase of the chloroplast inner envelope contains a unique and dedicated SECE2 component, Plant J, vol.84, pp.647-658, 2015.

C. A. Skalitzky, J. R. Martin, J. H. Harwood, J. J. Beirne, B. J. Adamczyk et al., Plastids contain a second sec translocase system with essential functions, Plant Physiol, vol.155, pp.354-369, 2011.

N. Rolland, A. J. Dorne, G. Amoroso, D. F. Sultemeyer, J. Joyard et al., Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast of Chlamydomonas, EMBO J, vol.16, pp.6713-6726, 1997.

I. Stenzel, B. Hause, O. Miersch, T. Kurz, H. Maucher et al., Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana, Plant Mol. Biol, vol.51, pp.895-911, 2003.

F. Schaller, P. Zerbe, S. Reinbothe, C. Reinbothe, E. Hofmann et al., The allene oxide cyclase family of Arabidopsis thaliana: localization and cyclization, FEBS J, vol.275, pp.2428-2441, 2008.

U. Armbruster, L. R. Carrillo, K. Venema, L. Pavlovic, E. Schmidtmann et al., Ion antiport accelerates photosynthetic acclimation in fluctuating light environments, Nat. Commun, vol.5, p.5439, 2014.

M. N. Aranda-sicilia, O. Cagnac, S. Chanroj, H. Sze, M. P. Rodriguez-rosales et al., Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K(?)/H(?) antiporter with a chloroplast transit peptide, Biochim. Biophys. Acta, vol.1818, pp.2362-2371, 2012.

S. Zheng, T. Pan, L. Fan, and Q. S. Qiu, A novel AtKEA gene family, homolog of bacterial K?/H? antiporters, plays potential roles in K? homeostasis and osmotic adjustment in Arabidopsis, PloS One, vol.8, p.81463, 2013.

T. Miyaji, T. Kuromori, Y. Takeuchi, N. Yamaji, K. Yokosho et al., ) AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis, Nat. Commun, vol.6, p.5928, 2015.

P. Jarvis, L. J. Chen, H. Li, C. A. Peto, C. Fankhauser et al., An Arabidopsis mutant defective in the plastid general protein import apparatus, Science, vol.282, pp.100-103, 1998.

S. Kubis, A. Baldwin, R. Patel, A. Razzaq, P. Dupree et al., The Arabidopsis ppi1 mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins, Plant Cell, vol.15, pp.1859-1871, 2003.

M. Nakai, YCF1: A Green TIC: Response to the de Vries et al. Commentary, Plant Cell, vol.27, pp.1834-1838, 2015.

J. Mizoi, M. Nakamura, and I. Nishida, Defects in CTP:PHOSPHO-RYLETHANOLAMINE CYTIDYLYLTRANSFERASE affect embryonic and postembryonic development in Arabidopsis, Plant Cell, vol.18, pp.3370-3385, 2006.

C. P. Lee, G. Maksaev, G. S. Jensen, M. W. Murcha, M. E. Wilson et al., MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress, Plant J, vol.88, pp.809-825, 2016.

T. A. Schaedler, J. D. Thornton, I. Kruse, M. Schwarzlander, A. J. Meyer et al., A conserved mitochondrial ATPbinding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly, J. Biol. Chem, vol.289, pp.23264-23274, 2014.

B. Ma, D. Qian, Q. Nan, C. Tan, L. An et al., Arabidopsis vacuolar H?-ATPase (V-ATPase) B subunits are involved in actin cytoskeleton remodeling via binding to, bundling, and stabilizing F-actin, J. Biol. Chem, vol.287, pp.19008-19017, 2012.

J. Jouhet and J. C. Gray, Is chloroplast import of photosynthesis proteins facilitated by an actin-TOC-TIC-VIPP1 complex?, Plant Signaling Behavior, vol.4, pp.986-988, 2009.

P. Jarvis, Targeting of nucleus-encoded proteins to chloroplasts in plants, New Phytol, vol.179, pp.257-285, 2008.

M. A. Block, J. , and J. , Lipid trafficking at endoplasmic reticulum-chloroplast membrane contact sites, Current Opinion Cell Biol, vol.35, pp.21-29, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01141188

Y. C. Hsueh, C. Ehmann, N. Flinner, R. Ladig, and E. Schleiff, The plastid outer membrane localized LPTD1 is important for glycerolipid remodelling under phosphate starvation, Plant, Cell Environment, vol.40, pp.1643-1657, 2017.

M. Reichel and Y. Liao, In Planta Determination of the mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings, Plant Cell, vol.28, pp.2435-2452, 2016.

V. A. Gold, P. Chroscicki, P. Bragoszewski, and A. Chacinska, Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryo-tomography, EMBO Reports, vol.18, pp.1786-1800, 2017.

E. Blee, J. , and J. , Envelope Membranes from Spinach Chloroplasts Are a Site of Metabolism of Fatty Acid Hydroperoxides, Plant Physiol, vol.110, pp.445-454, 1996.

J. E. Froehlich, A. Itoh, and G. A. Howe, Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope, Plant Physiol, vol.125, pp.306-317, 2001.

Q. Ling, W. Broad, R. Trö-sch, M. Tö-pel, T. Sert et al., Ubiquitin-dependent chloroplastassociated protein degradation in plants, Science, vol.363, p.6429, 2019.

C. S. Lisenbee, M. J. Lingard, and R. N. Trelease, Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase, Plant J, vol.43, pp.900-914, 2005.

H. Gao and J. Metz, In vivo quantification of peroxisome tethering to chloroplasts in tobacco epidermal cells using optical tweezers, Plant Physiol, vol.170, pp.263-272, 2016.

C. M. Hooper, S. K. Tanz, I. R. Castleden, M. A. Vacher, I. D. Small et al., SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome, Bioinformatics, vol.30, pp.3356-3364, 2014.

M. Tomizioli, C. Lazar, S. Brugiere, T. Burger, D. Salvi et al., Deciphering thylakoid sub-compartments using a mass spectrometry-based approach, Mol. Cell. Proteomics, vol.13, pp.2147-2167, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01078965