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Abstract

Modeling policyholders lapse behaviors is important to a life insurer since lapses a�ect pric-
ing, reserving, pro�tability, liquidity, risk management, as well as the solvency of the insurer.
Lapse risk is indeed the most signi�cant life underwriting risk according to European Insurance
and Occupational Pensions Authority's Quantitative Impact Study QIS5. In this paper, we
introduce two advanced machine learning algorithms for lapse modeling. Then we evaluate the
performance of di�erent algorithms by means of classical statistical accuracy and pro�tability
measure. Moreover, we adopt an innovative point of view on the lapse prediction problem
that comes from churn management. We transform the classi�cation problem into a regression
question and then perform optimization, which is new for lapse risk management. We apply
di�erent algorithms to a large real-world insurance dataset. Our results show that XGBoost and
SVM outperform CART and logistic regression, especially in terms of the economic validation
metric. The optimization after transformation brings out signi�cant and consistent increases in
economic gains.
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1 Introduction

Lapse risk is the most signi�cant risk associated with life insurance when compared with longevity
risk, expenses risk, and catastrophe risk. Policyholders of life insurance may choose to surrender
their policies at any time for cash values, or opt to stop paying premiums and leave policies to become
invalid eventually. Lapses have signi�cant impacts on the pro�tability, or even on the solvency, of
a life insurer as many studies demonstrate. They may reduce expected pro�ts (Hwang and Tsai,
2018), cause underwriting expenses unrecovered (Tsai et al., 2009; Pinquet et al., 2011), impair the
e�ectiveness of an insurer's asset-liability management (Kim, 2005c; Eling and Kochanski, 2013)
and bring in liquidity threats as experienced by US life insurers in the late 1980s.

When lapses vary with interest rates as suggested by Dar and Dodds (1989), Kuo et al. (2003),
Kim (2005a), Kim (2005b), and Cox and Lin (2006), they become even more detrimental to life
insurers (Tsai et al., 2009). Many papers argue that the option to surrender a policy for the
cash value might account for a large proportion of the policy value, e.g., Albizzati and Geman
(1994), Grosen and Løchte Jørgensen (2000), Bacinello (2003), Bauer et al. (2006), Gatzert and
Schmeiser (2008), and Consiglio and Giovanni (2010). The above reasoning and �nding may be
the reasons why the �fth Quantitative Impact Study (QIS5), conducted by the European Insurance
and Occupational Pensions Authority (EIOPA) in 2011 regarding the implementation of Solvency
II, reports that lapse risk accounts for about 50% of the life underwriting risks.

The signi�cance of lapse risk draws attentions of scholars to study what causes policyholders
to lapse their policies. We may classify the literature into being macro- or micro-oriented. Macro-
oriented papers (e.g., Dar and Dodds, 1989; Kuo et al., 2003; Kim, 2005a; Kim, 2005b; Cox and Lin,
2006) focus on how lapse rates (the proportion of lapsed policies to the total number of sampled
policies within a period of time) are a�ected by environmental variables such as interest rates,
unemployment rates, gross domestic product, and returns in capital markets, as well as by company
characteristics like size and organizational form.

Micro-oriented papers secure data from insurers on individual policies to investigate the determi-
nants of the lapse propensities/tendencies. The identi�ed determinants include the characteristics
of policyholders and the features of life insurance products/policies (see Renshaw and Haberman,
1986; Kagraoka, 2005; Cerchiara et al., 2008; Milhaud et al., 2011; Pinquet et al., 2011; Eling and
Kiesenbauer, 2014, among others) . Eling and Kochanski (2013) and Campbell et al. (2014) provide
extensive reviews of the literature on lapses1.

This paper extends the micro-oriented line of literature in two ways. Firstly, we introduce ma-
chine learning algorithms including Extreme Gradient Boosting (XGBoost) and Support Vector
Machine (SVM) to lapse behavior modeling. These two advanced algorithms have their merits over
other approaches used in the literature such as generalized linear models (i.e., binomial and Poisson
models and logistic regression), Classi�cation and Regression Tree (CART) analysis, and the pro-
portional hazards model. Secondly, we adopt economic measures in addition to statistical accuracy
in evaluating the performance of di�erent algorithms. Such an adoption better demonstrates how
di�erent algorithms may bene�t the insurer.

Thirdly, we transform the optimization objective from classi�cation accuracy to economic gains
to demonstrate the bene�t of integrating modeling with pro�t maximization. Such an integration

1There are some papers on the subject of modeling early terminations that do not �t our macro-micro classi�-
cation on empirical, explanatory studies. They impose speci�c assumptions on the transition probabilities to early
terminations (Buchardt et al., 2015), the early terminations' intensity (Barsotti et al., 2016), or the early termination
rates (Loisel and Milhaud, 2011; Milhaud, 2013).
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can increase life insurers' pro�tability, improve insurers' customer management through taking
preventive measures to reduce lapses, and retain more of the so-called Contractual Service Margin
(CSM) in International Financial Reporting Standard (IFRS) 17. It also links us to the literature on
churn management and its impact on the customer lifetime value (e.g., Neslin et al., 2006; Lemmens
and Croux, 2006; Lemmens and Gupta, 2017).

The results from applying di�erent algorithms to a large dataset consisting of more than six
hundred thousand life insurance policies show that XGBoost and SVM outperform CART and
logistic regression with respect to statistic accuracy. The results further show that XGBoost is the
most robust across training samples.

The advantages of XGBoost and SVM are more apparent with respect to retention gains. The
retention gain takes into account the costs of providing incentives to policyholders to reduce their
propensities towards lapses, the bene�ts of retaining policies, and the costs of false alarms. XGBoost
and SVM generate much higher retention gains than logistic regression and CART do.

Last but not least, we con�rm that economic gains can be further enhanced when the opti-
mization is done on a function linked to the gains rather than on statistic accuracies. The resulted
retention gains are 126% of those from applying XGBoost to pursue classi�cation accuracies, and
the increase in retention gains remains to be signi�cant under an alternative policyholder retention
scheme. An insurer, therefore, should apply robust machine learning algorithms like XGBoost to
its economic objective to achieve optimal lapse management.

The organization of the paper is as follows. Section 2 contains explanations about XGBoost and
SVM, followed by brief descriptions on CART and logistic regression. In Section 3 we delineate two
performance metrics to be used. One is the commonly seen accuracy, i.e., a statistical validation
metric, while the other one is an economic metric considering the expected pro�ts and costs of
lapse management. We describe the data obtained from a medium-sized life insurer in Section 4.
Section 5 displays the comparison results across the four algorithms in terms of the statistical and
economic metrics. We explain how to integrate algorithms with the pro�t maximization goal at the
beginning of Section 6, and then compare the results from optimizing pro�t objectives with those
from optimization statistic accuracy. Section 7 summarizes and concludes the paper.

2 Binary classi�cation algorithms

The problem that we want to tackle is detecting whether a policyholder will lapse her/his policy or
not, i.e., yi P t0, 1u Popular predictive models include logistic regression and CART models. More
advanced machine learning models that we introduce in this paper are SVM and XGBoost.

2.1 XGBoost

XGBoost is an extension of the gradient boosting introduced by Friedman (2001). The gradient
boosting tree is an ensemble method, i.e., multiple weak learners h are combined to become a
strong learner F in order to achieve a better predictive performance. The following descriptions are
summarized from Friedman (2002)).

Given a training sample tyi,xiu
N
1 where xi P R

n and yi P t0, 1u, one would like to �nd a strong
learner F �pxq which minimizes a loss function Ψ py, F pxqq:
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F �pxq � arg min
F pxq

Ey,x
�
Ψ py, F pxqq

�
. (2.1)

The strong learner is an additive expansion of weak learners h
�
x, tRlmu

L
1 , ȳlm

	
that will be a

L-terminal node regression tree in our case:

FM pxq �
M̧

m�0

βmh
�
x, tRlmu

L
1 , ȳlm

	

�
M̧

m�0

Ļ

l�1

βmȳlm1 px P Rlmq ,

(2.2)

where tRlmu
L
1 and ȳlm are the L-disjoint regions and the corresponding split points determined

by the mth regression tree, respectively, and betam are the expansion coe�cients. This strong
learner is estimated through a stage-wise method that begins with an initial guess F0pxq. Then the
pseudo-residuals for m � 1, 2, . . . ,M are computed:

ỹim � �

�
δΨ pyi, F pxiqq

δF pxiq

�
F pxq�Fm�1pxq

. (2.3)

The regions tRlmu
L
1 are obtained by estimating the mth L-terminal node regression tree on the

sample tỹi,xiu
N
1 . The product βmȳlm � γlm is set to optimize the loss function Ψ:

γlm � arg min
γ

¸
xiPRlm

Ψ pyi, Fm�1pxiq � γq. (2.4)

At the �nal stage, the strong learner is updated,

Fmpxq � Fm�1pxq � ν.γlm1 px P Rlmq , (2.5)

where ν P p0, 1s is a shrinkage parameter that controls how much information is used from the
new tree.

The gradient boosting tree method may be summarized as the following algorithm extracted
from Friedman (2002).

Inspired by previous general works on statistical learning, many extensions to the gradient
boosting tree method have been developed. The stochastic gradient boosting technique (Friedman,
2002) is based on the same principle as the bagging technique (Breiman, 1996). It introduces
randomness in the observation: given a random permutation π of the integers t1, . . . , Nu and

Ñ   N , the new weak learner tree is estimated on the random subsample
 
ỹπpiqm,xπpiq

(Ñ
1
. Another

way to inject randomness that has been popularized by Breiman (2001) is randomly selecting a
subspace of the explanatory variables. More speci�cally, given a random permutation π� of integers
t1, . . . , nu and ñ   n, the new weak learner tree is estimated on tỹim, P

�pxqiu
N
1 in which P �pxq � 

xπ�p1q, . . . , xπ�pñq
(
.

To avoid over�tting, some extensions follow the general idea of the ridge regression (Hoerl
and Kennard, 1970) and lasso regression (Tibshirani, 1996) and adopt the penalized optimization
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Figure 1: Pseudocode of the Gradient Tree Boosting algorithm (Friedman, 2002).

point of view. Instead of optimizing a loss function Ψ py, F pxqq, the problem is modi�ed as the
optimization on an �objective� function O that is the sum of a loss function Ψ and a regularization
term Ω:

O py, F pxqq � Ψ py, F pxqq �ΩpF q. (2.6)

Among all the boosting packages that have been developed, the XGBoost system (Chen and
Guestrin, 2016) has become the most popular due to its �exibility and computing performances.
It has also become the most popular machine learning algorithm in data science challenges such as
Kaggle for structured data. We list the main parameters that need to be tuned, using the package's
terminology and the notation of (Friedman, 2002), as follows.

1. nrounds is the number of trees to grow: M ;

2. eta is the shrinkage parameter: Mν;

3. gamma is the regularization parameter which is used in Ω;

4. max_depth is the number of nodes of a tree: L;

5. min_child_weight is the minimal number of observations in a node and min
l,m

°N
i�1 1pxi P Rlmq

should be higher than this value;

6. subsample is the relative size of the random subsample used in the case of a stochastic gradient
boosting: Ñ{N ;

7. colsample_bytree is the relative size of the random subspace of explanatory variables selected
at each new tree: ñ{n.

Since we are interested in a binary classi�cation in this paper, we use the logistic loss function:

Ψpy, ŷq �
Ņ

i�1

�
yi ln

�
1 � e�ŷi

	
� p1 � yiq ln

�
1 � e�yi

��
, (2.7)

and the error function as the metric for cross-validation:
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errorpy, ŷq �

°N
i�1 1 pyi � round pŷiqq

N
, (2.8)

where round pŷiq �

#
1 if ŷi ¥ 0.5,

0 if ŷi   0.5.

The tuning method that we adopt consists of two nested cross-validations. We �rst perform a
grid search on the parameters except nrounds with a 2-folds cross-validation (the grid of values is
reported in Appendix 1). Then we determine the best nrounds through a 5-folds cross-validation
up to 200 for every possible set of parameters in the grid.

2.2 SVM

The theory of SVM was introduced in the 1990's by Boser et al. (1992) and Cortes and Vapnik
(1995). It has become a popular algorithm for classi�cation problems and for churn prediction in
particular (e.g., Zhao et al., 2005; Xia and Jin, 2008) Its predictive power is rather good compared
to other classi�cation algorithms (e.g., Vafeiadis et al., 2015; Wainer, 2016).

The SVM algorithm can be described by geometrical terms. The main idea is to �nd a hyperplane
that separates the observation space into two homogeneous subspaces that is as far apart from each
other as possible. This solution is de�ned as the maximum-margin hyper-plane. To deal with
misclassi�cations, a soft margin (i.e., a penalty determined by the user) is imposed upton the SVM.
Another way to deal with classi�cation errors is to project the data to a higher-dimensional space
through a kernel function. A more complete geometrical description of SVM can be found in Noble
(2006).

In the following, we adopt a formula-based description of the SVM by using the notation of
Hsu et al. (2003). Given a training sample tyi,xiu

N
1 where xi P R

n and yi P t�1,�1u, the SVM
algorithm is the solution of the following optimization problem:

min
ω,b,ξ

1

2
ωJω � C

Ņ

i�1

ξi, (2.9)

with the constraints

yi
�
ωJφpxiq � b

�
¥ 1 � ξi, ξi ¥ 0. (2.10)

The separating hyperplane is determined by the orthogonal vector ω and constant b. The soft
margin penalty cost is denoted as C. The data may be projected to a higher dimension space by
the function φ, and the underlying kernel function is de�ned by K pxi,xjq � φpxiq

Jφpxjq.

In our case we choose to consider the radial basis function kernel (also called RBF kernel) that
is the most commonly used in practice and determined by

K pxi,xjq � exp
�
�γ ‖ xi � xj ‖2

�
, (2.11)

with γ ¡ 0 being the kernel parameter.

Then we use the e1071 R package (Meyer et al., 2015) to implement the SVM algorithm. To
tune the SVM parameters pC, γq, we perform a grid search on a 2-folds cross-validation and adopt
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the misclassi�cation error function as the validation metric. The grid of values is reported in
Appendix 2.

2.3 CART

CART was �rst introduced by Breiman et al. (1984). The underlying idea is straight forward:
de�ning a class by following a list of decision rules on the explanatory variables. To determine these
rules, the data space is iteratively separated by binary split into two disjointed subspaces. At each
step or node of this top-down construction, the explanatory variable and the dividing point are
chosen to minimize the Gini impurity of the node.

More speci�cally, given a node l of Nl observations of response yi P t0, 1u with i P l, the
proportion of observations in the node is de�ned by pl �

1
Nl

°
iPl yi. Then use an algorithm to

partition the parent node into two nodes lL and lR by maximizing

IGplq � rIGplLq � IGplRqs , (2.12)

where IG is the Gini impurity of the node and computed by

IGplq � Nlplp1 � plq. (2.13)

This construction is applied up to obtaining a node for every observation point. The tree
obtained is thus designated as the saturated model. Although �tting the response on the training
sample perfectly, it generally leads to low predictive performance when applied to new samples.
Hence the tree needs to be pruned, i.e., the number of �nal nodes needs to be reduced to increase
its predictive power.

Many criteria can be used to prune the tree, e.g., the minimum number of observations in a
�nal node. We choose L, the number of terminal nodes, that minimizes the misclassi�cation error:

errorpy, ŷq �

°N
i�1 1 pyi � ŷiq

N
. (2.14)

L is estimated by a 10-folds cross-validation methodology. We use the rpart R package (Th-
erneau et al., 2018) to implement CART.

2.4 Logistic Regression

The logistic regression is a special case of the generalized linear models (Nelder and Wedderburn,
1972) obtained with the Bernoulli distribution. The goal is to model the probability of a binary
event such as the lapse probability pi of the policyholder i. Given a training sample tyi,xiu

N
1 where

xi P R
n and yi P t0, 1u, the regression model is speci�ed as:

ln
pi

1 � pi
� β0 � xJi β. (2.15)

The parameters pβ0,βq P R� R
n can be estimated by the maximum-likelihood method:
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L �
N¹
i�1

�
ex

T
i β

1 � ex
T
i β

�yi �
1

1 � ex
T
i β


1�yi

. (2.16)

When applying the estimated logistic regression model to a classi�cation problem, it doesn't
directly lead to labeled responses but to estimated probabilities. To determine the forecasted class,
we chose the common threshold of 0.5, i.e.,

ŷ�i �

#
1 if ŷi ¥ 0.5,

0 if ŷi   0.5.
(2.17)

3 Validation metrics

For each policy, the observed lapse yi and the forecasted lapse ŷi are binary variables: pyi, ŷiq P
t0, 1u2. The four di�erent outputs of a binary classi�cation model are named true positive p1, 1q,
true negative p0, 0q, false positive p0, 1q and false negative p1, 0q while the number of each case is
usually laid out in the so-called confusion matrix. Denote Npj, kq as the coe�cients of the confusion
matrix in which j P t0, 1u stands for the observed lapse indicator and k P t0, 1u the predicted lapse
indicator. Given a set of response variables tyi, ŷiu

N
1 , we estimate Npj, kq as:

Npj, kq �
Ņ

i�1

1 pyi, ŷi � kq . (3.1)

3.1 Statistical metric

Based on the confusion matrix, di�erent metrics can be developed. We �rst focus on the accuracy
metric, the ratio of correctly classi�ed predictions over the total number of predictions:

accuracypy, ŷq �
Np1, 1q �Np0, 0q

N
� 1 � errorpy, ŷq.

(3.2)

3.2 Economic metric

Although we adopt mathematic algorithms to predict lapses, the risk is an economic issue after all.
We thus would like to analyze and compare the classi�cation algorithms by an economic metric.
More speci�cally, we will estimate the impacts of di�erent classi�cation results on the expected
pro�ts from policies, also called customer lifetime values. In order to do so, we plan to adopt an
economic model inspired by Neslin et al. (2006) and Gupta et al. (2006).

Suppose that policy i stays Θi years in the portfolio pΘi P Nq. The pro�tability ratio at time t
can be represented by pi,t and the face amount by Fi,t. The lifetime value for policy i is computed
as:
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CLVi �
Θi̧

t�0

pi,tFi,t
p1 � dtqt

, , (3.3)

where dt is the discount rate.

Assuming a deterministic time horizon T P N, we dde�ne the pT � 1q-dimensional real vectors
pi, F i, ri and d for pro�tability ratios, face amounts, retention probabilities, and interest rates
respectively. Given the four vectors, the customer lifetime value is

CLVi ppi,F i, ri,dq �
Ţ

t�0

pi,tFi,tri,t
p1 � dtqt

, , (3.4)

The lapse management strategy is modelled by the o�er of an incentive δi P R
T�1 to policyholder

i who is contacted with a cost c. The incentive is accepted with the probability γi, and the acceptance
will change the vector of the probabilities of staying in the portfolio from ri to r

�
i P RT�1. We

further make the following simplifying assumptions:

1. pi are the same for all policies and denoted as p hereafter;

2. δi are the same for all contacted policies and denoted as δ hereafter;

3. pi,t, Fi,t and dt remain constant across time;

4. ri equals to rlapse or rstay � p1, 1, . . . , 1q and rlapse is estimated on the dataset and will be
given in Section 5.2;

5. if ri � rstay, the incentive is accepted with probability γi � 1 and r�i � rstay;

6. if ri � rlapse, the incentive is accepted with probability γi � γ and r�i � rstay.
2 Policyholders

who reject the o�ers (probability � 1 � γ) will lapse their policies, i.e. r�i � rlapse.

The application of a segmentation algorithm to the tested samples produces two confusion
matrices: one with respect to number of policies while the other in term of face amount. For the
latter matrix, we denote F pj, kq as the coe�cients of the matrix with regard to face amount, where
j stands for the indicator of the policyholder's lapse in real life, k the indicator by the algorithm's
prediction, and pj, kq P t0, 1u2. More speci�cally,

F pj, kq �
Ņ

i�1

Fi.1 pyi, ŷi � kq , (3.5)

while N is de�ned in Equation 3.1.

2These simpli�cations assume that the pro�tability ratio, the incentive, and the probability to accept the incentive
is the same across policyholders, respectively. Upon the availability of data, we may compute an expected pro�tabil-
ity ratio for each policy. The incentive o�ered to each policyholder can then be set as a function of the policy's
pro�tability. The probability of accepting the o�er can also be a function of the incentive, but such a function is
di�cut to estimate in practice. Face amount may be variable for some products, which increases the di�culty in
estimating the expected pro�tability ratio. The retention probabilities may change with time, and this calls for a
dynamic model of lapse propensities
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We de�ne the reference portfolio value (RPV) as the customer lifetime value of all policies if no
customer relationship management about lapses are carried out to be:

RPV � CLV pp, F p0, 0q � F p0, 1q, rstay,dq � CLV pp, F p1, 0q � F p1, 1q, rlapse,dq . (3.6)

Given a segmentation algorithm, we compute the lapse managed portfolio value (LMPV) by

LMPV pδ, γ, cq � CLV pp, F p0, 0q, rstay,dq � CLV pp, F p1, 0q � p1 � γqF p1, 1q, rlapse,dq

� CLV pp� δ, F p0, 1q � γF p1, 1q, rstay,dq � c pNp0, 1q �Np1, 1qq .
(3.7)

Then we de�ne the economic metric of the algorithm as the retention gain:

RGpδ, γ, cq � LMPV pδ, γ, cq �RPV, (3.8)

that can be simpli�ed as

RGpδ, γ, cq � γ rCLV pp� δ, F p1, 1q, rstay,dq � CLV pp, F p1, 1q, rlapse,dqs

� CLV pδ, F p0, 1q, rstay,dq � c pNp0, 1q �Np1, 1qq .
(3.9)

4 Data

Our data come from a medium-size life insurance company in Taiwan that had total assets over 15
billion US dollars at the end of 2013. The data contain 629,331 life insurance policies sold during
the period from 1998 to 2013. The data-providing insurer tracked changes in the statuses of policies
including death and lapse. The last tracking date is 31/08/2013. 243,152 policies out of all samples
were lapsed, and 5,486 insureds died during the sampling period.

We specify several variables based on the literature and the data provided by the insurer as input
to the algorithms of Section 2. Firstly we are able to identify from the data the age, gender, and
occupation of an insured at the time when the policy was issued. Female is designated as 1 while
male 0 for the dummy variable Gender. Then we designate the dummy variable Occupation as 1
for the occupations that the insurers in Taiwan would undertake extra screening/underwriting. The
data also record whether the insured is required to have a physical examination when purchasing
life insurance and how many non-life policies (health and long-term care) a person are listed as the
insured (since a person may purchase multiple policies).

The data also contain the inception date and face amount of each policy. There are three types
of policies. The most popular type is traditional policies like term life, whole life, and endowment.
Investment-linked and interest-adjustable types of products appeared in 2000s. We also able to
identify whether a policy is a single-premium one or not. There are three cases with regard to
participation. It was not until 2004 that insurers were allowed to sell non-participating policies.
The policies sold by the end of 2003 are thus designated as Mandotory Participating. Starting
from 2004, policies may be classi�ed into participating and non-participating. Most policies sold in
Taiwan are dominated in New Taiwan Dollar (NTD) ; there are some policies dominated in other
currencies.
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We further set up two nominal variables. Firstly, we categorize distribution channels as Tied
Agents (denoted by TA), Direct Marketing (DM), and Banks (BK)3. Secondly, premium paying
methods are classi�ed into three ways: collected by the personnel of the insurer (denoted as Insurer),
automatic transfers from banks or payments by credit cards (B&C)4, and going to the post o�ce
or convenient stores in person (P&C).

Table 1 and 2 present the descriptive statistics of the above explanatory variables. The average
age of the sampled insureds is 28 and the standard deviation of the insureds' age is 17. The minimum,
medium, and maximum age is 0, 27, and 80, respectively. The samples consist of relatively equivalent
portions of male and female insureds. About 20% of the insureds work in riskier occupations that
call for extra underwriting. Most insureds (over 96%) were not required to go through physical
examination in purchasing life insurance. Many insureds are associated with multiple non-life
policies so that the average number of non-life policies a person are listed as the insured is 1.2.
There is a person who is listed as the insured for 33 non-life policies.

The mean and medium of policy inception dates are in the second quarter of 2005, and the
standard deviation around this quarter is almost 5 years. The face amount of the sampled policies
has an average of 17,165 US dollars5 with big variations: the largest policy reaches 2 million dollars,
the smallest one is only 333 dollars6, and the standard deviation is about twenty-eight thousand
dollars. Around 3% of the samples are single-premium policies. 46.6% of samples are mandatory-
participating policies while 37.2% are non-participating ones. Almost all policies are traditional
types of products ; interest-adjustable and investment-linked types of products are merely 3% of
our samples. 88% of policies are dominated in NTD.

Table 1 also shows that selling life insurance through tied agents is the major way (94%) of this
insurer while the sampled policies sold through direct marketing are smaller than 3%. It further
shows that the most popular way of paying premiums is through automatic/recurring transfers
from bank accounts or credit cards (71%). Since post o�ces and convenient stores providing money
transferring services are conveniently around, about 10% of our samples have premiums paid in
places like these.

5 Result with respect to statistical and economic metrics

Our focus is on the predictive performance of di�erent algorithms. We thus conduct out-of-sample
tests using the following procedure. First, we randomly split the dataset D into 10 subsamples
tD1, . . . , D10u of equal size and then train an algorithm on Dk, k P t1, . . . , u. The estimated model
is subsequently applied to the other subsamples to obtain forecasts ŷ of lapses. In the last step, we
compare these predictions with the observed lapses y by the validation metric ρpy, ŷq to measure
the predictive performance of the algorithm. This procedure enables us to make sure that every
observation is used, at some point of an algorithm, as both training and testing samples. It is similar
to the k-fold cross-validation technique in which the training subsample is composed of D�Dk and
the testing subsample is set to Dk. We use the k-fold cross-validation to tune parameters in training
some of the algorithms.

3Few policies are also sold by independant agents, brokers that we gather in the same category.
4Paying premiums by automatic transfers from bank accounts or by recurring payments of credit cards is indi�erent

to policyholders. We thus regard these two automatic/recurring payment methods as one.
5The exchange rate used in the paper is 30 NTD/1 USD.
6This policy is a whole life insurance with a one-year old insured and the death bene�t of ten thousand NTD (a

little over three hundred USD). There are other small policies with death bene�ts smaller than three thousand USD.
These policies constitute less than one percent of our samples.
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Table 1: Descriptive statistics of categorical explanatory variables.

Variables Category Percentage

Gender

Female 48

Male 52

Occupation

Tier one 80.5

Requiring extra screening 19.5

Physical Examination

Exempted 96.4

Required 3.6

Distribution Channel

TA 93.9

BK 3.4

DM 2.4

Others7 0.3

Premium Payment

Single premium 3.1

Non single premium 96.9

Premium Paying Method

Insurer 18.8

B&C 70.8

P&C 10.4

Participation

Non-participating 37.2

Participating 16.2

Mandatory participating 46.6

Product Type

Interest-adjustable 1.7

Investment-linked 1.2

Traditional 97.1

Currency Domination

NTD 88.1

Others 11.9

Table 2: Descriptive statistics of continuous explanatory variables.

Mean Medium St. Dev. Minimum Maximum

Age 28.3 27 16.8 0 80

# of non-life policies 1.2 0 2 0 33

Inception date 06/06/2005 21/04/2005 4.8 (years) 01/01/1998 31/07/2013

Face Amounts (in USD) 17,165 10,000 28,050 333 2,000,000
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5.1 Results with respect to the statistical metric

The mean accuracy computed using the above cross-validation procedure is displayed in the Table 3
and Figure 2 for each binary classi�cation algorithm. As expected, the more sophisticated the
model is, the more accurate the predictions will be. XGBoost ranks number one, followed by SVM,
CART, and logistic regression (LR). XGBoost surpasses logistic regression by 2.24% on average,
which represents a signi�cant improvement of 12,684 correctly classi�ed policies. Moreover, the
smallest standard deviation of accuracy of the XGBoost, 0.03%, indicates that XGBoost is less
prone to sample selection. This is visible in the box plot of Figure 2.

Table 3: Cross-Validated Statistic Accuracies.

LR CART SVM XGB

Mean Accuracy 76.64% 77.15% 77.82% 78.8%

Standard Deviation 0.07% 0.10% 0.08% 0.03%

Figure 2: Box plot of statistic accuracies.

Looking at the entire confusion matrices in Tables 4 to 7, we �nd that CART predicts the most
lapses (191,869 = 51,241 + 140,628) from which it identi�es the most lapses correctly (140,628)
but also signals the most false alarms (51,241). SVM predicts the most stays (398,597 = 310,258 +
88,339) in which it identi�es the most stays correctly (310,258) while produces many false security
cases (88,339). XGBoost is rather robust on the other hand. It is ranked the second in terms of all
aspects: correctly identifying lapses (137,660), correctly identifying stays (309,111), not producing
false alarms (38,450), and not producing false securities (81,177).
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Table 4: Average confustion matrix of XGB.

Predicted

Stay Lapse

A
c
tu
a
l

Stay 309,111 38,450

Lapse 81,177 137,660

Table 5: Average confustion matrix of SVM.

Predicted

Stay Lapse

A
c
tu
a
l

Stay 310,258 37,303

Lapse 88,339 130,498

Table 6: Average confustion matrix of CART.

Predicted

Stay Lapse

A
c
tu
a
l

Stay 296,320 51,241

Lapse 78,209 140,628

Table 7: Average confustion matrix of LR.

Predicted

Stay Lapse

A
c
tu
a
l

Stay 304,025 43,537

Lapse 88,775 130,062
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5.2 Results with respect to the economic metric

To evaluate the algorithms by the economic metric, we �rst need to specify the parameters of the
cash �ows model. Since no data is available for us to estimate these parameters, we have to make
assumptions. We had conducted sensitivity analyses and con�rmed that the comparison results
remain the same in general.

The time horizon T is set to 12 years according to the length of the sampling period. We
estimate the retention probability vector rlapse from the dataset and obtain the vector displaid in
Table 8.

Table 8: Estimated retention probability rlapse.

Year 0 1 2 3 4 5 6 7 8 9 10 11 12

Retention probability 0.96 0.87 0.67 0.37 0.27 0.21 0.15 0.12 0.10 0.08 0.06 0.05 0.04

Other parameters are set as follows:

� the pro�tability ratio p � 0.5%;

� the discount rate d � 2%;

� the cost to contact a policyholder c � 10 USD.

We propose two di�erent incentive strategies: an aggressive one and a moderate one. The
incentive vectors are described in Table 9

Table 9: Incentive strategies.

Year 0 1 2 3 4 5 6 7 8 9 10 11 12

Incentive 1 (in bp) 0 0 3 3 6 6 9 9 12 12 15 15 18

Incentive 2 (in bp) 0 0 1.5 1.5 3 3 4.5 4.5 6 6 6 6 6

We further assume that the probabilities of accepting the incentives for a would-lapse policy-
holder are γ1 � 20% and γ2 � 10% respectively.

The results from comparing di�erent classi�cation algorithms by the economic metric with
the aggressive incentive strategy are displayed in Table 10 and Figure 3. The winner looks to be
XGBoost: it has the highest retention gain with the smallest standard deviation across subsampling.
Figure 3 further illustrates that XGBoost and SVM lead to similar retention gain compared to
logistic regression and CART.

Notice that the di�erences across the algorithms are wider in terms of the economic metric than
the statistical metric. The accuracies of the models are between 76.64% and 78.88%, which means
an improvement ratio of 2.9%. The retention gains, on the other hand, range from 2.7 and 5.2
million USD, indicating an enhancement of 96%. Therefore, choosing a good algorithm is more
important in terms of economic reality (dollar amount) than by statistical accuracy. It appears
that CART produces the lowest retention gain: $2,680,012. This is mostly because CART has the
highest false alarm rate (cf. Table 3c) which means o�ering the incentive to many policyholders
who have no intention to lapse their policies. Furthermore, CART leads to the highest contacting
cost since it predicts the highest lapses. The pro�ts are thus reduced.
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Table 10: Cross-validated retention gains with the aggressive strategy.

LR CART SVM XGB

Mean Retention Gain 4,046,602 2,680,012 5,028,737 5,243,913

Standard Deviation 133,993 209,220 139,102 115,415

Figure 3: Box plot of retention gains with the aggressive strategy.

Then we look at algorithms' performances when the incentive strategy is moderate and leads to
lower acceptance probabilities. The results are displayed in the Table 11 and the Figure 4. We �rst
notice XGB and SVM remains to be ranked No. 1 and No. 2, respectively. Next we observe that
the improvement ratio of the best algorithm over the worst is smaller but remains to be signi�cant
(56%). Thirdly, retention gains are signi�cantly lower with the moderate incentive strategy. For
instant, XGB achieves a gain of 5.2 million dollars with the aggressive incentive strategy but the
gain reduces to 3.3 million dollars when incentives o�ered to policyholders are moderate. Under our
assumptions, the company should rather set the aggressive incentive strategy up to optimize her
gains. However, in practice, one would need a more complete sensitivity study on the incentive to
be o�ered and the corresponding acceptance probability to fully optimize the lapse management.

Table 11: Cross-validated retention gains with the moderate strategy.

LR CART SVM XGB

Mean Retention Gain 2,618,396 2,085,599 3,113,900 3,261,029

Standard Deviation 63,693 85,184 54,169 45,928

In summary, XGB and SVM consistently perform better than CART and LR no matter which
performance index, statistical accuracy or retention gains with alternative incentive strategies, is
used. The drawbacks of XGB and SVM relative to CART and LR that we may think of are not
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Figure 4: Box plot of retention gains with the moderate strategy.

related to performance. For instance, XGB and SVM are less transparent, more complex, demanding
more computing power, and more di�cult to be comprehended by inexperienced persons than CART
and LR.

6 Optimization on pro�tability instead of classi�cation

It is obvious that insurers would not seek to optimize the classi�cation accuracy but focus on eco-
nomic gains resulted from the classi�cation algorithms when forming a lapse management strategy.
When our aim is to maximize the pro�tability of the lapse management strategy, binary classi�ca-
tions might be unsuitable since they are not designed to meet such a need. Ascarza et al. (2018)
emphasize the di�erence between the at-risk population (e.g., customers with high churn proba-
bilities) and the targeted population (e.g., customers that the company should focus her retention
campaign on in order to optimize her pro�ts) from an economic point of view. Along this line
of churn literature, Lemmens and Gupta (2017) modify the usual loss function into a pro�t-based
function to optimize economic gains. They obtain a signi�cantly increase in the expected pro�t
of a retention campaign. Learning from the churn literature, we transform the above classi�caton
problem into a regression question in this section.

6.1 Methodology

Let the new response variable z
Rj

i represents the retention gain or loss resulting from proposing the

incentive j P t1, 2u (cf. Section 5.2) to policyholder i. More speci�cally, we de�ne z
Rj

i as

z
Rj

i �

#
�CLV pδj , Fi, rstay,dq � c if yi � 0,

γj . rCLV pp� δj , Fi, rstay,dq � CLV pp, Fi, rlapse,dqs � c if yi � 1.
(6.1)

17



Then we may apply the XGBoost algorithm to
!
z
Rj

i ,xi

)N
1
and use the mean squared error as

the loss function

Ψ
�
zRj , ẑRj

�
�

1

N

Ņ

i�1

�
z
Rj

i � ẑ
Rj

i

�2
, (6.2)

and as the metric for cross-validation.

In the last step, lapse ŷi is forecasted if the estimated gain is positive:

ŷi �

#
1 if ẑRj ¥ 0,

0 if ẑRj   0,
(6.3)

By this way we can apply the same metrics described in previous sections. Here ŷi is better to
be understood as the estimation of the pro�tability about o�ering an incentive to the policyholder
i rather than the forecast on the policyholder's lapse.

The two new classi�cations are denoted as XGB_R1 and XGB_R2, respectively, for applying
XGBoost to zR1 and zR2 . The tuning method that we apply to estimating the parameters is
described in Appendix 3.

6.2 Results

Table 12 and Figure 5 display the prediction accuracies. Table 12 shows that XGB_R1 and
XGB_R2 produce relatively low mean accuracy of respectively 76.7% and 75.7% While XGB_R2
is clearly the worst model in term of accuracy, XGB_R1 generates similar results to the logistic
regression which is the worst binary classi�cation model regarding the accuracy measure. These
seemingly unsatis�ed results are understandable since both XGB_R1 and XGB_R2 are not de-
signed to predict whether a policy would be lapsed or not. What they aim for are economic gains.

Table 12: Cross-Validated Statistic Accuracies.

LR CART SVM XGB XGB_R1 XGB_R2

Mean Accuracy 76.64% 77.15% 77.82% 78.8% 76.67% 75.71%

Standard Deviation 0.07% 0.10% 0.08% 0.03% 0.07% 0.06%

The numbers in Table 13 and 14 tell us more about why XGB_R1 and XGB_R2 performs badly
in statistical accuracy. They result in the smallest correct identi�cations on lapses (resp. 104,889
and 99,432) and produce the most false-sense-of-security (resp. 113,948 and 119,405). However, we
will see very soon that XGB_R1 and XGB_R2 stand out when we switch focus to retention gain.

Table 15 and Figure 6 show that XGB_R1 generates a signi�cantly larger average retention gain
with the aggressive incentive strategy ($6,586,357) than other algorithms as well as a signi�cantly
lower standard deviation ($53,460). The increase in retention gain is 26% (1.3 million USD) higher
than that generated by XGB (the second-best algorithm) and 146% (3.9 million USD) better than
that produced by CART. Looking back to Table 13, we see that XGB_R1 leads to reduce the
number of false alarms (18,204) in optimizing the retention gain, even if this also reduces the
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Figure 5: Box plot of statistic accuracies.

Table 13: Average confustion matrix of XGB_R1.

Predicted

Stay Lapse

A
c
tu
a
l

Stay 329,357 18,204

Lapse 113,948 104,889

Table 14: Average confustion matrix of XGB_R1.

Predicted

Stay Lapse

A
c
tu
a
l

Stay 329,413 18,149

Lapse 119,405 99,432

correct detection (104,889). The good results of XGB_R1 in achieving retention gain demonstrate
the bene�t of integrating the algorithm with the goal to be achieved. The objective function for
XGB_R1 to minimize, Equation 6.2, is about predicting retention gains. XGB_R1 therefore would
naturally perform the best when compared with other algorithms optimizing other objectives (such
as classi�cation accuracies).

We expect that the bene�t of integrating the algorithm with the goal is robust across incentive
strategies. This is con�rmed by the results in Table 16 and Figure 7. XGB_R2 generates retention
gain of 3.9 million dollars that is nearly 600 thousand dollars more than that achieved by the second
place XGB. The increase in retention gains is 18%. The increases with respect to the commonly
seen LR and CART reach 47% and 85%.
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Table 15: Cross-validated retention gains with the aggressive strategy.

LR CART SVM XGB XGB_R1

Mean Retention Gain 4,046,602 2,680,012 5,028,737 5,243,913 6,586,357

Standard Deviation 133,993 209,220 139,102 115,415 53,460

Figure 6: Box plot of retention gains with the aggressive strategy.

Table 16: Cross-validated retention gains with the moderate strategy.

LR CART SVM XGB XGB_R2

Mean Retention Gain 2,618,396 2,085,599 3,113,900 3,261,029 3,852,782

Standard Deviation 63,693 85,184 54,169 45,928 39,163

The results in this section demonstrate the bene�t of having a speci�c objective. If senior
managers of an insurer are able to specify an objective to be optimized (e.g., maximizing retention
gain), the sta� should apply an advanced algorithm like XBG directly to such an objective to
achieve the optimum. The enhanced gain relative to the case having no speci�c objective other
than classi�cation accuracy can be substantial.

7 Conclusions

Lapse risk is the most signi�cant risk associated with life insurance. Lapses may cause losses, reduce
expected pro�ts, lead to stringent liquidity, result in mis-pricing, impair the risk management, or
even pose solvency threats. Employing a good algorithm to model policyholder lapse behavior is
therefore valuable.
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Figure 7: Box plot of retention gains with the moderate strategy.

In this study, we adopt innovative viewpoints on lapse management in addition to introducing
machine learning algorithms to lapse prediction. Applying XGBoost and SVM to predicting whether
a policyholder will lapse her/his policy is new to the literature. Secondly, we adopt not only a
statistical metric in evaluating algorithms' prediction performance but also an economic metric
based on customer lifetime value and retention gains.

The goal of classi�cation accuracy has no direct link to the insurer's costs and pro�ts. It thus
might lead to a biased strategy (Powers, 2011). Following the churn literature, we de�ne a speci�c
validation metric based on the economic gains. This constitutes our third contribution: we are the
�rst to set up a pro�t-based loss function so that we may directly optimize the economic gains.
More speci�cally, we change the usual statistical idea of classi�cation to a gain regression in which
pro�ts are to be maximized.

The two machine learning algorithms, XGBoost and SVM, perform a little bit better than
classic CART and logistic regression in terms of statistical accuracy on a large dataset consisting
of more than six hundred thousand life insurance policies with information on policy terms and
policyholders' characteristics. XGBoost has another advantage over other algorithms: it is less
dependent upon the choice of training samples.

The advantages of XGBoost and SVM are more apparent with respect to retention gains. The
retention gains incorporate the costs of providing incentives to policyholders to reduce lapse propen-
sities and the bene�ts of retaining policies. XGBoost and SVM generate much higher retention gains
than logistic regression and CART do. For instance, XGBoost produces 1.2 to 2.6 million dollars
more economic gains than CART.

In the last section, we demonstrate that the economic gains can be further enhanced when the
optimization is done on a function linked to economic gains rather than on statistic accuracies. The
results show that the retention gains with an aggressive incentive strategy resulted from XGB_R1 is
126% of those from applying XGBoost to pursue classi�cation accuracies, in particular by reducing
the false alarm rates. An insurer should therefore apply advanced machine learning algorithms like

21



XGB to its economic objective so that lapse management can be really optimized.
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Appendix 1 XGBoost Tuning - Binary Classi�cation

The values of the parameters tested in the grid search for the tuning of XGBoost are as follows:

� eta : 0.005, 0.1, 0.15;

� gamma : 0, 5, 10;

� max_depth : 10, 15, 20, 25, 30;

� min_child_weight : 15, 20, 25;

� subsample : 1;

� colsample_bytree : 0.4, 0.5, 0.6.

The values of the grid search are chosen by a previous sensitivity study in which we apply the
same methodology on a subsample of the whole database but with a coarser grid. Then we focus
on a �ner grid to obtain better results within a reasonable time period. In addition, the fact that
we only test subsample with the value of 1 means that we do not adopt the stochastic gradient
boosting of Friedman (2002).

Appendix 2 SVM Tunning

The values of the parameters tested in the grid search for the tuning of SVM are as follows:

� Cost : 0.5, 1, 2, 5, 10;

� gamma : 0.25, 0.5, 0.75, 1, 1.25.

Similar to the previous section, the values of the grid search are chosen by a previous sensitivity
study in which we apply the same methodology on a subsample of the whole database but with a
coarser grid. Then we focus on a �ner grid to obtain better results. This is necessary so that the
computing can be done within a reasonable time period.

Appendix 3 XGBoost Tuning - Pro�tability

We adopt the values of most parameters generated by a previous sensitivity study as:

� eta : 0.005;

� gamma : 1;

� max_depth : 15;

� min_child_weight : 15;

� subsample : 0.7;
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� colsample_bytree : 0.8.

Then, we determine the best nrounds through a 5-folds cross-validation with this parameter
tested up to 1,000.
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