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A Proof of the Generalized Riemann Hypothesis

Charaf ECH-CHATBI *
Tuesday 28 May 2019

Abstract

We present a proof of the Generalized Riemann hypothesis (GRH)
based on asymptotic expansions and operations on series. The advantage
of our method is that it only uses undergraduate maths which makes it
accessible to a wider audience.

Keywords: Generalized Riemann hypothesis; Zeta; Critical Strip;
Prime Number Theorem; Millennium Problems; Dirichlet L-functions.

1 Introduction: Dirichlet L—functions

Let’s (zn)n>1 be a sequence of complex numbers. A Dirichlet series[6] is a

oo
series of the form Z Z—z, where s is complex. The Riemann zeta function
n
n=1
is a Dirichlet series. Let’s define the function L(s) of the complex s:

L(s)=>" %
n=1

e If (zn)n>1 is a bounded, then the corresponding Dirichlet series con-
verges absolutely on the open half-plane where $(s) > 1.

e If the set of sums z, + zn41 + ... + znyr for each n and k& > 0 is
bounded, then the corresponding Dirichlet series converges on the
open half-plane where $(s) > 0.

e In general, if z, = O(n"), the corresponding Dirichlet series con-
verges absolutely in the half plane where R(s) > k + 1.

The function L(s) is analytic on the corresponding open half plane[3,
6,15].

To define Dirichlet L—functions we need to define Dirichlet characters.
A function x : Z —— C is a Dirichlet character modulo q if it satisfies
the following criteria:
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(i) x(n) # 0 if (n,q) = 1.
o (ii) x(n) =0if (n,q) > 1.
e (iii) x is periodic with period q :x(n + ¢) = x(n) for all n.
e (iv) x is multiplicative :x(mn) = x(m)x(n) for all integers m and n.

The trivial character is the one with xo(n) = 1 whenever (n,q) = 1.
Here are some known results for a Dirichlet character modulo ¢q. For

any integer n we have x(1) = 1. Also if (n,q) = 1, we have (x(n))‘z’(q> =

1 with ¢ is Euler’s totient function. x(n) is a ¢(g)—th root of unity.

Therefore, |x(n)| =1 if (n,q) =1, and |x(n)| =0 if (n,q) > 1.

Also, we recall the cancellation property for Dirichlet characters modulo

q: For any n integer

q . -
. o(q), if x = xo the trivial character
> x(i+n) = @ . . (1)
= 0, if otherwise, x # xo

The Dirichlet L—functions are simply the sum of the Dirichlet se-
ries. Let’s x be a Dirichlet character modulo ¢, The Dirichlet L—function
L(s, x) is defined for R(s) > 1 as the following:

+oo
x(n)
nS

L(s,x) =

(2)

n=1

Where the series >, XT(L?) is convergent when R(s) > 0 and L(s, x) is
analytic in R(s) > 0. See([3,6,7,8]). In the particular case of the trivial
character xo, L(s,xo0) extends to a meromorphic function in R(s) > 0
with the only pole at s =1 (see [3,6,7,8]).

Also, like the Riemann zeta function, the Dirichlet L—functions have
their Euler product[2,3,24]. For R(s) > 1:

tso= [1 (1-22) 3)
p Prime

Let’s g/ be the smallest divisor of q. Let’s x/ be the Dirichlet character
x/ mod ¢/. For any integer n such that (n,q) = 1 we have also (n,q/) =1
and x(n) = x/(n). x/ is called primitive and L(s,x) and L(s,x/) are
related analytically such that:

x!'(p
L(s.x) = Lis. ) [T (1 - X2 )
p/q P
L(s,x) and L(s, x/) have the same zeros in the critical strip 0 < R(s) < 1.
Also, for a primitive character x, (i.e.x = x/) L(s, x) has the following
functional equation:

rOP( N L =50 = VAL A TR L) )

Where I' is the Gamma function and ¢ =0 if x(—1) =1 and a = 1 if
x(—1) = -1, and 7(x) = > {_; x(k) exp(Q"T’”).

When R(s) > 1 there is no zero for L(s,x). When R(s) < 0, for a
primitive character x, we have the trivial zeros of L(s,x): s = a — 2k,
where k£ i a positive integer and a is defined above. For more details,
please refer to the references|7-14].




2 The Generalized Riemann Hypothesis

The Generalized Riemann Hypothesis states that the Dirichlet L—functions
1

have all their non-trivial zeros on the critical line R(s) = 3.

Non trivial in this case means L(s,x) =0 for s € C and 0 < R(s) < 1.
So for any primitive character x modulo ¢, all non-trivial zeros of L(s, x)
lies in the critical strip {s € C : 0 < R(s) < 1}. From the functional
equation above we have that if:

e sg is a non-trivial zero of L(s, x), then 1 — s is a zero of L(s, ).
e 5o is a non-trivial zero of L(s,X), then 1 — s¢ is a zero of L(s, x).

Therefore, we just need to prove that for all primitive character xy modulo
g, there is no non-trivial zeros of L(s,x) in the right hand side of the
critical strip {s € C: 3 < R(s) < 1}.

3 Proof of the GRH

Let’s take a complex number s such s = ag + iby. Unless we explicitly
mention otherwise, let’s suppose that ap > 0 and by > 0. Let’s take x a
non-trivial Dirichlet character.

3.1 Case One: % < ap <1 and x non-trivial

In this case s is a zero of L(s,x) = >/ XT(L?)A Where Y is a non-trivial
Dirichlet character x modulo g. ¢ is a nonzero positive integer.
Let’s denote for each n > 1: z, = zp + iyn = x(n).

We are going to develop the sequence Zn(s) = >

N
Zn as follows:

n=1 ns
For N > 1
al zZ
In = Y. =
ns
n=1
N .
_ Z Tn + 1Yn
- na0+ib0
n=1
N . —ib
S (T + dyn)n "0
= —nao

3
Il
-

(zn + iyn) exp ( —ibp In (n))

neo

I
M=

3
Il
—

I
M=

Zn c08(bo In (n)) + yn sin(bg In (n)) + i(yn cos(bg In (n)) — z, sin(by In (n)))

neo

3
Il
-

I
M=

neo neo

n=1

3
Il
-

Zn c08(bo In (n)) + yn sin(bo In (n)) 4 +i yn cos(bo In (n)) — z, sin(bg In (n))

(10)

(11)

(12)



Let’s define the sequences U,, V,, as follows: For n > 1

U, - @ cos(bo In (n)) + yn sin(bo In (n)) (13)

neo

v, — Un cos(bo In (n)) — zy sin(bo In (n)) (14)

neo

Let’s define the series A,, B, and Z, as follows:

k=1

3

k=1

Zn = An+iB, (17)

When we are dealing with complex numbers, it is always insightful to
work with the norm. So let’s develop further the squared norm of the
serie Zn as follows:

|
b
Zr
+
oy
Zt
e
X

1Zn|?

So

]\7:1 N n—1

= Y U+2) > Unli (21)
n=1 n=1k=1

= i Un +2 i U nf U
n=1 n=1 k=1

= iU2+2§:U A —U) (23)
n=1 n=1

N N
= =Y Ui+2) U.A, (24)
n=1 n=1

And the same calculation for By



Hence we have the new expression of square norm of Zy:

N N N N
1Zn]° =2 UnAn+2> VaBo—> Un=> Vi
n=1 n=1 n=1 n=1

Let’s now define F,, and G, as follows:

F, = U,A,
G, = Va.Bn.
Therefore
N N
PO S B
n=1 n=1
N N
Bo- 2 G-V
n=1 n=1
Therefore

Conclusion. s is a zero for L(s,x) =0, if and only if
lim Ay =0and lim By =0
N — o0 N — o0

Equally, s is a L(s,x) zero, L(s,x) =0, if and only if

. 2 _ . 2 _
ngnooAN —OanlegnooBN =0

(30)

31)

(32)

(35)

(36)

Proof Strategy. The idea is to prove that in the case of a complex s
that is in the right hand side of the critical strip % < ap < 1 and that
is a L(s,x) zero, that the limit lim, .o A2 = 4/ — co OR the limit
limp— oo B,% = +/ — o0o. This will create a contradiction. Because if s is a
L(s,x) zero then the limy,— oo A2 should be 0 and the lim,_ - B2 should be



0. And therefore the sequences (3°_, Fy)n>1 and (0_, Gn)n>1 should

converge and their limits should be: limy,— o Zgzl F, = % limy o0 25:1 U2 <

+00 and limy,— o0 Z::;l G, = % limpy o0 Zﬁ;l V2 < +00.

Lemma 3.1. If% < ap < 1, we have the series Zn>1 G, diverges.
To prove this lemma, let’s first prove the following lemma:

Lemma 3.2. If the set of the partial sums zn + zn41+ ...+ 2ntk for n and
k > 0 is bounded, then we can write B, = Tf‘;g where (An) is a bounded
sequence.

Proof. We have limy_ 4o By = Z:ﬁ V., = 0. Therefore for each N > 1:

+o0
S, ZV+ Z Va=0 (37)

n=N+1
By
“+oo
S v (3)
n=N-+1
We have
= cos(bo In (n)) — p sin(bo In (n))
> o (39)

n=N+1

Let’s denote X,, and Y,, the partial sums of the series z,, and y,: X, =
Z]kv:1 zr and Y, = Z]kv:1 yk. So let’s take N and M two integers such
that M > N and do the Abel summation between N + 1 and M:

in(bo In (n))

i V, = i Yncos(boln (n)) i T sin(

n=N+1 n=N+1 n=N+1
_ Yu cos(boIn (M)) Yy cos(boln (N +1)) Z Y, (COS (boln(n+1))
Meao (N+1 )ao o (n+1)a0
7{XM sin(bo In (M)) X sin(bo In N+1 Z X, (sm boln(n+1))
Mo (N +1)e S (n+ 1)
Let’s define the functions f, and e, such that f,(t) = %
and e, (t) = W. For each n > 1, we can apply the Mean Value

Theoremon the interval [0,1] to find ¢1 and ¢ in (0,1) such that:

cos(boln(n+1)) cos(boln(n))| ¢ (e _

ot el \ — |éh(en)(1 - 0)] (43)
sin(boIn(n +1))  sin(boIn (n B

(n + 1) (n)eo ’ |[f(c2)(1 = 0)] (44)

cos(bo In (n))> (41)

sin(bo In (n))



We have the derivatives of f,, and e,, such that f,(t) = —bo sin(bo In (n4t)) —ag cos(by In (n+1))

(ntt)ao+T
and e{ﬂ (t) _ bocos(bg In (n(tfl)t)_{f:,oflm(bg In (n+4t)) . Therefore
cos(bpIln (n+1))  cos(boln (n)) ao + bo 45
D @ | S aen )
sin(boIn (n + 1))  sin(bo In (n)) ao + bo 46
(n+ 1)e0 a (n)eo — npaotl (46)

We have the set of the partial sums 2z, + 2n+1 + ... + 2Zn+k is bounded,
then the real part and the imaginary part of the sum partial of z, +zn+1+
... + Zn+k are also bounded.

Let’s K > 0 such that for every n and k: |zn + Znt1 + oo + Tpyr| < K
and |yn + Ynt1 + ... + Ynt+k| < K. Therefore for each n: |X,| < K and
V.| < K.

M
Z vl < Y cos(bo In (M) n Yn cos(boIn (N + 1)) (a7)
Mao (N + 1)a0
n=N-+1
~ cos(bpIn(n+1))  cos(boln(n))
0 0
o 50 ()
n=N+1
X sin(bo In (M) Xn sin(bo In (N + 1))
+ ‘ e + N D) (49)
M—1
sin(boIn(n+1))  sin(bo In (n))
Xn
+ > Xl < R e (50)
n=N+1
M-1
41K 1
< e +2K(ao +bo) Y Tt (51)
n=N-+1
4K Modt
<
S CESNT + 2K (ao + bo) /N+1 faot1 (52)
4K 2K(a0 -+ bo) 1 1
< —
S N+w as ((N+1)ao i) 69
We tend M to infinity and we get:
~+o0
4K 2K(a0 -+ bo)
Vol < 54
n§+1 T (N4 ao(N +1)% (54
Therefore
+oco Kl Kl
= |— <—— <
|BN| ’ Z Vnl < (N-i—l)ao — Nao (55)
n=N+1

where K1 = 4K + %ﬂ*’b”) > 0.
Let’s define the sequence €,, such that: B, = i Therefore for each
n > 1 we have: |An| < Ki. Therefore the sequence (\y) is bounded.

An

O



Let’s take n > 1, we have B,+1 = By, + V41. Therefore

Ant1 _ ﬁ Yn+1cos(boIn (n 4+ 1)) — xrnt1 sin(bo In (n + 1)) (56)
(n+1)%  no (n+ 1)
And

A1 = (1+ %)ao An + (ynﬂ cos(boIn (n 4+ 1)) — &n41 sin(bo In (n + 1))) (57)
For the sake of notation simplification, let’s denote , for n > 1,
vn = yncos(boln(n)) — zn sin(bo In (n)) (58)
st = (14 1)t vn (59)

Proof. First, we apply the previous lemma 3.2 to the case of our Dirichlet
series. Thanks to the cancelation property mentioned in (1), we have the
partial sums (31", x(¢))n>1 is bounded because our Dirichlet character
X is non-trivial. Therefore we write B,, = nAT'g where the sequence () is
bounded.

To prove this lemma we proceed with some asymptotic expansions:
We have

Bn+1 = Bn + Vn+1 (60)

So Gn+1 can be written as follows:

Gny1 = Vn+1Bn+‘/;L2+1 (61)

So Gn+1 — Gy can be written as

Gn+1 - Gn = (Vn+l - Vn>Bn + V'r?Jrl (62)

Let’s do now the asymptotic expansion of V,,41 — V,,. For this we need
the asymptotic expansion of cos (bg In(n + 1)) and sin (bo In(n + 1)).

cos(boIn (n + 1) = cos (bo In (n) + bo In (1 + %)) (63)
= cos (boIn (n)) cos (boIn (1 + %)) — sin (bo In (n)) sin (bo In (1 + %)) (64)

we have the asymptotic expansion of In(1 + %) in order two as follow:

1

1

%) (65)

n

Using the asymptotic expansion of the functions sin and cos that I will
spear you the details here, we have



1 1
cos (bo In(1 + E)) = 1+0(=3) (66)
And
. 1Ny bo 1
sin (boln(1+ ﬁ)) = ;Jr(’)(ﬁ) (67)
Hence
cos(boln(n+1)) = cos (boln(n)) — %Osin (boln (n)) + O(%)(68)
Also the Asymptotic expansion of m:
1 1 ao 1
- - (1 % =
(1 +mn)ao nao ( nt O(n2 )) (69)
Hence
cos (boIn (n + 1)) _ cos (boln (n)) _ bosin (boIn (n)) + ao cos (bo In (n)) + o 1 ) (70)
(1+mn)2o nao nao+l naeo+2
cos (bo In (n)) Cn 1
= nao + na0+1 + O(na0+2) (71)
And the squared version of the above equation
cos? (bo In(n+ 1)) cos? (bo In (n)) Cn 1

FEESET = s + 2cos (bo In (n))

n2a0+1 +O(na0+2) (72)

For the asymptotic expansion of sin (bo In(n + 1))

sin(bo In (n + 1) = sin (bo In (n) + bo In (1 + %)) (73)
= sin (bo In (n)) cos (bo In (1 + %)) + cos (bo In (n)) sin (bo In (1 + %)) (74)

we have the asymptotic expansion of In(1 + %) in order two as follow:

(14 1) = ©+0() (75)

Using the asymptotic expansion of the functions sin and cos that I will
spear you the details here, we have

sin (bo In(1 + %)) = sin (%0 + (9(%)) (76)
= %io0) (1)

And



1 1
cos (bo In(1 + E)) = 1+0(-3) (78)
Hence
1
sin(boIn(n+1)) = sin(boln(n)) + %0 cos (boIn (n)) + O(E)(m)
Also the Asymptotic expansion of m:
1 1 ao 1
S S (T -
(1 +n)ao neo ( n ' O(n2 )) (80)
Hence
sin (bo In (n + 1)) _ sin (bo In (n)) N bo cos (bo In (n)) — ag sin (bo In (n)) Lo 1 ) (81)
(I1+mn)2o nao naotl neo+2
sin (bo In (n)) cen 1
= nao + na0+1 + O(na0+2) (82)
And the squared version of the above equation
sin? (boln (n + 1)) sin? (boIn (n)) . cen, 1
(EESET = 3a + 2sin (bo In (n)) a0t + O(na0+2 ) (83)
Where
e = — (bo sin (bo In (n)) + ao cos (bo In (n))) (84)
ccn = bocos (boln(n)) — aosin (b In (n)) (85)

Therefore: V41 — Viu:

_ Yn41COS (boln(n+ 1)) — zpy1sin (boln (n+1) _ Yncos (boIn (n)) — @n sin (bo In (n)

_ - 86
Vn+1 Vn (n+ 1)a0 (']’L)”‘O ( )
cos (bo In (n)) Cn 1
_ ynﬂ( s + e+ O )) (87)
sin (bo In (n)) cCn 1
~zai e ey O )) (38)
Yn cos (bo In (n)) — @, sin (bo In (n) (89)
N (n)o
(Ynt1 — yn) cos (boIn (n)) — (@nt1 — xn)sin (boIn (n))  yny1n — Tpyicen 1
- nao * nao+1 O a0r2) (90)
_ Qn Bn 1
- TLTO + na0+1 + O(na0+2) (91)
And
Yn Bn 1
Vi1 = a0 + a0t + O(W) (92)

10



‘Where

on = (Yn+1 —Yn)cos (boIn(n)) — (Tn+1 — ) sin (bo In (n)) (93)
ﬂ'n =  Yn+4+1Cn — Tn41CCn (94)
Yo =  Ynit1COS (bo In (n)) — Tpt1sin (bo In (n)) (95)
Therefore
2
2 _ Tn YnBn 1
Vigr = n2a0 + 2n2a0+1 + O(na0+2) (96)
So the asymptotic expansion of G,,+1 — G, is as follows:
2
_ Tn anAn ﬂnAn ’Y’nﬂn 1
Gnt1 = Gn = n2ao + a0 + naotl + 2n2a0+1 + O(nao+2) (97)
We have B,, = nka':) where \,, is bounded. Therefore
2
_ Yntandn 29 Bn BnAn 1
Gnpr = Gr = n2a0 n2aotl T p2ag+l (na0+2) (98)
Therefore
2
_ In + anAn ()\n + 27n)ﬂn 1
Gni1 = Gn = n2ao + n2a0+1 (na0+2) (99)

By definition of O, we know that there is exist a bounded sequence
(en) and there is exist a number Ny such that: For each n > Ny we have

_ ’Y’r21, + an)\n ()\n + 2771)/871 €n

Gnp1 = Gn = n2a0 n2ao+1 nao+z (100)
2
Let’s now study the asymptotic expansion of the dominant term W”:L';;ag)‘”

in the context of the Dirichlet L—functions.

Lemma 3.3. Let’s q be a nonzero integer. Let’s suppose that for each
k, Thqr1 = xiﬁl =1 and Yrq+1 = y,%qﬂ = 0. Therefore we have the
following asymptotic expansion:

q q 2
2 _ Ygn+i — Tqn+i + 2mqn+i
E Yan+i + aanri)‘anri = E 2
i=1 =1

q 2
+ cos(2boIn (gn)) E Yant +xq2+ Tant
i=1

q
n4i ni_2 n+iYqn+i
+  sin(2boIn (qn))zyq +i — Lgn+ Lan+iYqn+

2

=2

11

+O(—

1
qn

)

(101)

(102)

(103)



Proof. In this case we have for each n > 1:

an = (Tpp1 —an)cos (boln (n)) + (Ynt1 — ya)sin (boIn(n))  (104)
Yo = @nticos (boln(n)) + yni1sin (boIn(n)) (105)

An is bounded. From the asymptotic expansion of cos(bpIn (n + 1))
and sin(bg In (n + 1)) :

1
A1 = An+@ns1cos(boln (n+ 1)) + yny1sin(boIn (n + 1)) + O(ﬁ) (106)

Let ¢ be a nonzero integer. And let’s x be the Dirichlet character mod-
ulo q associated to our Dirichlet series > ., Z2. x(n) = zn = T +iy, for
each n > 1. Then, by definition we have for each k, Thg+1 = a:iq_H = 1and
Yhq+1 = y,%q_H =0. And for each 1 <4 < @, Trg+i = i and Yrg+i = Yi-

‘We have from above that

cos(boln(n+1)) = cos(boln(n))+ O(%) (107)
sin(boln(n+1)) = sin(boln (n)) + 0(%) (108)
Therefore for 1 < i < ¢: we have
cos(bon (qn +4)) = cos(boln (qn)) + 0(qin)
sin(bo In (gn + z)) = sin(boIn (gn)) + O(qin)
Agntit1 = Agnii + Ygntit1 cos(boIn (qn)) — @gnriv1sin(bo In (gn)) + O(
Let’s now study the term Y7 | cgntiAgni-
a q
Z Qgntidgnti = Z (yqn+7j+1 - yqnﬂ') Agn+i cos(bo In (gn + 7)) (112)
im1 i=1
— (anﬂ'ﬂ — anﬂ') Agnisin(bo In (gn + 7)) (113)
= cos(boIn(gn)) Zq: (yqn+¢+1 - yqn+z‘)/\qn+i (114)

i=1
q

. 1
— sin(boln (qn) D (#ansinr — Fanss ) danss + O(1) (15)

1=1

12

1
—)
qn

(109)
(110)

(111)



We have here Abel’s sums so:

q

i=1

q q
Z (yqn+i+1 - yqn+i)Aqn+i = Z Yanti+1Agnti — Z Yan+iAgn+i
=1 =1

q+1 q
= E YantiAgnti—1 — E Yan+iAgn+i
1=2 =1

q
= yqn+q+1>‘qn+q - yqn+1)\qn+1 + Z Ygn+i ()\qn+i—1 - /\qn+i>
i=2

= Agntq — Agnt1

q
— >~ Yanti (ans cos(bo In (qn)) — 2gn4s sin(boln (qn)) ) + O
1=2

q
= é Aqn«l»i - Aqn«l»ifl
1=2

q
=) Yants (yqn+z‘ cos(bo In (qn)) — zgn i sin(bo In (qn))) +O(
=2
- 1
-3 (qu cos(bo In (qn)) — Zgn-s sin(bo In (qn))) +0(,)
i=2
q
= > yansi (Uansi os(bo In (qn)) = i sin(bo In (an)) ) + O(
i=2
q
2
= 3" (vants = Yins1) coslboln (gn))
i=2
! 1
- g (ants = antigans) sin(bo I (qm) + O( )
And
q q
Z (.’L‘qn+i+1 - mqnﬂ))\qnﬂ = Z (an+i — $§n+l) Sin(b() In (qn)) (127)
i=1 i=2
1
_ (yqn+i - $qn+iyqn+i) cos(bo In (gn)) + O(q—n) (128)
Therefore:
q q
Z QgntiAgnti (yanri - y3n+i) COSQ(bO In (gn)) (129)
i=1 i=2
Tanti — anJriyanri) sin(bo In (gn)) cos(bo In (qn))) (130)
q
(l‘anri — x3n+i) sin®(bo In (gn)) (131)
i=2
. 1
(yqn_‘_i — an+¢yqn+i) sin(bo In (gn)) cos(bo In (qn)) + O(q—n) (132)

13

1
qn

1
an

1
an

)

)

)

(116)

(117)

(118)
(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)



Now the term 23:1 ’an+i

q q 2
> Ve = Z(yqn+z‘+1 cos(bo In (gn + @) — Zgnyit1 sin(bo In (qn+i))) (133)
i=1 i=1
q
= Z {ygnﬂﬂ cos?(boIn (qn)) + @2, 411 sin®(bo In (gn)) (134)
i=1
. 1
—  2Tgn4it1Yqn+it1sin(bo In (gn)) cos(bo In (qn))} + O(q—n) (135)
a+1 a+1
= cos(boln (gn)) 3 92ss +sin(boln (gn)) 3 a2 (136)
i=2 =2
q+1 1
—  2sin(bol bol n+iYgn+i + O(— 137
sinito (gm) cos(o n (gn) 3 s +0() (13
We have for each n, Trq+1 = xqu = 1 and yrg+1 = y,%q_H = 0.
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Therefore

q q q+1 q+1
Z ’Y;nﬂ + Z Qgn+idgnti = COSQ(bO In (gn)) Z yt?nﬂ + Sin2(b0 In (gn)) Z $3n+i
i=1 i=1 i=2 i=2
q+1 1
—  92sin(by 1 bo 1 n+ilYqn+i —
sin(bo In (gn)) cos(bo In (qn)) ;xq TiYqnti + O(qn)
2 . 2
+ cos”(boIn(gn)) Z (yqn+i - yqn+i)
1=2
q
+ sin(bo In (qn)) cos(bo In (qn)) Z (yqn+i - Can+iyqn+i)>
i=2
q
— sin®(boIn (gn)) Z (mqn-}-i — xan)
i=2
1 1
—  sin(bo In (gn)) cos(bo In (gn)) Z (anH- - yq7l+ian+i) + O(q—n)
i=2

= cos?(bo In (qn))yn 41 + sin®(bo In (qn))e2,1

2sin(bo In (gn)) cos(bo In (qn)) Tgn+1Yqn+1
q

q
+ cos*(boln (qn) 3 ygnss + sin®(boln (qn) 3 (2621 — Tgnss)

=2 i=2
q
+ sin(bg In (qn)) cos(bg In (qn)) Z (yqnﬂ_ g — 2an+iyqn+i)
i—2
1
+ O(q—n)
2 q
= cos®(boln(g) 3 yanss -+ i’ b0 b ) 3 (25 = )
=1 i=1
q
+  sin(bo In (gn)) cos(bo In (qn)) Z (yqnﬂ_ — Sgnti — 2£qn+iyqn+i)
i—2
1
oO(—
+ o)
Therefore
q . .
Yan+i — Tan+i + 2T 44
3 (it camsidanss) = 35 S E— (152)
=1 =1
. Ygnti + Tanti — ngn-&-i
+ cos(2bgIn (gn)) z_:l : (159
S Ygn+i — T +'72x +iYqnti 1
. qn—+1 qn+i qn+iYqnti
b ) ; 2 +O() (154)

O

Proof Strategy. The idea here is to prove that we can choose Ny such

15

(138)

(139)

(140)

(141)

(142)

(143)

(144)
(145)

(146)
(147)
(148)

(149)

(150)

(151)



Gn+1 =

N
n=1

that Rny+Gn, > 0. In such case, we will have the limy 400 Y
+oo .

Divergence of ) ., G,

For large N > Ny we have the following expression of Gn41:

N 2

In -+ Oén>\n (>\n + 27n)ﬂn €n

GN'H = GNO + Z nan + n2ao+1 nao+2 (155)
n=Np
N

(6% D, €n

=G + Z n2a0 + n2a0+1 + nao+2 (156)
n=Np
Where

Cn = Y24 anhn (157)
D, = ()\n + 2'yn)ﬂn (158)

We do another summation and we have the following expression:
So for each N > Np:

N
> Gupr = (N—No+1)Gny (159)
n=Nog
ARNYS
+ > nT’fH(N—nH) (160)
n=Ng
D
+ > W(N—n—f— 1) (161)
n=Ng
N 13
+ 0> na0”+2 (N—n+1) (162)
n=Ng
N N N
Ch Ch Ch
Z nao+1 (N=n+1)=(N+1) Z nZao Z n2ao—1" (163)
n=~Ng n=Ng n=No
N N
Chn Cn
= (N+1) Z n2ao - Z n2ao—1 (164)
n=Ng n=Ng
N N N
D, D, D,
> AT (N —n+1)=(N+1) > T > i (165)
n=Ng n=Ng n=No
N N
D, D,
:(N+1) Z n2a0+1 - Z n2ag (166)
n=Ng n=Ng

16



And

N N N
en €n En
Z nZao+1 (N=n+1)=(N+1) Z naot2 Z paotz (167)
n=No n=No n=No
A N
=(N+1) Z neot2 Z naotl (168)
n=Ng n=Ng

So for each N > Np:

N
> Gnii = (N-No+1)Gn, (169)
n=Ng
N
Chn D, En
+ (N+ 1) Z n2ao + n2ao+1 + nao+2 (170)
n=Ng
N
Chr D, En
- Z n2ao—1 + n2a0 + nao+1 (171)
n=No

We factorise by N + 1 then we have this expression

N
N —No+1
Z Gny1 = (N+1)<(N7+01+)GN0 (172)
n=No
N
C, D, En

N
1 Chn D,, En
N+ 1 ZN n2a071 + n2a0 + na0+l> (174)

0

We have the sequences (Cy), (Dy) and (g5,) are bounded and 2ao > 1,
so the serie ng iy T TzagyT + ﬁ is converging absolutely.
Let’s prove now that the sequence in the equation (174) is converging to
zero when N goes to infinity.

As we have 2a9 > 1, So

fim —Cn Do e (175)

— 00 n2a071 nZaO naeo+1

Therefore following the Césaro theorem we have:

N
. 1 CTL D'I’L 5n _
n=Ng

We denote GG(N, No) as:

17



- (N — No + 1)
GG(N,Ng) = (7N+1 Fn, (177)
N
C, D, €n
S D s e (178)
n=Ng
N
1 Chn D, En
N+1 ZN n2ao0—1 + n2ao + na0+1) (179)
n=~Ng
Therefore:
N
> Guyr = (N+1GG(N,No) (180)
n=Ng

: C D 5 . . ’
The serie Y n>1 p2es T 2aaqT + Sagyz 18 converging absolutely. Let’s
denote

Ry, = i §Nq Cn |, _Du_ _en (181)
No = N_lg_loo o n2ao | p2aotl | pagt2
n= 0

Lemma 3.4. We can choose Ny such that Ry, + Gn, >0 .

Proof. Let’s now study the term Zg:quOH g—go.

We have from above lemmas that:

Nq Nq

Cn o "szy, + Oén)\n
dooms = > T (182)
n=qNo+1 n=qNo+1
N q 2
n 7.+ A n+1
= Y S dam T Onfank (183)
n=Ng i=1 (qn + Z)
We have for each
1< <@
2 2
e = T e O ) (189)
(gn + )20 (gn)@o (gn)2eot

18



Therefore

q 2
Yan+i + QnAgn+i Z ’an-m + anAgnti +0( 1

P (qn + 7:)2a0 qn 2a0 (qn)2a0+1 )

_ 1 Z Ygn+i — Tqnti + 2x3n+i
(gn)2@o 2

i=1

nz+mn 17217117,
+ cos(2bg In (qn)) qu + q2+ ant
i=1

n+i — Lqn 1721'77,1 n+ 1
+ Sln(2boln qn qu + q +2 gn+iYqn+i }+O(Ww)
=2

_ 1 Xq: yi — x; + 227
(qn)?eo | — 2

a 2

i + T — 27

4+ cos(2bo In (qn)) E 'fo
i=1

q
. Yi — Ti — 2T3Y; 1
+ sm(2b0 In (q?’l)) Z:ZQ 2} + O(W)
_ a+ Bcos(2boIn(gn)) + vsin(2bo In (qn)) 0 1 )
B (qn)™ Oy
Where
q 2
Yi — Ti + 23
= AR 193
“ 2 2 (193)
q 2
Yi + T — 2%
_ Bl 194
g yi — Ti — 2%:Ys
v _ Z ] L2 1Y (195)

From the cancelation property of the Dirichlet characters, we can cal-
culate the values of «, # and ~.

q q . N
f x = xo the t 1 charact
in _ %(ZX(Z)) _ #(q), 1 X Xo' e trivial character (196)
— P 0, if otherwise, x # xo

And

q q . ..

. 0, if x = xo the trivial character
> i =S(D>_x(0) = : . (197)
— et 0, if otherwise, x # xo

Therefore

@, if x = xo the trivial character (198)
o=
¢ x7, if otherwise, x # Xo
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(186)

(187)

(188)

(189)

(190)

(191)

(192)



if x = xo the trivial character (199)

_ 9@
2
if otherwise, x # Xo

= - ?:1 a3,
_ —@, if x = xo the trivial character (200)
T - 1o Tiys, if otherwise, x # xo
Therefore we can write the following for a large n:
L 2+ gt o + B cos(2bo In (gn)) + vsin(2bo In (gn)) &n
~oag = Zag + a1 (201)
—~  (qn+1) (gn) (gn)
Where the sequence &, is bounded.
Therefore
N
O o2
n2ao - (qn + 7:)2‘10
n=qNo+1 n=Np i=1
N 4 Bcos(2bo In (gn)) + 7 sin(2bo In (qn)) N &n
= Z 2a, + Z 2a0+1 (203)
S (qn)?eo o, (an)2eo
And
N al 1 in(2bo 1
Z Chn n D, n En B Z o+ B cos(2bo In (gn)) + v sin(2bo n(qn)) (204)
nQaO n2a0+1 na0+2 - (qn)2a0
n=qNg+1 n=Ng
N Ngq
gn Dn En
+ Z (qn)2a0+1 + Z n2a0+1 + na0+2 (205)
n=qNg+1

n=N

(=)

a+ 3 cos(2bg In (gn))+ sin(2bg In (qn)) was studied in the

The serie > o, (am)%a0
lemma 3.1 in [1]. Let’s denote the function g as the following:

o(z) = o + B cos(2bo In (gz)) + v sin(2bo In (gz))
(g

(206)

We have the following:
K (207)

+oo +o00
(N0)2a0

S ) - /N 5@

n=No+1
And the primitive function G of the function g(see lemma 3.1 in [1]):
(208)

<

1 o
60 = ol -G
(2608 + (1 — 2a0)) sin(2bo In () + (B(1 — 2a0) — 27bo) cos(2bo In (z)) } (209)

((2b0)2 + (1 = 2a0)3 ) ()00

Therefore
+oo K
Z g(n) + G(No +1)| < (No)2a0 (210)
n=Np+1 0
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Case of Non-Trivial Character In this case we have:

q
7= =) m (213)
=2

As an example, the case where ¢ = 3 and x(1) = 1, x(2) = —1 and

“+oo
X(3) =0. we have a« =2, § = —2 and 7 = 0. L(s,x)zznzo( e

1
Bnt2)° ) :
In the general case of a non-trivial Dirichlet character modulo g, we have
z1 = x(1) = 1. Therefore a > 1 and 8 = —a. Therefore G # 0.

Case of Riemann Zeta or Dirichlet n function The Riemann
zeta function is extended to whole complex plane where $(s) > 0 by the

+ 1 1 ‘e eader (1 —
ni% (W—m . In this case: Q72

and x(1) =1, x(2) = —1. we have a = 2, f = —2 and v = 0. Therefore
a > 1 and 8 = —a. Therefore G # 0.

Dirichlet n function: n(s) =

Remark. In the case of Riemann Zeta, the function x is not a Dirichlet
character but it is in line with our study as it respects the conditions of
the lemmas 3.2 and 3.3. Therefore this proof is also proves the Riemann
Hypothesis.

Conclusion. In both cases above we have o > 1, § = —a and the function
G is nonzero: G # 0.

Concerning the term Gn,. We have

_ UNo _ UNO)\NO
Gn, = (No)0 By, = (No)2o (214)

Where the sequence (vn,A,) is bounded.
Therefore we have the asymptotic expansion of Gn, + Z::}VO +19(k)
as follows:

+o0o
Grot+ > glk) = —G(N0+1)+O( (215)

n=Ng+1

(N01)2“°>

Remark. The remaining terms in the expression of Rn, are all of the
order of W and above. So the dominant term in the expression Ry,

is the term —G(No + 1). The function G is a nonzero function. There-
fore this term is the dominant term in the expression of % Zf:];\l,o Grt1-

Hence based on the sign of G(No + 1) we can show that the limit of
SN Gy can be both +oo and —oo.

n=1
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Let’s now study the function f:

@ (2608 + v(1 — 2a0)) sin(2boz) + (B(1 — 2a0) — 2vbo) cos(2box)

f@) = =50 (200)2 + (1 — 2a0)2
= g+ B2sin(2box) + 2 cos(2box)

The function f is also nonzero function. Otherwise we will have a = 0
which is in contradiction with the fact that a > 1.
The function f is a linear combination of the functions sin and cos. So
the function f is differentiable and bounded. The function f is periodic
of period {-.
Let’s calculate the function f values at the following points:
f0) = aa+m (218)
™
=) = a—m (219)
bo
We have either f(0) # 0 or f(5-) # 0, otherwise we will have v = 0

which is again in contradiction with the fact that a > 1. Let’s assume
f(0) # 0. From the values above we have the following:

=

o If (a2 +72) > 0 then f(0) > 0.

o If (a2 +72) < 0 then f(0) < 0.

In case of f(0) > 0 we can prove that the limit of >~ "' G/, 1 goes to —oo
and in the case of f(0) < 0 we can prove that the limit of Zf:_ll Gn+1 goes
to +o0o. Therefore, in all cases we have the series Zn>1 Gr41 diverges.
So let’s assume from now on that f(0) < 0 as the same proof can be done
in both cases.

From the lemma 3.3 in [1], there exist N1 > Ny such that |cos(2bg In (N1 + 1)) — 1] <

€ and [sin(2b In (N7 + 1))| < € for any 1 > € > 0.
Let’s define 8o = —f(0). Bo > 0.

Let’s fix € > 0 to be very small such that 0 < ¢ < min (1, % )

Let’s define vo = |B2| + |y2|. We have the same proof steps as in the
case of F),.

(216)

(217)

Let’s N1 be such that |cos(2bo In (N1 4+ 1)) — 1] < €/~0 and also |sin(2bp In (N7 + 1)) — 0| <

€/v0. Therefore:
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((ﬂg) sin(2bo In (N1 + 1)) + (72) cos(2bg In (N + 1)))
G(Nl + 1) — f(O) <
(N1+1)2a0—1 — (N1+1)2a0—1
((ﬂg)sin(%o()) (72) cos( 2b00
— (Nl + 1)20,0 1 }'
(\6g| |sin(2bo In (N1 + 1))| + |y2| |cos(2bo In (N1 + 1)) 1|)
<
= (N7 + 1)2a0-1
(181 e/0 + il )
<
= (Ny + 1)2a0-1
€
<
— (N1+1)2a0—1
Therefore
oo ﬁo “+o0
n=Np+1 0 n=Np+1
- f(0) € K
— - <
+‘ G(N1 +1) Vo T )2t | (S (N T D20t T ag(Ny Yo (226)
Hence
+o0
Bo € K
— <
nz%;ﬂﬂ(“) (N1 + 1)200—1| = (Ny 4 1)2a0-1 + 2a0 (N1 )20 (227)
Therefore
“+oo
Bo — € K
> — 22
L2 90 R Ty Bag(Naye (228)
Therefore
+oo N
5% D, En
Ry, = k XN: 1g(k) + Fyo +  lim [ Zz:\r Gttt ZN: e + —o7z
=qN1+ n=qNi+
N Ngq
Bo — € K . én D, €n
> - F 1 S B I
= (No + 1)2a0-1 ~ 2g¢(Ny)2a0 + N, +NE£°O n;\ﬁ (qn)2e0+1 +n:qZN:1+1 n2a0+1 + nao+2

We have the sequences (§x), (Dr) and (ex) are bounded. Plus we have
ap+2 > 2ap+ 1> a9+ 12> 2a9 > 1, therefore the series Ek21 kgfﬁ,

> k>1 pacyz are converging absolutely.
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(224)
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Let the positive constant M such that:
For each k > N; and N > N; :

le] < M (231)
|Di| < M (232)
lex| < M (233)

Therefore, we have ag > 0:

“+ oo “+o0

gn Dn En
2 (gn)2e0+t + > TZaotl T paota (234)
n=N1 n=gN1+1
M M M
= + + 235
> 2a0(qN1)a0 2aO(N1)2aO (ao * 1)(Nl)a0+1 ( )
Therefore
B 2 E (236)

(N1 4 1)200-1  2a9(N1)%%  2a0(gN1)%%  2a0(N1)2%  (ao 4 1)(Ny)eo+!
Let’s define the sequence (d,,):

5 — vndn(n 412070 K+ 107 M40 M(n41)*070  M(n+1)%07! (237)
" n2eo 2a0(n)2e0 2a0(gn)?3ao 2a0(n)2eo (a0 + 1)(n)ao+1

As we have % < ap < 1, therefore 2ap — 1 < ap < 2ap < ap + 1
Therefore

lim _vnAn(n+ 1)2«1071 N K(n+ 1)2(1071 M(n+ 1)2a071 M(n—l— 1)2(1071 M(n+ 1)2«10—1
n—+oo n2ao 2a0(n)2e0 2a0(gn)2aeo 2a(n)2e0 (ao + 1)(n)ao+1

=0 (238)

Therefore the limy_ o0 dn = 0.
So we can choose Ni such that |dn, | < €, i.e on, <.

Therefore
1
Ry, > — 2 0 239
o2 (e (o) (259
Therefore limy 4o Zg:NO G, = +00.
O
O

Conclusion. We have the serie . -, V2 is converging absolutely thanks
to 2a0 > 1. We have from the lemmas 3.1 that:

N
Jim Zl Gy = 400 (240)
Therefore
lim By = +o0 (241)
N—oco

This result is in contradiction with the fact that s is a L(s, x) zero therefore
the limit imy_oc BN = 0 should be zero. Therefore s with % < ap =
R(s) < 1 cannot be a zero for L(s,x).
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3.2 Case One: % < agp <1 and y trivial

For the trivial character xo modulus ¢ we have:

((s)=L(s,x0) |1 (1 - —5)71 (242)

p Prime,p/q

Where ( is the Riemann Zeta function.
-1
The product Hp Prime.p/q (1 - p%) is finite, bounded and nonzero as

1 < R(s) = ao < 1. From the equation above we have: if s is a zero for
L(s,xo0), then it is also a zero for the Riemann zeta(s). We saw in the
previous case that if % < R(s) = ao < 1, it is not possible for the Riemann
zeta function to have such a zero. Therefore L(s, xo) cannot have a zero
where £ < R(s) = ao < 1.

3.3 Conclusion

We saw that if s is a L(s,X) zero, then real part R(s) can only be 1
as all other possibilities can be discarded using the functional equation
like in [1]. Therefore the Generalized Riemann hypothesis is true: The

non-trivial zeros of L(s,x) have real part equal to %
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