Sentence meaning as argumentative dialogues
Davide Catta, Alda Mari, Christian Retoré

To cite this version:

HAL Id: hal-02150083
https://hal.archives-ouvertes.fr/hal-02150083
Submitted on 19 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sentence meaning as argumentative dialogues

D. Catta, A. Mari, Ch. Retoré
LIRMM Univ Montpellier, CNRS, IJN-CNRS

Introduction

In formal semantics the meaning of a sentence A is defined using the truth condition of the sentence and formalized using possible worlds semantics. We twist the classical view by stating that: the meaning of a sentence A asserted by speaker P is defined as the set of all possible justifications of A, which are argumentative dialogues starting with A won by speaker P. The idea of explaining the meaning of sentences in terms of how they can be justified in an argumentative dialogue goes back to [3]. We propose to apply this idea to sentences of natural language.

Definitions

Argumentative dialogue for S: sequences of utterances

\[D = U_0, U_1, \ldots, U_n \]

where:

- \(U_i \) are utterances i.e. sentence prefixed by ! (assertion) or ? (question)
- \(D \) starts with 1S that is \(U_0 \) is 1S
- \(D \) is an alternate sequence: even utterances \(U_{2i} \) are said by \(O \) odd utterances \(U_{2i+1} \) are said by \(O \)
- the sequence respects answering rules i.e. what \(U_{2i+1} \) might be according to the previous utterances \(U_0, \ldots, U_i \)
- \(P \) wins the dialogue when the last utterance is by \(P \) and \(O \) cannot answer — otherwise \(O \) wins the dialogue.
- For each \(U_i \), \(i \) is the position in the dialogue.

Rules

There are two kinds of answering rules when constructing a formal dialogue.

Logical rules: stipulating how an utterance can be questioned or answered according to its main logical operator.

Structural rules: imposing global conditions on the shape of the dialogue

Conditional rule

| \(X \) \(\left(S_i \rightarrow S_j \right) \) | \(Y \) \(S_i \) | \(S_j \) |
| \(X, Y \in \{ P, O \} \) | \(X \neq Y \) |

Atomic structural rule: \(P \) may assert an atomic sentence \(\phi \) only if \(O \) has previously asserted \(\phi \)

Structural rule 1: a question may be answered at most once

Structural rule 2: if \(i \) is a position and if at \(i-1 \) there are several questions that are waiting for an answer only the last of them can be answered

Advantages of this approach

1. The class of models of a sentence \(S \) can be badly infinite. On the contrary the set of Argumentative dialogues won by \(P \) can be recursively enumerated.
2. This kind of semantics is more fine-grained than traditional truth theoretic semantic. In the traditional approach two sentences having the same class of models are identified in terms of meaning e.g. \([S_1 \land S_2] \equiv [S_2 \land S_1] \) whereas they are distinct in terms of argumentative dialogues.

Example

\[S_1: \text{John kills Mary} \]
\[S_2: \text{John will go to jail} \]
\[S_3: \text{John will pay for his crime} \]

\[0 \text{ P } S_1 \rightarrow S_2 \rightarrow (S_2 \rightarrow S_3 \rightarrow (S_1 \rightarrow S_3)) \]
\[1 \text{ Q } S_1 \rightarrow S_2 \rightarrow (S_2 \rightarrow S_3 \rightarrow (S_1 \rightarrow S_3)) \]
\[2 \text{ P } S_2 \rightarrow S_3 \rightarrow (S_1 \rightarrow S_2) \]
\[3 \text{ Q } S_2 \rightarrow S_3 \rightarrow (S_1 \rightarrow S_2) \]
\[4 \text{ P } S_3 \rightarrow S_1 \]
\[5 \text{ Q } S_3 \rightarrow S_1 \]
\[6 \text{ P } S_1 \rightarrow S_1 \]
\[7 \text{ Q } S_1 \rightarrow S_1 \]
\[8 \text{ P } S_2 \rightarrow S_2 \]
\[9 \text{ Q } S_2 \rightarrow S_2 \]
\[10 \text{ P } S_3 \rightarrow S_3 \]

Forthcoming Research

Our approach is related to the inferentialist view of meaning [2, 1]. The central tenet of inferentialism is Manifestability: The knowledge of the meaning of a sentence or expression must be in principle completely observable and publicly testable

Disagreement about word-meaning frequently emerge in real life dialogues:

\[0 \text{ P } \text{John is not a murderer} \]
\[1 \text{ P } \text{John is a murderer since he killed Mary} \]
\[2 \text{ Q } \text{I grant that he killed Mary, but it was by accident.} \]

- We plan to characterize manifestability, that is to find the conditions that would guarantee the emergence — in formal dialogues — of any possible disagreement about word meaning.
- Computing a dialogue exhibiting a disagreement can be viewed as a machine-learning procedure for axioms.
- In order for this procedure to be effective we are developing our line of research into two parallel directions:

1. We are developing rules for argumentative dialogue expressed in decidable fragment of first order logic involving sentence with generalized quantifiers like in [4]
2. the practical development of natural language processing tools using such ideas can only be achieved if a very precise topic has been circumscribed. Indeed, a prototype would require sophisticated linguistic resources (lexicons e.g. \(\lambda e^s(\text{snoring}^s) \) , knowledge representation e.g. \(\text{snore}^s \rightarrow \text{sleep}^s \)). We are currently studying how such resources can be integrated in formal argumentative dialogues.

References