A. M. Alanazi, E. L. Neidle, and C. Momany, The DNA-binding domain of BenM reveals the structural basis for the recognition of a T-N11-A sequence motif by LysR-type transcriptional regulators, Acta Crystallogr. D Biol. Crystallogr, vol.69, pp.1995-2007, 2013.

M. N. Alekshun and S. B. Levy, Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon, Antimicrob. Agents Chemother, vol.41, pp.2067-2075, 1997.

M. N. Alekshun, S. B. Levy, T. R. Mealy, B. A. Seaton, and J. F. Head, The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 A resolution, Nat. Struct. Biol, vol.8, pp.710-714, 2001.

Y. Alguel, D. Lu, N. Quade, S. Sauter, and X. Zhang, Crystal structure of MexZ, a key repressor responsible for antibiotic resistance in Pseudomonas aeruginosa, J. Struct. Biol, vol.172, pp.305-310, 2010.

Y. Alguel, C. Meng, W. Terán, T. Krell, J. L. Ramos et al., Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials, J. Mol. Biol, vol.369, pp.829-840, 2007.

C. Alvarez-ortega, J. Olivares, and J. L. Martínez, RND multidrug efflux pumps: what are they good for? Front, 2013.

M. Anandapadamanaban, R. Pilstål, C. Andresen, J. Trewhella, M. Moche et al., Mutation-induced population shift in the MexR conformational ensemble disengages DNA binding: a novel mechanism for MarR family derepression, Structure, vol.24, pp.1311-1321, 2016.

C. Andrésen, S. Jalal, D. Aili, Y. Wang, S. Islam et al., Critical biophysical properties in the Pseudomonas aeruginosa efflux gene regulator MexR are targeted by mutations conferring multidrug resistance, Protein Sci, vol.19, pp.680-692, 2010.

E. Bartowsky and S. Normark, Purification and mutant analysis of Citrobacter freundii AmpR, the regulator for chromosomal AmpC beta-lactamase, Mol. Microbiol, vol.5, pp.1715-1725, 1991.

M. P. Bhate, K. S. Molnar, M. Goulian, and W. F. Degrado, Signal transduction in histidine kinases: insights from new structures, Structure, vol.23, pp.981-994, 2015.
DOI : 10.1016/j.str.2015.04.002

URL : https://doi.org/10.1016/j.str.2015.04.002

P. M. Bhende and S. M. Egan, Genetic evidence that transcription activation by RhaS involves specific amino acid contacts with sigma 70, J. Bacteriol, vol.182, pp.4959-4969, 2000.
DOI : 10.1128/jb.182.17.4959-4969.2000

URL : http://europepmc.org/articles/pmc111377?pdf=render

H. Bhukya, R. Bhujbalrao, A. Bitra, A. , and R. , Structural and functional basis of transcriptional regulation by TetR family protein CprB from S. coelicolor A3(2), Nucleic Acids Res, vol.42, pp.10122-10133, 2014.

H. Bhukya, A. K. Jana, N. Sengupta, A. , and R. , Structural and dynamics studies of the TetR family protein, CprB from Streptomyces coelicolor in complex with its biological operator sequence, J. Struct. Biol, vol.198, pp.134-146, 2017.

A. G. Blanco, M. Sola, F. X. Gomis-rüth, and M. Coll, Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator, Structure, vol.10, pp.701-713, 2002.

P. Blanco, S. Hernando-amado, J. A. Reales-calderon, F. Corona, F. Lira et al., Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants, vol.4, p.14, 2016.

N. Blondiaux, M. Moune, M. Desroses, R. Frita, M. Flipo et al., Reversion of antibiotic resistance in Mycobacterium tuberculosis by spiroisoxazoline SMARt-420, Science, vol.355, pp.1206-1211, 2017.

T. Bock, C. Volz, V. Hering, A. Scrima, R. Müller et al., The AibR-isovaleryl coenzyme A regulator and its DNA binding site -a model for the regulation of alternative de novo isovaleryl coenzyme A biosynthesis in Myxococcus xanthus, Nucleic Acids Res, vol.45, pp.2166-2178, 2017.

T. Bordelon, S. P. Wilkinson, A. Grove, and M. E. Newcomer, The crystal structure of the transcriptional regulator HucR from Deinococcus radiodurans reveals a repressor preconfigured for DNA binding, J. Mol. Biol, vol.360, pp.168-177, 2006.

D. Boutoille, S. Corvec, N. Caroff, C. Giraudeau, E. Espaze et al., Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing beta-lactam resistance, FEMS Microbiol. Lett, vol.230, pp.143-146, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01696314

T. Brautaset, R. Lale, S. Valla, S. Brier, L. Fagnocchi et al., Structural insight into the mechanism of DNAbinding attenuation of the Neisserial adhesin repressor NadR by the small natural ligand 4-hydroxyphenylacetic acid, Microb. Biotechnol, vol.2, pp.6738-6752, 2009.

R. Brückner and F. Titgemeyer, Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization, FEMS Microbiol. Lett, vol.209, pp.141-148, 2002.

T. D. Bugg and R. Rahmanpour, Enzymatic conversion of lignin into renewable chemicals, Curr. Opin. Chem. Biol, vol.29, pp.10-17, 2015.

S. A. Bustos and R. F. Schleif, Functional domains of the AraC protein, Proc. Natl. Acad. Sci. U.S.A, vol.90, pp.5638-5642, 1993.

O. Caille, C. Rossier, and K. Perron, A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa, J. Bacteriol, vol.189, pp.4561-4568, 2007.

E. J. Capra and M. T. Laub, Evolution of two-component signal transduction systems, Annu. Rev. Microbiol, vol.66, pp.325-347, 2012.

X. Carette, N. Blondiaux, E. Willery, S. Hoos, N. Lecat-guillet et al., Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands, Nucleic Acids Res, vol.40, 2012.

J. H. Carra and R. F. Schleif, Variation of half-site organization and DNA looping by AraC protein, EMBO J, vol.12, pp.35-44, 1993.

P. Casino, V. Rubio, M. , and A. , Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction, Cell, vol.139, pp.325-336, 2009.

P. Casino, V. Rubio, M. , and A. , The mechanism of signal transduction by two-component systems, Curr. Opin. Struct. Biol, vol.20, pp.763-771, 2010.

Y. M. Chang, C. K. Chen, T. P. Ko, M. W. Chang-chien, and A. H. Wang, Structural analysis of the antibiotic-recognition mechanism of MarR proteins, Acta Crystallogr. D Biol. Crystallogr, vol.69, pp.1138-1149, 2013.

Y. M. Chang, W. Y. Jeng, T. P. Ko, Y. J. Yeh, C. K. Chen et al., Structural study of TcaR and its complexes with multiple antibiotics from Staphylococcus epidermidis, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.8617-8622, 2010.

M. J. Cheesman, A. Ilanko, B. Blonk, and I. E. Cock, Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution?, Pharmacogn. Rev, vol.11, pp.57-72, 2017.

H. Chen, J. Hu, P. R. Chen, L. Lan, Z. Li et al., The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.13586-13591, 2008.

H. Chen, C. Yi, J. Zhang, W. Zhang, Z. Ge et al., Structural insight into the oxidation-sensing mechanism of the antibiotic resistance of regulator MexR, EMBO Rep, vol.11, pp.685-690, 2010.

W. Chen, D. Wang, W. Zhou, H. Sang, X. Liu et al., Novobiocin binding to NalD induces the expression of the MexABOprM pump in Pseudomonas aeruginosa, Mol. Microbiol, vol.100, pp.749-758, 2016.

B. M. Childers, G. G. Weber, M. G. Prouty, M. M. Castaneda, F. Peng et al., Identification of residues critical for the function of the Vibrio cholerae virulence regulator ToxT by scanning alanine mutagenesis, J. Mol. Biol, vol.367, 2007.

A. Coates, Y. Hu, R. Bax, and C. Page, The future challenges facing the development of new antimicrobial drugs, Nat. Rev. Drug Discov, vol.1, pp.895-910, 2002.

S. P. Cohen, H. Hächler, and S. B. Levy, Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli, J. Bacteriol, vol.175, pp.1484-1492, 1993.

T. E. Colyer and N. M. Kredich, In vitro characterization of constitutive CysB proteins from Salmonella typhimurium, Mol. Microbiol, vol.21, pp.247-256, 1996.

L. Cuthbertson and J. R. Nodwell, The TetR family of regulators. Microbiol, Mol. Biol. Rev, vol.77, pp.440-475, 2013.

K. H. Darwin and V. L. Miller, The putative invasion protein chaperone SicA acts together with InvF to activate the expression of Salmonella typhimurium virulence genes, Mol. Microbiol, vol.35, pp.949-960, 2000.

L. Daury, F. Orange, J. C. Taveau, A. Verchère, L. Monlezun et al., Tripartite assembly of RND multidrug efflux pumps, Nat. Commun, vol.7, p.10731, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02150028

J. Davies and D. Davies, Origins and evolution of antibiotic resistance. Microbiol, Mol. Biol. Rev, vol.74, pp.417-433, 2010.

J. R. Davis, B. L. Brown, R. Page, and J. K. Sello, Study of PcaV from Streptomyces coelicolor yields new insights into ligand-responsive MarR family transcription factors, Nucleic Acids Res, vol.41, pp.3888-3900, 2013.

J. R. Davis and J. K. Sello, Regulation of genes in Streptomyces bacteria required for catabolism of lignin-derived aromatic compounds, Appl. Microbiol. Biotechnol, vol.86, pp.921-929, 2010.

V. M. D'costa, C. E. King, L. Kalan, M. Morar, W. W. Sung et al., Antibiotic resistance is ancient, Nature, vol.477, pp.457-461, 2011.

W. L. Delano, PyMOL molecular viewer: updates and refinements, Abst. Papers Am. Chem. Soc, p.238, 2009.

W. Deng, C. Li, and J. Xie, The underling mechanism of bacterial TetR/AcrR family transcriptional repressors, Cell. Signal, vol.25, pp.1608-1613, 2013.

D. K. Deochand, I. C. Perera, R. B. Crochet, N. C. Gilbert, M. E. Newcomer et al., Histidine switch controlling pH-dependent protein folding and DNA binding in a transcription factor at the core of synthetic network devices, Mol. Biosyst, vol.12, pp.2417-2426, 2016.

K. T. Dolan, E. M. Duguid, and C. He, Crystal structures of SlyA protein, a master virulence regulator of Salmonella, in free and DNA-bound states, J. Biol. Chem, vol.286, pp.22178-22185, 2011.

D. Du, Z. Wang, N. R. James, J. E. Voss, E. Klimont et al., Structure of the AcrAB-TolC multidrug efflux pump, Nature, vol.509, pp.512-515, 2014.

S. M. Egan, Growing repertoire of AraC/XylS activators, J. Bacteriol, vol.184, pp.5529-5532, 2002.

O. C. Ezezika, S. Haddad, E. L. Neidle, and C. Momany, Oligomerization of BenM, a LysR-type transcriptional regulator: structural basis for the aggregation of proteins in this family, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, vol.63, pp.361-368, 2007.

O. C. Ezezika, S. Haddad, T. J. Clark, E. L. Neidle, and C. Momany, Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator, J. Mol. Biol, vol.367, pp.616-629, 2007.

R. J. Fair and Y. Tor, Antibiotics and bacterial resistance in the 21st century, Perspect. Medicin. Chem, vol.6, pp.25-64, 2014.

L. Fernández, W. J. Gooderham, M. Bains, J. B. Mcphee, I. Wiegand et al., Adaptive resistance to the "last hope" antibiotics polymyxin b and colistin in Pseudomonas aeruginosa is mediated by the novel two-component regulatory system ParR-ParS, Antimicrob. Agents Chemother, vol.54, pp.3372-3382, 2010.

H. Fetar, C. Gilmour, R. Klinoski, D. M. Daigle, C. R. Dean et al., mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: regulation by the MexT activator in response to nitrosative stress and chloramphenicol, Antimicrob. Agents Chemother, vol.55, pp.508-514, 2011.

A. W. Fitzpatrick, S. Llabrés, A. Neuberger, J. N. Blaza, X. C. Bai et al., Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump, Nat. Microbiol, vol.2, p.17070, 2017.

F. Frénois, J. Engohang-ndong, C. Locht, A. R. Baulard, and V. Villeret, Structure of EthR in a ligand bound conformation reveals therapeutic perspectives against tuberculosis, Mol. Cell, vol.16, pp.301-307, 2004.

M. Frieri, K. Kumar, and A. Boutin, Antibiotic resistance, J. Infect. Public Health, vol.10, pp.369-378, 2017.

G. Fuchs, M. Boll, and J. Heider, Microbial degradation of aromatic compounds -from one strategy to four, Nat. Rev. Microbiol, vol.9, pp.803-816, 2011.

M. T. Gallegos, R. Schleif, A. Bairoch, K. Hofmann, and J. L. Ramos, , 1997.

, Arac/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev, vol.61, pp.393-410

R. Gao and A. M. Stock, Biological insights from structures of two-component proteins, Annu. Rev. Microbiol, vol.63, pp.133-154, 2009.

Y. R. Gao, D. F. Li, J. Fleming, Y. F. Zhou, Y. Liu et al., Structural analysis of the regulatory mechanism of MarR protein Rv2887 in M, tuberculosis. Sci Rep, vol.7, p.6471, 2017.

S. Ghosh, C. M. Cremers, U. Jakob, and N. G. Love, Chlorinated phenols control the expression of the multidrug resistance efflux pump MexAB-OprM in Pseudomonas aeruginosa by interacting with NalC, Mol. Microbiol, vol.79, pp.1547-1556, 2011.

W. K. Gillette, R. G. Martin, and J. L. Rosner, Probing the Escherichia coli transcriptional activator MarA using alanine-scanning mutagenesis: residues important for DNA binding and activation, J. Mol. Biol, vol.299, pp.1245-1255, 2000.

K. Goethals, M. Van-montagu, and M. Holsters, Conserved motifs in a divergent nod box of Azorhizobium caulinodans ORS571 reveal a common structure in promoters regulated by LysR-type proteins, Proc. Natl. Acad. Sci. U.S.A, vol.89, pp.1646-1650, 1992.

W. J. Gooderham and R. E. Hancock, Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa, FEMS Microbiol. Rev, vol.33, pp.279-294, 2009.

K. L. Griffith and R. E. Wolf, A comprehensive alanine scanning mutagenesis of the Escherichia coli transcriptional activator SoxS: identifying amino acids important for DNA binding and transcription activation, J. Mol. Biol, vol.322, pp.237-257, 2002.

S. Grkovic, M. H. Brown, M. A. Schumacher, R. G. Brennan, and R. A. Skurray, The staphylococcal QacR multidrug regulator binds a correctly spaced operator as a pair of dimers, J. Bacteriol, vol.183, pp.7102-7109, 2001.

S. Grkovic, M. H. Brown, and R. A. Skurray, Regulation of bacterial drug export systems, Microbiol. Mol. Biol. Rev, vol.66, pp.671-701, 2002.

A. Grove, Regulation of metabolic pathways by MarR family transcription factors, Comput. Struct. Biotechnol. J, vol.15, pp.366-371, 2017.

S. Guénard, C. Muller, L. Monlezun, P. Benas, I. Broutin et al., Multiple mutations lead to MexXY-OprM-dependent aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.58, pp.221-228, 2014.

I. Gushchin, I. Melnikov, V. Polovinkin, A. Ishchenko, A. Yuzhakova et al., Mechanism of transmembrane signaling by sensor histidine kinases, Science, vol.356, p.6345, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01526454

T. Hay, S. Fraud, C. H. Lau, C. Gilmour, and K. Poole, Antibiotic inducibility of the mexXY multidrug efflux operon of Pseudomonas aeruginosa: involvement of the MexZ anti-repressor ArmZ, PLoS ONE, vol.8, p.56858, 2013.

X. He, L. Wang, W. , and S. , Structural basis of DNA sequence recognition by the response regulator PhoP in Mycobacterium tuberculosis, Sci. Rep, vol.6, p.24442, 2016.

K. Hede, Antibiotic resistance: an infectious arms race, Nature, vol.509, 2014.

S. Henikoff, G. W. Haughn, J. M. Calvo, and J. C. Wallace, A large family of bacterial activator proteins, Proc. Natl. Acad. Sci. U.S.A, vol.85, pp.6602-6606, 1988.

A. K. Heroven and P. Dersch, RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis, Mol. Microbiol, vol.62, pp.1469-1483, 2006.

W. Hinrichs, C. Kisker, M. Düvel, A. Muller, K. Tovar et al., Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance, Science, vol.264, pp.418-420, 1994.

R. N. Hvorup, B. Winnen, A. B. Chang, Y. Jiang, X. F. Zhou et al., The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily, Eur. J. Biochem, vol.270, pp.799-813, 2003.

J. A. Ibarra, E. Pérez-rueda, L. Segovia, J. L. Puente, N. Watanabe et al., Crystal structures of the multidrug binding repressor Corynebacteriumglutamicum CgmR in complex with inducers and with an operator, J. Mol. Biol, vol.133, pp.174-184, 2008.

Y. L. Jiang, X. P. Wang, H. Sun, S. J. Han, W. F. Li et al., Coordinating carbon and nitrogen metabolic signaling through the cyanobacterial global repressor NdhR, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.403-408, 2018.

I. Jo, I. Y. Chung, H. W. Bae, J. S. Kim, S. Song et al., Structural details of the OxyR peroxide-sensing mechanism, Proc. Natl. Acad. Sci. U.S.A, vol.112, pp.6443-6448, 2015.

I. Jo, D. Kim, Y. J. Bang, J. Ahn, S. H. Choi et al., The hydrogen peroxide hypersensitivity of OxyR2 in Vibrio vulnificus depends on conformational constraints, J. Biol. Chem, vol.292, pp.7223-7232, 2017.

P. Juarez, I. Broutin, C. Bordi, P. Plésiat, and C. Llanes, Constitutive activation of MexT by amino acid substitutions results in MexEF-OprN overproduction in clinical isolates of Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.62, pp.2445-2462, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01770232

P. Juarez, K. Jeannot, P. Plésiat, and C. Llanes, Toxic electrophiles induce expression of the multidrug efflux pump MexEF-OprN in Pseudomonas aeruginosa through a novel transcriptional regulator, CmrA. Antimicrob. Agents Chemother, p.61, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01685302

K. Jung, L. Fried, S. Behr, and R. Heermann, Histidine kinases and response regulators in networks, Curr. Opin. Microbiol, vol.15, pp.118-124, 2012.

N. Kallscheuer, M. Vogt, J. Kappelmann, K. Krumbach, S. Noack et al., Identification of the phd gene cluster responsible for phenylpropanoid utilization in Corynebacterium glutamicum, Appl. Microbiol. Biotechnol, vol.100, pp.1871-1881, 2016.

B. Khameneh, R. Diab, K. Ghazvini, F. Bazzaz, and B. S. , Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them, Microb. Pathog, vol.95, pp.32-42, 2016.

Y. Kim, G. Joachimiak, L. Bigelow, G. Babnigg, J. et al., How aromatic compounds block DNA binding of HcaR catabolite regulator, J. Biol. Chem, vol.291, pp.13243-13256, 2016.

C. Kisker, W. Hinrichs, K. Tovar, W. Hillen, and W. Saenger, The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance, J. Mol. Biol, vol.247, pp.260-280, 1995.

T. Kitao, F. Lepine, S. Babloudi, F. Walte, S. Steinbacher et al., Molecular insights into function and competitive inhibition of Pseudomonas aeruginosa multiple virulence factor regulator, vol.9, pp.2158-2175, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01855959

M. P. Koentjoro, N. Adachi, M. Senda, N. Ogawa, and T. Senda, Crystal structure of the DNA-binding domain of the LysR-type transcriptional regulator CbnR in complex with a DNA fragment of the recognition-binding site in the promoter region, FEBS J, vol.285, pp.977-989, 2018.

T. Krell, J. Lacal, A. Busch, H. Silva-jiménez, M. E. Guazzaroni et al., Bacterial sensor kinases: diversity in the recognition of environmental signals, Annu. Rev. Microbiol, vol.64, pp.539-559, 2010.

S. Kumar, M. M. Mukherjee, and M. F. Varela, Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily, Int. J. Bacteriol, p.204141, 2013.

T. Kumarevel, The MarR Family of Transcriptional Regulators -A Structural Perspective, Antibiotic Resistant Bacteria -A Continuous Challenge in the New Millennium, pp.403-418, 2012.

T. Kumarevel, T. Tanaka, T. Umehara, Y. , and S. , ST1710-DNA complex crystal structure reveals the DNA binding mechanism of the MarR family of regulators, Nucleic Acids Res, vol.37, pp.4723-4735, 2009.

T. Kuroda and T. Tsuchiya, Multidrug efflux transporters in the MATE family, Biochim. Biophys. Acta, vol.1794, pp.763-768, 2009.

H. J. Kwon, M. H. Bennik, B. Demple, and T. Ellenberger, Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA, Nat. Struct. Biol, vol.7, 2000.

C. H. Lau, T. Krahn, C. Gilmour, E. Mullen, and K. Poole, AmgRSmediated envelope stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa, vol.4, pp.121-135, 2015.

T. B. Le, M. A. Schumacher, D. M. Lawson, R. G. Brennan, and M. J. Buttner, The crystal structure of the TetR family transcriptional repressor SimR bound to DNA and the role of a flexible N-terminal extension in minor groove binding, Nucleic Acids Res, vol.39, pp.9433-9447, 2011.

M. Lerche, C. Dian, A. Round, R. Lönneborg, P. Brzezinski et al., The solution configurations of inactive and activated DntR have implications for the sliding dimer mechanism of LysR transcription factors, Sci. Rep, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01572766

S. B. Levy, M. , and B. , Antibacterial resistance worldwide: causes, challenges and responses, Nat. Med, vol.10, pp.122-129, 2004.

D. F. Li, N. Zhang, Y. J. Hou, Y. Huang, Y. Hu et al., Crystal structures of the transcriptional repressor RolR reveals a novel recognition mechanism between inducer and regulator, PLoS ONE, vol.6, p.19529, 2011.

J. Li, G. Wehmeyer, S. Lovell, K. P. Battaile, and S. M. Egan, 1.65 A resolution structure of the AraC-family transcriptional activator ToxT from Vibrio cholerae, Acta Crystallogr. F Struct. Biol. Commun, vol.72, pp.726-731, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02165577

X. Z. Li and H. Nikaido, Efflux-mediated drug resistance in bacteria: an update, Drugs, vol.69, pp.1555-1623, 2009.

X. Z. Li, P. Plésiat, and H. Nikaido, The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria, Clin. Microbiol. Rev, vol.28, pp.337-418, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01695304

D. Lim, K. Poole, and N. C. Strynadka, Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa, J. Biol. Chem, vol.277, pp.29253-29259, 2002.

L. L. Ling, T. Schneider, A. J. Peoples, A. L. Spoering, I. Engels et al., A new antibiotic kills pathogens without detectable resistance, Nature, vol.517, pp.455-459, 2015.

P. D. Lister, D. J. Wolter, and N. D. Hanson, Antibacterialresistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms, Clin. Microbiol. Rev, vol.22, pp.582-610, 2009.

G. Liu, X. Liu, H. Xu, X. Liu, H. Zhou et al., Structural insights into the redox-sensing mechanism of MarR-type regulator AbfR, J. Am. Chem. Soc, vol.139, pp.1598-1608, 2017.

K. P. Locher, Review. Structure and mechanism of ATP-binding cassette transporters, Philos. Trans. R. Soc. Lond. B Biol. Sci, vol.364, pp.239-245, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01696955

Y. C. Lou, T. H. Weng, Y. C. Li, Y. F. Kao, W. F. Lin et al., Structure and dynamics of polymyxin-resistance-associated response regulator PmrA in complex with promoter DNA, Nat. Commun, vol.6, p.8838, 2015.

M. J. Lowden, K. Skorupski, M. Pellegrini, M. G. Chiorazzo, R. K. Taylor et al., Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.2860-2865, 2010.

S. E. Maddocks and P. C. Oyston, Structure and function of the LysRtype transcriptional regulator (LTTR) family proteins, Microbiology, vol.154, pp.3609-3623, 2008.

R. G. Martin and J. L. Rosner, Binding of purified multiple antibioticresistance repressor protein (MarR) to mar operator sequences, Proc. Natl. Acad. Sci. U.S.A, vol.92, pp.5456-5460, 1995.

P. F. Mcdermott, R. D. Walker, and D. G. White, Antimicrobials: modes of action and mechanisms of resistance, Int. J. Toxicol, vol.22, pp.135-143, 2003.

R. G. Martin and J. L. Rosner, The AraC transcriptional activators, Curr. Opin. Microbiol, vol.4, pp.132-137, 2001.

A. E. Mechaly, N. Sassoon, J. M. Betton, A. , and P. M. , Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation, PLoS Biol, vol.12, p.1001776, 2014.
DOI : 10.1371/journal.pbio.1001776

URL : https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.1001776&type=printable

D. J. Miller, Y. M. Zhang, C. Subramanian, C. O. Rock, and S. W. White, Structural basis for the transcriptional regulation of membrane lipid homeostasis, Nat. Struct. Mol. Biol, vol.17, pp.971-975, 2010.

K. S. Molnar, M. Bonomi, R. Pellarin, G. D. Clinthorne, G. Gonzalez et al., Cys-scanning disulfide crosslinking and bayesian modeling probe the transmembrane signaling mechanism of the histidine kinase, PhoQ. Structure, vol.22, pp.1239-1251, 2014.

D. Monferrer, T. Tralau, M. A. Kertesz, I. Dix, M. Solà et al., Structural studies on the full-length LysR-type regulator TsaR from Comamonas testosteroni T-2 reveal a novel open conformation of the tetrameric LTTR fold, Mol. Microbiol, vol.75, pp.1199-1214, 2010.

L. Monlezun, G. Phan, H. Benabdelhak, M. B. Lascombe, V. Y. Enguéné et al., New OprM structure highlighting the nature of the N-terminal anchor, Front. Microbiol, vol.6, p.667, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02150031

Y. Morita, L. Cao, V. C. Gould, M. B. Avison, and K. Poole, nalD encodes a second repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa, J. Bacteriol, vol.188, pp.8649-8654, 2006.

Y. Morita, J. Tomida, and Y. Kawamura, Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon, Front. Microbiol, vol.6, p.8, 2015.

J. J. Mousa and S. D. Bruner, Structural and mechanistic diversity of multidrug transporters, Nat. Prod. Rep, vol.33, pp.1255-1267, 2016.
DOI : 10.1039/c6np00006a

C. Muller, P. Plésiat, J. , and K. , A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and beta-lactams in Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.55, pp.1211-1221, 2011.

J. F. Muller, A. M. Stevens, J. Craig, and N. G. Love, Transcriptome analysis reveals that multidrug efflux genes are upregulated to protect Pseudomonas aeruginosa from pentachlorophenol stress, Appl. Environ. Microbiol, vol.73, pp.4550-4558, 2007.
DOI : 10.1128/aem.00169-07

URL : https://aem.asm.org/content/73/14/4550.full.pdf

S. Muraoka, R. Okumura, N. Ogawa, T. Nonaka, K. Miyashita et al., Crystal structure of a full-length LysR-type transcriptional regulator, CbnR: unusual combination of two subunit forms and molecular bases for causing and changing DNA bend, J. Mol. Biol, vol.328, pp.555-566, 2003.

A. Narayanan, S. Kumar, A. N. Evrard, L. N. Paul, and D. A. Yernool, An asymmetric heterodomain interface stabilizes a response regulator-DNA complex, Nat. Commun, vol.5, p.3282, 2014.

K. J. Newberry, M. Fuangthong, W. Panmanee, S. Mongkolsuk, and R. G. Brennan, Structural mechanism of organic hydroperoxide induction of the transcription regulator OhrR, Mol. Cell, vol.28, pp.652-664, 2007.

L. Ni, N. K. Tonthat, N. Chinnam, and M. A. Schumacher, Structures of the Escherichia coli transcription activator and regulator of diauxie, XylR: an AraC DNA-binding family member with a LacI/GalR ligand-binding domain, Nucleic Acids Res, vol.41, 1998.

H. Nikaido, Multidrug resistance in bacteria, Annu. Rev. Biochem, vol.78, pp.119-146, 2009.

H. Nikaido, RND transporters in the living world, Res. Microbiol, 2018.

P. O. Nikiforov, M. Blaszczyk, S. Surade, H. I. Boshoff, A. Sajid et al., Fragment-sized EthR inhibitors exhibit exceptionally strong ethionamide boosting effect in whole-cell mycobacterium tuberculosis assays, ACS Chem. Biol, vol.12, pp.1390-1396, 2017.

P. Oliver, M. Peralta-gil, M. L. Tabche, and E. Merino, Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model, BMC Genomics, vol.17, p.686, 2016.

P. Orth, D. Schnappinger, W. Hillen, W. Saenger, and W. Hinrichs, Structural basis of gene regulation by the tetracycline inducible Tet repressoroperator system, Nat. Struct. Biol, vol.7, pp.215-219, 2000.

C. Palanca and V. Rubio, Structure of AmtR, the global nitrogen regulator of Corynebacterium glutamicum, in free and DNA-bound forms, FEBS J, vol.283, pp.1039-1059, 2016.

I. C. Perera and A. Grove, Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators, J. Mol. Cell Biol, vol.2, pp.243-254, 2010.

K. Perron, O. Caille, C. Rossier, C. Van-delden, J. L. Dumas et al., CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa, J. Biol. Chem, vol.279, pp.8761-8768, 2004.

G. Phan, H. Benabdelhak, M. B. Lascombe, P. Benas, S. Rety et al., Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel, Structure, vol.18, pp.507-517, 2010.

G. Phan, M. Picard, and I. Broutin, Focus on the outer membrane factor OprM, the forgotten player from efflux pumps assemblies, Antibiotics, vol.4, pp.544-566, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02150041

S. Picossi, B. R. Belitsky, and A. L. Sonenshein, Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC, J. Mol. Biol, vol.365, pp.1298-1313, 2007.

K. Poole, Bacterial multidrug efflux pumps serve other functions, vol.3, pp.179-185, 2008.

K. Poole, Pseudomonas aeruginosa: resistance to the max, Front. Microbiol, vol.2, p.65, 2011.

K. Poole and R. Srikumar, Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance, Curr. Top. Med. Chem, vol.1, pp.59-71, 2001.

O. Porrúa, M. García-jaramillo, E. Santero, and F. Govantes, The LysRtype regulator AtzR binding site: DNA sequences involved in activation, repression and cyanuric acid-dependent repositioning, Mol. Microbiol, vol.66, pp.410-427, 2007.

M. Ptashne and A. Gann, Transcriptional activation by recruitment, Nature, vol.386, pp.569-577, 1997.

T. Rahman, B. Yarnall, and D. A. Doyle, Efflux drug transporters at the forefront of antimicrobial resistance, Eur. Biophys. J, vol.46, pp.647-653, 2017.

J. L. Ramos, M. Martínez-bueno, A. J. Molina-henares, W. Terán, K. Watanabe et al., The TetR family of transcriptional repressors. Microbiol, Mol. Biol. Rev, vol.69, pp.326-356, 2005.

T. Reeder and R. Schleif, AraC protein can activate transcription from only one position and when pointed in only one direction, J. Mol. Biol, vol.231, pp.205-218, 1993.

S. E. Reichheld, Z. Yu, and A. R. Davidson, The induction of folding cooperativity by ligand binding drives the allosteric response of tetracycline repressor, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.22263-22268, 2009.

M. Resch, H. Striegl, E. M. Henssler, M. Sevvana, C. Egerer-sieber et al., A protein functional leap: how a single mutation reverses the function of the transcription regulator TetR, Nucleic Acids Res, vol.36, pp.4390-4401, 2008.

S. Rhee, R. G. Martin, J. L. Rosner, and D. R. Davies, A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.10413-10418, 1998.

C. Richardot, P. Juarez, K. Jeannot, I. Patry, P. Plésiat et al., Amino acid substitutions account for most MexS alterations in clinical nfxC mutants of Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.60, pp.2302-2310, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01687774

A. Rodrigue, Y. Quentin, A. Lazdunski, V. Méjean, and M. Foglino, Two-component systems in Pseudomonas aeruginosa: why so many?, Trends Microbiol, vol.8, pp.498-504, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01760903

J. M. Rolain, C. Abat, M. T. Jimeno, P. E. Fournier, and D. Raoult, Do we need new antibiotics?, Clin. Microbiol. Infect, vol.22, pp.408-415, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01458383

V. Saridakis, D. Shahinas, X. Xu, and D. Christendat, Structural insight on the mechanism of regulation of the MarR family of proteins: high-resolution crystal structure of a transcriptional repressor from Methanobacterium thermoautotrophicum, J. Mol. Biol, vol.377, pp.655-667, 2008.

H. Sawai, M. Yamanaka, H. Sugimoto, Y. Shiro, A. et al., Structural basis for the transcriptional regulation of heme homeostasis in Lactococcus lactis, J. Biol. Chem, vol.287, pp.30755-30768, 2012.

M. A. Schell, Molecular biology of the LysR family of transcriptional regulators, Annu. Rev. Microbiol, vol.47, pp.597-626, 1993.

M. A. Schell, P. H. Brown, and S. Raju, Use of saturation mutagenesis to localize probable functional domains in the NahR protein, a LysR-type transcription activator, J. Biol. Chem, vol.265, pp.3844-3850, 1990.

R. Schleif, AraC protein: a love-hate relationship, Bioessays, vol.25, pp.274-282, 2003.

R. Schleif, AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action, FEMS Microbiol. Rev, vol.34, pp.779-796, 2010.

S. Schuldiner, EmrE, a model for studying evolution and mechanism of ion-coupled transporters, Biochim. Biophys. Acta, vol.1794, pp.748-762, 2009.

M. A. Schumacher and R. G. Brennan, Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors, Mol. Microbiol, vol.45, pp.885-893, 2002.

M. A. Schumacher, M. C. Miller, and R. G. Brennan, Structural mechanism of the simultaneous binding of two drugs to a multidrug-binding protein, EMBO J, vol.23, pp.2923-2930, 2004.

M. A. Schumacher, M. C. Miller, S. Grkovic, M. H. Brown, R. A. Skurray et al., Structural mechanisms of QacR induction and multidrug recognition, Science, vol.294, pp.2158-2163, 2001.

M. A. Schumacher, M. C. Miller, S. Grkovic, M. H. Brown, R. A. Skurray et al., Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR, EMBO J, vol.21, pp.1210-1218, 2002.

M. A. Schumacher and W. Zeng, Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.4988-4993, 2016.

M. Sivaneson, H. Mikkelsen, I. Ventre, C. Bordi, and A. Filloux, Two-component regulatory systems in Pseudomonas aeruginosa: an intricate network mediating fimbrial and efflux pump gene expression, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01458271

, Mol. Microbiol, vol.79, pp.1353-1366

E. E. Smith, D. G. Buckley, Z. Wu, C. Saenphimmachak, L. R. Hoffman et al., Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.8487-8492, 2006.

M. L. Sobel, D. Hocquet, L. Cao, P. Plesiat, and K. Poole, Mutations in PA3574 (nalD) lead to increased MexAB-OprM expression and multidrug resistance in laboratory and clinical isolates of Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.49, pp.1782-1786, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01696230

S. M. Soisson, B. Macdougall-shackleton, R. Schleif, and C. Wolberger, Structural basis for ligand-regulated oligomerization of AraC, Science, vol.276, pp.421-425, 1997.

G. Spengler, A. Kincses, M. Gajdács, and L. Amaral, New roads leading to old destinations: efflux pumps as targets to reverse multidrug resistance in bacteria, Molecules, vol.22, p.468, 2017.

A. M. Stock, V. L. Robinson, and P. N. Goudreau, Twocomponent signal transduction, Annu. Rev. Biochem, vol.69, pp.183-215, 2000.

C. K. Stover, X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener et al., Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature, vol.406, pp.959-964, 2000.

P. Stragier, F. Richaud, F. Borne, and J. C. Patte, Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. I. Identification of a lysR gene encoding an activator of the lysA gene, J. Mol. Biol, vol.168, pp.307-320, 1983.

J. Sun, Z. Deng, Y. , and A. , Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations, Biochem. Biophys. Res. Commun, vol.453, pp.254-267, 2014.

G. Szakács, A. Varadi, C. Ozvegy-laczka, and B. Sarkadi, The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox), Drug Discov. Today, vol.13, pp.379-393, 2008.

E. Tacconelli, E. Carrara, A. Savoldi, S. Harbarth, M. Mendelson et al., Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis, Lancet Infect. Dis, vol.18, pp.318-327, 2017.

R. Tyrrell, K. H. Verschueren, E. J. Dodson, G. N. Murshudov, C. Addy et al., The structure of the cofactor-binding fragment of the LysR family member, CysB: a familiar fold with a surprising subunit arrangement, Structure, vol.5, pp.1017-1032, 1997.

A. V. Vargiu, K. M. Pos, K. Poole, and H. Nikaido, Editorial: bad bugs in the XXIst century: resistance mediated by multi-drug efflux pumps in gram-negative bacteria, Front. Microbiol, vol.7, p.833, 2016.

C. Wang, J. Sang, J. Wang, M. Su, J. S. Downey et al., Mechanistic insights revealed by the crystal structure of a histidine kinase with signal transducer and sensor domains, PLoS Biol, vol.11, 2013.

D. Wang, W. Chen, S. Huang, Y. He, X. Liu et al., Structural basis of Zn(II) induced metal detoxification and antibiotic resistance by histidine kinase CzcS in Pseudomonas aeruginosa, PLoS Pathog, vol.13, p.1006533, 2017.

D. Wang, C. Seeve, L. S. Pierson, P. , and E. A. , Transcriptome profiling reveals links between ParS/ParR, MexEF-OprN, and quorum sensing in the regulation of adaptation and virulence in Pseudomonas aeruginosa, BMC Genomics, vol.14, p.618, 2013.

L. Wang and S. C. Winans, High angle and ligand-induced low angle DNA bends incited by OccR lie in the same plane with OccR bound to the interior angle, J. Mol. Biol, vol.253, pp.32-38, 1995.

Z. Wang, G. Fan, C. F. Hryc, J. N. Blaza, I. I. Serysheva et al., An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump, Elife, vol.6, p.24905, 2017.

J. E. Weldon, M. E. Rodgers, C. Larkin, and R. F. Schleif, Structure and properties of a truely apo form of AraC dimerization domain, Proteins, vol.66, pp.646-654, 2007.

M. S. Wilke, M. Heller, A. L. Creagh, C. A. Haynes, L. P. Mcintosh et al., The crystal structure of MexR from Pseudomonas aeruginosa in complex with its antirepressor ArmR, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.14832-14837, 2008.

S. P. Wilkinson and A. Grove, Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins, Curr. Issues Mol. Biol, vol.8, pp.51-62, 2006.

A. R. Willems, K. Tahlan, T. Taguchi, K. Zhang, Z. Z. Lee et al., Crystal structures of the Streptomyces coelicolor TetRlike protein ActR alone and in complex with actinorhodin or the actinorhodin biosynthetic precursor (S)-DNPA, J. Mol. Biol, vol.376, pp.1377-1387, 2008.

A. Yamaguchi, R. Nakashima, and K. Sakurai, Structural basis of RND-type multidrug exporters, Front. Microbiol, vol.6, p.327, 2015.

N. Yan, Structural Biology of the Major Facilitator Superfamily Transporters, Annu. Rev. Biophys, vol.44, pp.257-283, 2015.

J. Yang, C. Dogovski, D. Hocking, M. Tauschek, M. Perugini et al., Bicarbonate-mediated stimulation of RegA, the global virulence regulator from Citrobacter rodentium, J. Mol. Biol, vol.394, pp.591-599, 2009.

J. Yang, M. Tauschek, and R. M. Robins-browne, Control of bacterial virulence by AraC-like regulators that respond to chemical signals, Trends Microbiol, vol.19, pp.128-135, 2011.

S. Yang, Z. Gao, T. Li, M. Yang, T. Zhang et al., Structural basis for interaction between Mycobacterium smegmatis Ms6564, a TetR family master regulator, and its target DNA, J. Biol. Chem, vol.288, pp.23687-23695, 2013.
DOI : 10.1074/jbc.m113.468694

URL : http://www.jbc.org/content/288/33/23687.full.pdf

H. K. Yeo, Y. W. Park, and J. Y. Lee, Structural basis of operator sites recognition and effector binding in the TetR family transcription regulator FadR, Nucleic Acids Res, vol.45, pp.4244-4254, 2017.

Z. Yu, S. E. Reichheld, A. Savchenko, J. Parkinson, and A. R. Davidson, A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators, J. Mol. Biol, vol.400, pp.847-864, 2010.

X. Zhou, Z. Lou, S. Fu, A. Yang, H. Shen et al., Crystal structure of ArgP from Mycobacterium tuberculosis confirms two distinct conformations of full-length LysR transcriptional regulators and reveals its function in DNA binding and transcriptional regulation, J. Mol. Biol, vol.396, pp.1012-1024, 2010.

R. Zhu, Y. Song, H. Liu, Y. Yang, S. Wang et al., Allosteric histidine switch for regulation of intracellular zinc(II) fluctuation, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.13661-13666, 2017.

C. P. Zschiedrich, V. Keidel, and H. Szurmant, Molecular mechanisms of two-component signal transduction, J. Mol. Biol, vol.428, pp.3752-3775, 2016.
DOI : 10.1016/j.jmb.2016.08.003

URL : http://europepmc.org/articles/pmc5023499?pdf=render