, In this subsection we prove that, at the difference from other hyperbolicity parameters

, Note that if we are given a BFS-tree T rooted at w, we can easily check whether ? w,T (G) ? 1, and thus deciding whether ? ? (G) ? 1 is in NP

, Up to preprocessing the formula, we can suppose that ? satisfies the following properties (otherwise, ? can be reduced to a formula satisfying these conditions): ? no clause c j can be reduced to a singleton, vol.1

, ? every literal x i , x i is contained in at least one clause

, ? no clause c j can be strictly contained in another clause c k

, ? every clause c j is disjoint from some other clause c k (otherwise, a trivial satisfiability assignment for ? is to set true every literal in c j )

, ? if two clauses c j , c k are disjoint, then there exists another clause c p that intersects c j in exactly one literal, and similarly, that also intersects c k in exactly one literal (otherwise, we add the two new clauses x ? y and x ? y, with x, y being fresh new variables; then, we replace every clause c j by the two new clauses c j ? x ? y and c j ? x ? y)

X. Let and .. .. , For simplicity, in what follows, we often denote x i , x i by 2i?1 , 2i . Let C := {c 1 , . . . , c m } be the clause-set of ?. Finally, let w and V = {v 1 , v 2 , . . . , v 2n } be additional vertices. We construct a graph G ? with V (G ? ) = {w} ? V ? X ? C and where E(G ? ) is defined as follows: ? N (w) = V and V is a clique, ? for every i, i, = i

, ? for every i, i , i and i are adjacent if and only if i = i

, ? for every i, j, v i and c j are not adjacent

, ? for every i, j, i and c j are adjacent if and only if i ? c j

, By construction, d(c j , c k ) = 2, and the parent node of c k contained in c j ? c p . We have (c k | i ) c j = 2 ? d(c k , i )/2 ? {1, 3/2}. In particular, (c k | i ) c j = 1. As a result

, For every BFS-tree T rooted at i ? X, we have ? i

, Since there is a perfect matching between X and V = N (w), the parent node of w must be v i . We claim that the parent node of v i , for every i = i, must be also v i . Indeed, otherwise this should be i . However, (w|v i ) i = (2 + 2 ? 1)/2 = 3/2. In particular, (w|v i ) i = 1, and so, ? i ,T (G ? ) ? 1 implies v i and i should be adjacent, that is a contradiction. So, the claim is proved. Then, let c j ? C be nonadjacent to i . We have d(c j , i ) = 2, and the parent node p j of c j, vol.1

, For every BFS-tree T rooted at v i ? V , we have ? v i

, In particular, the parent of i must be v i . Furthermore, there exists c j ? C such that d(v i , c j ) = 2. In particular, i must be the parent of c j . However, ( i |c j ) v i = 2 ? d( i , c j )/2 ? {1, 3/2}. In particular, ( i |c j ) v i = 1. So, ? v i ,T (G ? ) ? d(v i , i ) = 2. From now on, There exists i = i such that i , i are nonadjacent

, If s ? V and t is arbitrary

, Since w is a simplicial vertex and s ? N (w), we have d(w, t) ? 1 ? d(s, t) ? d(w, t), and consequently

, We have (s|t) w = 2 ? d(s, t)/2. In particular, (s|t) w ? 1. As a result

, 2 ? {3/2, 2}. In particular, if d(s, t) = 2 then (s|t) w = 1, and so, we are done because s t , t s ? N [w] and w is simplicial. Otherwise, d(s, t) = 1, and so, (s|t) w = 2. In particular, s t = s and s t

, We have (s|t) w = 3 ? d(s, t)/2 ? {2, 5/2}. In particular

M. Abu-ata and F. F. Dragan, Metric tree-like structures in real-world networks: an empirical study, Networks, vol.67, pp.49-68, 2016.

A. B. Adcock, B. D. Sullivan, and M. W. Mahoney, Tree-like structure in large social and information networks, ICDM 2013, pp.1-10, 2013.

J. M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig et al., Notes on word hyperbolic groups, Group Theory from a Geometrical Viewpoint, pp.3-63, 1990.

M. Borassi, D. Coudert, P. Crescenzi, and A. Marino, On computing the hyperbolicity of real-world graphs, ESA 2015, vol.9294, pp.215-226, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01199860

M. Borassi, P. Crescenzi, and M. Habib, Into the square: on the complexity of some quadratic-time solvable problems, Electron. Notes Theor. Comput. Sci, vol.322, pp.51-67, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01390131

B. H. Bowditch, Notes on Gromov's hyperbolicity criterion for path-metric spaces, Group Theory from a Geometrical Viewpoint, pp.64-167, 1990.

M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren Math. Wiss, vol.319, 1999.

J. Chalopin, V. Chepoi, F. F. Dragan, G. Ducoffe, A. Mohammed et al., Fast approximation and exact computation of negative curvature parameters of graphs, :15. Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, vol.99, pp.1-22, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01836063

J. Chalopin, V. Chepoi, P. Papasoglu, and T. Pecatte, Cop and robber game and hyperbolicity, SIAM J. Discrete Math, vol.28, 1987.
DOI : 10.1137/130941328

URL : https://hal.archives-ouvertes.fr/hal-01198887

V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, and Y. Vaxès, Diameters, centers, and approximating trees of delta-hyperbolic geodesic spaces and graphs, SoCG, pp.59-68, 2008.

V. Chepoi, F. F. Dragan, B. Estellon, M. Habib, Y. Vaxès et al., Additive spanners and distance and routing labeling schemes for hyperbolic graphs, Algorithmica, vol.62, pp.713-732, 2012.
DOI : 10.1007/s00453-010-9478-x

URL : https://hal.archives-ouvertes.fr/hal-01194836

V. Chepoi, F. F. Dragan, and Y. Vaxès, Core congestion is inherent in hyperbolic networks, SODA 2017, pp.2264-2279, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01769624

V. Chepoi and B. Estellon, Packing and covering ?-hyperbolic spaces by balls, APPROX-RANDOM 2007, vol.4627, pp.59-73, 2007.
DOI : 10.1007/978-3-540-74208-1_5

N. Cohen, D. Coudert, and A. Lancin, On computing the Gromov hyperbolicity, ACM J. Exp. Algorithmics, vol.20, p.18, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01182890

D. Coudert and G. Ducoffe, Recognition of C4-free and 1/2-hyperbolic graphs, SIAM J. Discrete Math, vol.28, pp.1601-1617, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01070768

D. Coudert, G. Ducoffe, and A. Popa, Fully polynomial FPT algorithms for some classes of bounded cliquewidth graphs, SODA 2018, pp.2765-2784, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01676187

B. Dasgupta, M. Karpinski, N. Mobasheri, and F. Yahyanejad, Effect of Gromov-hyperbolicity parameter on cuts and expansions in graphs and some algorithmic implications, Algorithmica, vol.80, pp.772-800, 2018.

T. Delzant and M. Gromov, Courbure mésoscopique et théorie de la toute petite simplification, J. Topol, vol.1, pp.804-836, 2008.
DOI : 10.1112/jtopol/jtn023

R. Duan, Approximation algorithms for the Gromov hyperbolicity of discrete metric spaces, LATIN 2014, vol.8392, pp.285-293, 2014.

K. Edwards, W. S. Kennedy, and I. Saniee, Fast approximation algorithms for p-centers in large ?-hyperbolic graphs, Algorithmica, vol.80, pp.3889-3907, 2018.

T. Fluschnik, C. Komusiewicz, G. B. Mertzios, A. Nichterlein, R. Niedermeier et al., When can graph hyperbolicity be computed in linear time?, WADS 2017, vol.10389, pp.397-408, 2017.

H. Fournier, A. Ismail, and A. Vigneron, Computing the Gromov hyperbolicity of a discrete metric space, Inform Process. Lett, vol.115, pp.576-579, 2015.

, Les groupes hyperboliques d'après M. Gromov, vol.83, 1990.

M. Gromov, Hyperbolic groups, Group Theory, vol.8, pp.75-263, 1987.

M. F. Hagen, Weak hyperbolicity of cube complexes and quasi-arboreal groups, J. Topology, vol.7, issue.2, pp.385-418, 2014.

W. S. Kennedy, I. Saniee, and O. Narayan, On the hyperbolicity of large-scale networks and its estimation, pp.3344-3351, 2016.

O. Narayan and I. Saniee, Large-scale curvature of networks, Phys. Rev. E, vol.84, p.66108, 2011.

P. Papasoglu, Strongly geodesically automatic groups are hyperbolic, Invent. Math, vol.121, issue.2, pp.323-334, 1995.
DOI : 10.1007/bf01884301

P. Papasoglu, An algorithm detecting hyperbolicity, Geometric and computational perspectives on infinite groups, vol.25, pp.193-200, 1994.
DOI : 10.1090/dimacs/025/10

N. Polat, On infinite bridged graphs and strongly dismantlable graphs, Discrete Math, vol.211, pp.153-166, 2000.
DOI : 10.1016/s0012-365x(99)00142-9

URL : https://doi.org/10.1016/s0012-365x(99)00142-9

Y. Shavitt and T. Tankel, Hyperbolic embedding of Internet graph for distance estimation and overlay construction, IEEE/ACM Trans. Netw, vol.16, issue.1, pp.25-36, 2008.

M. Soto, Quelques propriétés topologiques des graphes et applicationsà Internet et aux réseaux, 2011.

K. Verbeek and S. Suri, Metric embedding, hyperbolic space, and social networks, pp.501-510, 2014.
DOI : 10.1016/j.comgeo.2016.08.003

URL : https://manuscript.elsevier.com/S0925772116300712/pdf/S0925772116300712.pdf

H. Yu, An improved combinatorial algorithm for boolean matrix multiplication, ICALP 2015, vol.9134, pp.1094-1105, 2015.